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Several methods for nonequilibrium computer simulation of plane Couette flow are analyzed by
kinetic theory. The boundary-value problem for the nonlinear Boltzmann equation is related to the
stochastic, Lees-Edwards, and "non-Newtonian" dynamics methods. It is found that the kinetic-

theory and computer simulation methods can be put into close correspondence, except for one form
of the non-Newtonian equations of motion. The effects of homogeneous, nonconservative forces
used to maintain constant temperature are also studied. For a special interatomic force law exact
scaling relations are obtained to relate isothermal and nonisothermal solutions to the Boltzmann
equation. For other force laws this scaling relationship is only approximate.

I. INTRODUCTION

One of the simplest examples of a macroscopic non-
equilibrium state is that of plane Couette flow between
parallel plates in a relative motion. Because of its simpli-
city, it has attracted a great deal of attention in recent
years as a proving ground for theoretical developments in
nonequilibrium statistical mechanics' and for new
methods developed to simulate nonequilibrium states on
the computer. The typical laboratory conditions corre-
spond to a boundary-value problem with forces on the
fluid applied only at the surfaces of the two plates. The
computer simulation of such physical boundary condi-
tions was first considered by Lees and Edwards, ' and
Ashurst and Hoover. Subsequently, however, it was
found that the uniform shear flow field could be produced
more efficiently by replacing the boundary conditions
with properly chosen homogeneous, nonconservative
forces applied everywhere throughout the fiuid. Further-
more, additional forces could be used to extract energy
uniformly from the gas to exactly compensate for viscous
heating, leading to a macroscopic state of isothermal uni-
form shear flow. Such an idealized state is clearly desir-
able for practical reasons, and computer simulations in
this way have provided extensive data on the shear viscos-
ity and other non-Newtoniaii properties of the pressure
tensor. Recently, attempts have been made to simulate a
more realistic flovv, similar to the spirit of Ashurst and
Hoover, using stochastic boundary conditions. The latter
represent a complete accommodation of an incident parti-
cle with the thermodynamics and flow of the walls before
being reemitted. A stationary state is attained in this case
without the need for additional external forces. Implicit
in these studies is the assumption that, since the macro-

scopic flow field is the same in all cases as that obtained
by physical boundary conditions, the transport properties
agree as well. However, the macroscopic flow field places
only a weak constraint on the microscopic state, so the re-
lationship of transport properties determined from com-
puter simulation to those that might be determined exper-
imentally or from the corresponding theoretical
boundary-value problem has not yet been determined.
The objective here is to clarify this relationship and to in-
terpret the methods of computer simulation, for the sim-
ple case of a Boltzmann gas. A brief summary of the
main features of these methods is given in Sec. II.

Two different questions regarding the computer simula-
tion are isolated: (1) How is the macroscopic flow field
generated?, and (2) what are the effects of isothermal con-
straints? The first question is addressed in Sec. III where
the Boltzmann equation is applied to a gas between two
parallel plates in relative motion. A suitable class of
boundary conditions is introduced to emphasize that the
nonequilibrium flow field is due to momentum transfer at
the boundaries. The stochastic boundary conditions are a
special case corresponding to local interactions with the
walls. It is shown that the Lees-Edwards periodic condi-
tions are also a special case, although by definition they
have an unrealistic nonlocalicity. Further analysis of the
Lees-Edwards model is possible using a transformation to
the local rest frame of the fluid. In this frame the
Boltzmann equation admits a spatially homogeneous solu-
tion, corresponding to the "homogeneous shear fiow"
studied by computer simulation. ' ' Alternatively, the
inertial force generated by this local Galilean transforma-
tion may be viewed as a fictitious force in Newton's
second law. The associated "non-Newtonian" equations
of motion agree with one of two such prescriptions
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currently used for molecular dynamics simulations. '

The other ("dolls tensor"') predicts incorrect transport
properties. The interpretation given here provides a cri-
terion for choosing between the two, and suggests that the
non-Newtonian equations are simply Newton's equations
in a special noninertial frame.

A homogeneous "drag" force is introduced in Sec. IV
to compensate for the viscous heating generated by the
Lees-Edwards or non-Newtonian methods. Solutions to
the Boltzmann equation for constant temperature are
studied relative to those without the thermostat. For the
special case of Maxwell molecules, a scaling relation is ob-
tained for the two classes of solutions. This result leads to
similar scaling laws for all transport properties. In partic-
ular, the shear viscosity and viscometric functions in ap-
propriate dimensionless form have a shear rate depen-
dence that is invariant with respect to the thermostat
forces. This exact result is indeed the desired property
implicitly assumed in isothermal computer simulations.
However, the analysis here also suggests that the relation-
ship may not be so simple for other interatomic force laws
and more complex fluids. These results are discussed crit-
ically in Sec. V, and related to some other recent analyses
of computer simulation methods.

II. NONEQUILIBRIUM COMPUTER
SIMULATION METHODS

The review articles, Ref. 2, provide a discussion of most
current methods for simulation of uniform shear flow,
and have extensive references. Here, only the basic ideas
of the approaches mentioned in the Introduction are re-
called to clarify the discussion in the following sections.
These are described in order of increasing abstraction
from the experimental conditions.

A. Stochastic boundary conditions (Ref. 7)

X particles are placed in a unit cell and their dynamics
is generated from Newton's equations subject to periodic
boundary conditions in the x and z directions, just as for
equilibrium computer simulation. The stochastic boun-
dary conditions are imposed on the surfaces at y =+L, as
follows. A particle incident on the plane at y =L
(y = L) is reemitte—d into the region y &L (y & L)—
from the same point with a velocity sampled randomly
from a Gaussian distribution. The parameters of the
Gaussian are chosen to represent a fixed temperature at
both walls, but a mean x component of the velocity equal
to + Uo at +J, respectively. These boundary conditions
represent a physically "rough" wall in the sense that an
incident particle is actually trapped long enough to be
thermalized to the state of the wall. More realistic condi-
tions of this type (Maxwell conditions), whereby an in-
cident particle is elastically scattered or stochastically
reemitted with some prescribed relative probability (ac-
commodation coefficient), could be simulated without ad-
ditional difficulty. Although the detailed molecular in-
teraction between the system and the wall is not described
by such boundary conditions, it may be expected that
many properties of the system are only weakly dependent
on such details. For such properties this type of computer

The X particles in the unit cell again have their dynam-
ics generated from Newton's equations with the usual
equilibrium periodic boundary conditions in the x and z
directions. However, when a particle leaves the unit cell
through the top surface at y =L it is given a new position
and velocity on the lower surface. Specifically, it is reen-
tered at y = —L with the same z position and the same y
and z components of the velocity, but with a new x posi-
tion, x~, and a new x component of the velocity, U„z,
given by

xx =x —2 Uot, v„~——v„—2Uo (2.1)

where + Uo again denotes the velocities of the surfaces at

y =+L, respectively. The new x position reflects the rel-
ative displacement of two points at y =+L with the same
x coordinate at t =0. The new velocity differs from the
original velocity by the relative velocities of the two sur-
faces. A complementary boundary condition is imposed
at y = —L, such that the particle is reentered through

y =+L in a manner similar to (2.1) but with the sign of
Uo changed. Finally, these conditions are periodically ex-
tended along the y axis. There are some significant differ-
ences between the Lees-Edwards and stochastic boundary
conditions. The former are nonlocal and are not intended
to represent the interaction of the particles with physical
walls. Furthermore, work is done on the system when
particles are moved from one surface to the other with a
velocity change. As a consequence no stationary state is
possible. Instead, a linear velocity profile is attained as
desired, and the temperature is spatially constant but in-
creases with time (viscous heating). Additional noncon-
servative forces must be introduced somewhat artificially
to obtain a stationary state with these boundary condi-
tions. It is also interesting that a strictly linear velocity
profile is possible in this case, without any boundary
layer. This can be a useful feature of the simulation if the
primary interest is bulk transport properties. An addi-
tional difference is that the Lees-Edwards boundary con-
ditions are restricted to shear flow, whereas the stochastic
boundary conditions have been used to describe other
types of transport as well. '

C. "Non-Newtonian" dynamics (Ref. 5)

The simulation methods in Secs. II A and II B represent
a boundary-value problem in the sense that the evolution
under Newtonian dynamics is interrupted only at the spa-
tial surfaces. The non-Newtonian dynamics method goes
beyond this to change the actual equations of motion
throughout the domain, by the addition of homogeneous
external forces designed to drive the system to uniform

simulation is therefore quite representative of a laboratory
condition to produce shear flow. In practice, it is found
that these boundary conditions lead to a stationary state
with an approximately linear velocity profile between

y =+L and an approximately quadratic profile for the
temperature, with constant pressure. These are generally
the results expected from Navier-Stokes order hydro-
dynamics, complicated by a boundary layer.

B. Lees-Edwards periodic boundary conditions (Ref. 3)
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macroscopic shear flow. The first such dynamics pro-
posed is the "dolls tensor" method for which the equa-
tions of motion are

qai ai + ij 7aj ~ ~Uai ai ~Uaj aji (2.2)

where F~ is the force on the ath particle due to all other
particles, v~ is the "peculiar" velocity of the ath particle
(interpreted as the actual velocity relative to the local
average flow velocity), and a;J is a tensor of the form

a;J =a5;„5' . (2.3)

In these simulations, shearing boundary conditions similar
to (2.1) are used for the position, but the peculiar velocity
is not changed, i.e., v~ ——v. The dynamics (2.2) leads to
(u; ) =0, consistent with a macroscopic flow velocity,

U;(r) =a,qrj. (2.4)

and a spatially constant, but temporally increasing, tem-
perature. These results are quite similar to those from the
Lees-Edwards boundary conditions, with a = Uo/L. Sub-
sequently, a modified version of these equations has been
proposed. s' The form is the same as that in (2.2), except
with a;~ replaced by its transpose in the velocity equa-
tions. This change does not affect the resulting macro-
scopic state of uniform shear flow, and it is possible to
show that the linear-response functions (firs order in a,&)

are the same for the two sets of dynamics. This situation
illustrates the microscopic degeneracy with respect to a
given macroscopic state and suggests that further con-
siderations are required for a choice between these two
methods.

D. Gauss's principle (Refs. 2 and 6)

Except for the stochastic boundary condition approach,
the above computer simulation methods do not yield a
stationary state for uniform shear flow, due to viscous
heating. However, with the introduction of suitably deter-
mined homogeneous, nonconservative forces, the heat

I

may be extracted at the same rate as it is produced. The
resulting temperature is constant in both space and time,
but without additional effects on the velocity field. One
method for the choice of such external forces is by means
of Gauss's variational principle subject to the macroscopic
constraint of constant temperature (both constant kinetic
energy and total energy choices have been used). This en-

sures self-consistency between the resulting dynamics and
the macroscopic constraint. It should be stressed, howev-

er, that Gauss's principle goes beyond Newton's laws and
is only a hypothesis that may not give correct results for a
given physical system. The constant temperature condi-
tion is satisfied by additional forces on each particle of the
form

(F~),„,= —mdiv~,

g= (u;[F, —maj uj ])/(mu '), (2.5)

where the brackets denotes an average as a summation
over all particles. Typically, computer simulations of the
Lees-Edwards or non-Newtonian type are supplemented
by such forces for a fictitious thermostat.

III. KINETIC BOUNDARY-VALUE PROBLEM

Consider a gas between two infinite parallel plates lo-
cated at y =+L. The plane at L has a velocity of magni-
tude Uo along the x axis, while the plane at —L has an
opposite velocity of equal magnitude. The Boltzmann
equation for —L &y &L is then

—+v ~ f=J[f,fl, (3.1)

where f=f (r, v;t) is the distribution function for the po-
sition r and velocity v, and J[f,f] denotes the collision
operator. The appropriate boundary conditions express
the distribution of velocities for particles entering the re-
gion —L &y & L in terms of the distribution for particles
leaving this region, "

8(n v) (n v~ f(s,v;t) f ds'f dv'EC(—s, v;s', v'~t) ~n' v'~8( —n' v')f(s', v', t) =0. (3.2)

Here s and s' are position vectors on the surface of the
confining planes, n is a local unit vector normal to the
surface directed toward the interior, and 8(x) is the
Heaviside unit step function. Equation (3.2) expresses a
linear relationship between the distributions of particles
leaving the surfaces and those incident on the surfaces.
The function E(s,v;s', v'

~
t) characterizes the detail effect

of the wall on the gas. The form (3.2) includes the case of
nonlocal and time-dependent boundary conditions, to al-
low for discussion of the Lees-Edwards method.

Two natural conditions to impose on the kernel,
K(s,v;s', v'

~

t), for the case of interest here are conserva-
tion of particle number (normalization of f)l, and admissi-
bility of a stationary Maxwell-Boltzmann solution when
the parameters of all walls are thermally and mechanical-
ly the same. A trivial example consistent with these con-
ditions is elastic scattering, whereby only the component

of the velocity normal to the wall is changed in direction
at the point of contact. A physically opposite extreme,
also consistent with these conditions, is complete accom-
modation,

K,(s,v;s', v'):—5(s—s')
~

n v
~
[m P (s)/2m. ]

XexpI —P(s)m [v —U(s)]'/2I, (3.3)

where T(s)=[k~P(s)] ' is the temperature, and U(s) is
the velocity of the wall at the point, s. The delta function
implies that this boundary condition is local. Substitution
of (3.3) in (3.2) shows that the distribution function for
particles coming off the wall, n-v~0, is a Gaussian cen-
tered about v =U(s) with a width determined by the tem-
perature of the wall. Clearly this corresponds in spirit
and in detail to the computer simulation method using
stochastic boundary conditions. For example, the case of
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uniform shear flow corresponds to P(s)=constant and
U(s) =+Uox at y = ~L .Therefore, a precise connection
between the theory and the computer simulation method
is established for stochastic boundary conditions. Reason-
able models for the Boltzmann equation (e.g., BGK
models) have been solved with the boundary condition,
(3.3), and the planar geometry assumed here. " Many of
the qualitative features to be expected in a computer

I

siinulation (e.g., boundary layer, temperature profile) ean
be predicted from such models, although no dense fluid
kinetic theory calculations have been formulated for a
quantitative comparison.

A less obvious boundary condition for the Boltzmann
equation is one corresponding to the Lees-Edwards simu-
lation method. By analogy with conditions (2.1), the
Lees-Edwards kernel is defined by

ELa(r, v;r', v'
~

t) =5(U +2UO —U' )5(U„—U~ )5(U, —U,
' )5(x+2Uot —x')5(y+y')5(z —z') (3.4)

r:—r —U(r)t,

v=—v —U(r),

g(r, v;t)=f(r, v;t) .

(3.5)

Under this transformation the position is referred to the
Lagrangian frame for plane Couette flow. The Lees-
Edwards kernel, (3.4), in these variables becomes (for
y =+I, )

ELK(r ', v ', r, v) =5(v ' —v)5(x ' —x )5(y '+y)5(z ' —z) .

(3.6)

Consequently, (3.6) is the usual equilibrium periodic boun-
dary condition [i.e., (3.4) with Uo ——0], except that it is ap-
plied to the new coordinates. Use of (3.6) in (3.2) gives
two sets of conditions on the transformed distribution
function for n v &0 at y =+L. These inay be combined
to give the single condition

[g(r, v;t)] L=[ g(r, v;t)]- ~ . (3.7)

The boundary conditions (3.6) imply that the solution to
the Boltzmann equation in the local rest-frame variables
can be periodically extended. The form of the Boltzmann
equation in this frame is easily found to be,

—+AJ(t)u~ a;Ju~ g =J[g,g—], (3.8)

where A 1 (t) =5 J a;~ t, and the time de—rivative is taken at
constant r, v. Use has been made of the fact that the col-
lision operator, J, is invariant under the transformation
(3.5).

for y =+L. The conditions for particle conservation and
equilibrium solution are easily shown to hold for (3.4) [for
equilibrium, Uo ——0 and (3.4) is seen to be the usual
periodic boundary conditions for equilibrium simula-
tions]. Again it is clear from substitution into Eq. (3.2)
that this represents boundary conditions for the
Boltzmann equation that are precisely the same as the
Lees-Edwards conditions for computer simulation of
shear fiow. It is instructive to give (3.4) an equivalent but
somewhat different interpretation. The stationary macro-
scopic flow field for these boundary conditions is expected
to have the form of Eq. (2.4). In this ease, a simpler
description is expected in a frame of reference that is in-
stantaneously at rest with respect to each fluid element.
This is obtained from a local pseudo-Galilean transforma-
tion,

The noninertial frame Boltzmann equation, (3.8), with
the simple "equilibrium" periodic boundary conditions,
(3.7), is fully equivalent to the inertial frame Boltzmann
equation, (3.1), with velocity changes at the boundaries,
(3.4). Both forms give the same nonequilibrium state, but
the effects of the boundaries in the rest frame have been
transferred to explicit inertial terms in the kinetic equa-
tion itself. There are further simplifications of Eq. (3.8)
for a special class of "homogeneous" solutions. These
solutions are suggested by the fact that a possible set of
hydrodynamic variables consistent with the boundary con-
ditions are a fiow field, (2.4), and spatially constant tem-
perature and density. In the local rest frame, therefore,
the system is completely homogeneous, at least with
respect to the hydrodynamic variables. It might be ex-
pected that this macroscopic state corresponds to homo-
geneous solutions of (3.8). In this case g(r, v;t)=go(v, t)
and Eq. (3.8) reduces to the homogeneous form

a
Bt

—atUJ go= J[go 8'o] . (3.9)

The boundary condition, (3.7), is automatically satisfied,
and so it is sufficient to choose an initial condition that is
homogeneous [although it is expected that for a wider
class of initial conditions the solutions to Eq. (3.8) would
approach a homogeneous state]. It follows directly that
(3.9) yields the expected a hydrodynamic state. For the
special case of Maxwell molecules, Eq. (3.9) can be solved
exactly for the pressure tensor and associated transport
coefficients (shear viscosity, viscometric functions) as a
function of the shear rate. ' The rate of viscous heating is
also obtained. Further progress has been made only with
the Introduction of approximations to the Boltzmann col-
lision operator. ' The special solutions, (3.9), correspond
to the "homogeneous shear flow" obtained in the Lees-
Edwards computer simulations. Such solutions are useful
to describe the above transport properties, but other solu-
tions to the more general Eq. (3.8) are required for in-
herently inhomogeneous properties (e.g., hydrodynamic
fluctuations).

Finally, a connection between the non-Newtonian simu-
lation methods and the Boltzmann equation can be made.
As described in Sec. II, the variables in the equations of
motion are the rest-frame velocities, and the laboratory-
frame coordinates. The Boltzmann equation in these vari-
ables is
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8—+ (u;+ajrj ) a—juj g =J[g,g ] ~ (3.10)

where g'(r, v;t)=f (r, v;t) and the time derivative is now
taken at constant, r, v. If Eq. (3.10) is formally rewritten
as

—+(r;) + (v} g'=J[g' g']
Qp' QU. 7?l

(3.11)

it is seen that the shear-rate dependence of (3.10)
represents a modification of the kinematics corresponding
to a change in Newton's laws according to

Pai Uai +Qij Paj ~

u~; =(F;+W; )/m, (3.12}

P ~i ———IQjj U~j

IV. ISOTHERMAL CONSTRAINTS

The boundary condition (3.4) preserves conservation of
total mass and momentum, but not energy. Since work is
done on the system the average kinetic energy of the gas,
or equivalently the temperature, will increase with time.
For practical purposes, it would be desirable to have a
corresponding stationary state whose transport properties
are essentially the same as those calculated from (3.1) and
(3.4), except with constant temperature. The simplest way
to control the temperature is to introduce a homogeneous
external force on each particle in the gas to extract energy
from the particles at the same rate at which it is produced
by viscous heating. Since the temperature is uniform for
the kinetic model considered here, this external force will
also have to be uniform. Many choices are possible but
attention will be limited to a drag force proportional to
the velocity relative to the local convection field.

when F is again the force on the ath particle due to all
other particles. In other words, Eq. (3.10) could be inter-
preted as the Boltzmann equation for a system of particles
satisfying Eqs. (3.12). These equations of motion are very
similar to the non-Newtonian equations, (2.2), except that
the shear-rate tensor is transposed in the second equation
of (3.12). It was noted in Sec. II that an alternative form
of "dolls tensor" equations has been suggested that differs
only by this transposed shear-rate tensor, and hence is
given by (3.12). The reason to choose (3.12) is now clear:
Since only a change of variables was performed to obtain
(3.10), that result and consequently also (3.12) are still
equivalent to Newtonian dynamics. The additional
shear-rate dependent terms in these equations are simply
inertial effects due to the change of variables. In fact Eqs.
(3.12} follow immediately from Hamilton's equations for

[ r~, v~ J by the substitution u; =u; +a,Jr J, so that the
non-Newtonian dynamics is just Newtonian dynamics re-
ferred to a noninertial frame. No such basis appears to
exist for the "dolls tensor" equations, and the shear-rate
dependence must be assigned to a true external force
whose meaning and consequences are ill-defined.

The appearance of v rather than v is physically reason-
able, but also is required by the macroscopic hydrodynam-
ic equations for consistency with uniform shear flow. The
parameter g(t) is adjusted to fit the condition of constant
temperature. [A time dependence of g(t) is included to al-
low for the possibility of nonstationary solutions, even at
constant temperature. It is shown below, however, that
j(t) approaches a constant after a short initial transient. ]
It is straightforward to extend the homogeneous
Boltzmann equation (3.9) to include the nonconservative
force,

dt
[Pt)" +aijuj l go =1[go go] . (4.2)

The rest-frame form has been chosen and the associated
boundary condition (3.6) is unchanged. The comments of
Sec. III concerning the connection with molecular dynam-
ics methods is also unchanged except for the addition of
F~ to the Newtonian force in both the Lees-Edwards and
non-Newtonian equations of motion methods. The aver-
age kinetic energy, e(t), can be calculated from (15) to give

e(t)+2—((t)e(t)+a,,PJ(gt), a, t) =0,
dt

where Pt/(g(t), a, t } is the pressure tensor,

P&(g(t), a, t)= f dvmu;ujgo(g(t);v, t),

(4.3)

(4 4)

and the dependence of PJ on both g(t) and shear rate, a,
has been made explicit. For isothermal conditions g(t) is
chosen such that r}e(t)/r}t =0.

Equation (4.3) shows that the nonconservative force is a
function of the shear rate through g(t). However, this
also implies that the pressure tensor with the isothermal
constraint is not the same function of shear rate as that
obtained without the constraint,

P;;(g(t),a, t}~P;,(O,a, t) . (4.5)

g( t) =—lnR (t),a
Bt

g(g, t) =&(t)go(j(t);& '(—t)g, t),

(4.6)

In general, it is possible that results obtained with iso-
thermal constraints have little relationship to the corre-
sponding results for laboratory conditions with viscous
heating. On the contrary, the application of such con-
straints for molecular dynamics simulations assumes that
the differences occur in a more or less trivial way that can
be scaled out, leaving transport properties that are essen-
tially the same in the two cases. The objective of this sec-
tion is to justify this view from the kinetic model for a
particular potential (Maxwell molecules), and to show the
precise relationship of all transport properties calculated
with and without isothermal constraints. For other poten-
tial models these relationships are only approximate.

To relate the solution of Eq. (4.2) to that of (3.9), define
a change of variables for the former by

g=—R (t)v,

F&(v, t) = —mg(t)v . (4.1)
which is simply a time-dependent scale transformation on
the velocities. Equation (4.2) then transforms to
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g=J[g g]

with

J[g,g](g)=R 'J[R g, R g](R 'g) . (4.8)

In general the transformation properties of the Boltzmann
collision operator under such scale transformations, as in-

dicated by the right-hand side of (4.8), is quite complicat-
ed. However, for potentials of the form, V(r)-r ", it
reduces to

J[g gl(P=R '" "'"J[gg](C) . (4.9)

Interestingly, for n =4 (Maxwell molecules) the collision
operator is invariant under scale transformations and Eq.
(4.7) reduces to

8
atJ(J g J[8ig ]

dt 8
(4.10)

which is formally equivalent to Eq. (3.9). It is also veri-

fied that the boundary conditions are invariant under this
transformation. If, further, initial conditions are chosen
such that at t =to

go(g(to);v, to) =go((=0;v, to) (4.11)

and we take R (to) = 1, then it follows that the function go
at g(t}=0 is identical to g, for all times, t to,

g(v, t) =go((=0;v, t)

or, equivalently,

g, (g(t);v, t}=R'(t)g,(0;R(t)v, t) .

(4.12)

(4.13)

This is the primary result for the analysis here. For
Maxwell molecules, the distribution function including
the external force, (4.1), is simply related to the distribu-
tion function without it by a time-dependent velocity scal-
1ng.

Until now no restriction has been placed on the parame-
ter g(t) An expres.sion for it follows by calculating the
average kinetic energy from the left- and right-hand sides
of (4.13) and requiring that the temperature on the left-
hand side be constant,

e(g(t), t }=const =R (t)s(O, t),
and with (4.6), g(t) is found to be

1
g(t) =——inc(O, t) .

2 Bt

(4.14)

(4.15)

g(t)~ —', vsinh {—,'cosh '[1+(3a/v) ]j, (4.16)

~here v is an eigenvalue of the Boltzmann collision opera-
tor that is proportional to the density, but otherwise de-
pends only on parameters of the potential. The right-
hand side of (4.16) is proportional to a for small shear
rates and is a monotonically increasing positive function

The right-hand side of (4.15) can be evaluated exactly for
Maxwell molecules as a function of the shear rate and
time. For times large compared to the mean free time it
is asymptotically time independent with a value' '

of a.
Many of the transport properties of interest for shear

flow are determined from the pressure tensor. It is com-
mon to define a shear viscosity function rt(a) and the first
and second viscometric functions fi(a) and Pi(a) as

i}(a)= P„~—/a,
gi(a) = (P— P««—)/a~,

$2(a)= —(P«« —P )/a'.
(4.17)

Since the pressure tensor is given by (4.4) it follows that
the isothermal pressure tensor is related to that with
viscous heating by

P;, (g(t),a, t }=R '(t)P;, (O,a, t) . (4.18)

where p = 3P;; is the pressure. These quantities are in-

variant functions of the reduced shear rate, a"—:a/v,
with respect to the thermostat,

P;,'(g(t), a', t) =P;,'(O, a', t},
rt'{g(t),a', t}=rt'(O, a', t},

f', (g(t), a', t}=g*,(O,a', t),
$2(pt), a', t}=$2(O,a', t) .

(4.20)

Other transport properties can be identified from higher
moments of the distribution function. The pth order mo-
ments are related as in (4.18) except with a factor of
R «(t). The corresponding dimensionless properties are
again invariant, as in {4.20). Consequently, all transport
properties of the isothermal system have a simple relation-
ship to those of the "real" system with viscous heating.
These results are exact and apply at all values of the shear
rate for which solutions to the Boltzmann equation exist.

The scaling law, (4.20), does not apply for potentials
other than the Maxwell potential. Furthermore, exact
solutions are not known for other potentials so it is diffi-
cult to determine precisely the difference between solu-
tions with and without a thermostat in these cases. How-
ever, a realistic estimate can be obtained using a model of
the Boltzm ann collision operator, the nonlinear
Bhatnagar-Gross-Krook (BGK) model

J[ff] &(T(t)}[f fr. ] . — —

Here fL is the local equilibrium distribution as a function
of T(t), and v(T(t)) is an effective collision frequency.
This model preserves the conservation laws associated
with J[f,f] and consequently leads to a proper descrip-
tion of hydrodynamics and transport phenomena. The
dependence on the potential model is entirely contained in
the choice of v{T(t)). For the r " potential the effective
collision frequency is given by

The entire difference in the shear-rate dependence for the
isothermal and nonisothermal cases can be eliminated by
considering the corresponding dim ensionless transport
properties.

P,J =P;J /p,
—rt'=—rtv/p,

(4.19)
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(T(r)) [T(r)](n —4)/2n (4.22)

where v' is a constant independent of the temperature and
proportional to the density. Then, the BGK collision
operator (4.21) also has the scaling property (4.9). The
simplification afforded by Eq. (4.21) allows determination
of the pressure tensor from an ordinary differential equa-
tion, ' whose solution provides the shear-rate dependence
of the shear viscosity. The corresponding result including
the force, (4.1), required for constant temperature is
straightforward to calculate. In that case, as v is a con-
stant, the BGK model is essentially the same for all n

and, therefore, the dimensionless pressure tensor coincides
with the one for Maxwell molecules (n =4). The differ-
ences between the shear viscosities with thermostat and
without thermostat are illustrated in Fig. 1, for the case of
hard spheres. At small shear rates it is possible to show
that the transport coefficients of order (a') (super-
Burnett) differ by about 33%, while for asymptotically
large shear rate the nonlinear shear viscosities differ by
about 14%. These differences suggest that a detailed
comparison of computer simulation results obtained using
a thermostat with theoretical methods implying viscous
heating could be misleading.

V. DISCUSSION

fg
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FIG. 1. Reduced shear viscosity without thermostat,

g (O, a ), relative io the one with thermostat, i)"(g,a ), as a
function of the reduced shear rate, a, in the case of hard
spheres.

The calculations presented in the last two sections show
that several of the assumptions implicit in some methods
for nonequilibrium computer simulations can be related
to, and studied by, kinetic theory. To put these results in

proper context and summarize, several comments are of-
fered.

(1) Although the Lees-Edwards and stochastic boun-

dary conditions lead to the same velocity field in the bulk,
they actually represent quite different macroscopic states
for the system. It is possible to show from the kinetic
theory, and from the computer simulations, that the tem-
perature fields are different in the two cases. This can
lead to complications in the comparison of transport

properties calculated by the two methods. In the case of
the stochastic boundary conditions, the nonlinear shear
viscosity cannot be extracted directly from the pressure
tensor until effects due to spatial gradients of the tem-
perature are accounted for. In the Lees-Edwards case, the
shear-rate dependence of the shear viscosity includes an
undesired contribution from viscous heating. Neither of
these complications is insurmountable, but both illustrate
the need for analysis of computer simulation results
beyond tabulation of the pressure tensor as a function of
the shear rate.

(2) A second important difference between the stochas-
tic and Lees-Edwards methods is the absence of a boun-
dary layer for the latter. In practice, the transport proper-
ties obtained from stochastic boundary conditions are de-
fined at finite Knudsen number, whereas no such effect is
present using the Lees-Edwards method. This difference
suggests that the two methods are complementary ways of
studying a fluid with plane Couette flow. For example, if
the primary interest is in transport coefficients, then the
Lees-Edwards method has the advantage of efficiency
(speed) and effectively zero Knudsen number (bulk limit).
On the other hand, the stochastic boundary conditions
simulate realistic wall effects such as boundary layers and
transition region where hydrodynamics is inapplicable. A
greater emphasis on these latter properties would appear
warranted in the future.

(3) The non-Newtonian dynamics methods include a
case, Eqs. (3.12), which has been interpreted here as sim-

ply Newton's equation in the noninertial Lagrangian
fraine of the macroscopic fiuid, defined by the transfor-
mation, (3.5). This is the frame in which the Lees-
Edwards conditions are formally the same as the usual
periodic boundary conditions for equilibrium simulations.
This form of dynamics is therefore identical to the Lees-
Edwards method. More specifically, Newton's equations
with the boundary conditions, (2.1), in the laboratory
frame, are the same as Eqs. (3.12), with simple periodic
boundary conditions in the local rest frame. This latter
form of Newton's equations was introduced by Yamada
and Kawasaki' in precisely this same spirit to simplify
the statistical mechanics of shear flow, and has been used
in virtually all subsequent theoretical treatments of this
problem. Evans and Morriss have recently emphasized
this equivalence with equations independently suggested
for computer simulations.

In contrast, the original "dolls tensor"' equations, (2.2),
do not seem to have any simple interpretation or origin.
Furthermore, it is possible to show that they predict
viscometric functions of an opposite sign from those of
Eqs. (3.12). Since nonlinear response theory agrees with
the latter it must be assumed that the algorithm is inap-
propriate.

(4) The results at the end of Sec. IV indicate that in

general the relationship of transport properties obtained
with and without thermostat forces is not simple. For the
kinetic theory analysis given here these differences are due
to a variation of the collision frequency due to viscous
heating. In a dense fluid additional effects associated
with a finite force range and correlation length complicate
matters further. For example, the Boltzmann collision
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operator is invariant under the local Galilean transforma-
tion (3.5) whereas more generally a dependence on ar,
(r, =typical collision time) is expected. At high densities

a~, -a/v and such effects could further invalidate any
simple scaling relationships. However, the exact results
obtained here for the low-density gas of Maxwell mole-
cules provide some indication that such a relationship
might be a reasonable approximation.

(5) Ladd and Hoover have recently compared the
Boltztnann equation for the dynamics (3.12), with the
conventional Chapman-Enskog solutions. As expected
from the interpretation here the two problems are the
same. Evans and Morriss have described a structurally
simple formal solution to the Liouville equation using Ya-
mada and Kawasaki's local velocity transformation [the
second of Eqs. (3.5)]. However, neither of Refs. 8 and 9
explicitly includes the thermostat forces, (4.1), although
both implicitly assume constant temperature. As a conse-
quence Ladd and Hoover obtain a shear viscosity for hard
spheres at constant temperature, and not the Zwanzig
solution as claimed [compare Eqs. (22) of Ref. 8 with Eq.
(43) of Ref. 13]. For similar reasons, the formal solution
of Evans and Morriss yields the shear viscosity as a func-
tion of T(0), rather than T(t) as in the Chapman-Enskog
method. Similar formal expressions for transport coeffi-
cients as a function of the initial time thermodynamical

variables have been obtained by Visscher. ' However, it is
expected that expansions of such expressions in powers of
the gradients have awkward secular terms not present in
the Chapman-Enskog —type expansions. '

Finally, it is worth emphasizing that conclusions based
on the kinetic theory of gases should not be extrapolated
to more complex rheological fluids, without caution. As
simulation techniques improve, it is expected that models
of such fluids (e.g., polymers) will be simulated. The rela-
tionship of non-Newtonian properties calculated frotn
both computer simulation and simple kinetic theories to
those of real polymers is still quite uncertain.
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