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Numerical simulation of diffusion-controlled droplet growth: Dynamical correlation effects
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Diffusion-controlled coarsening (Ostwald ripening) of precipitated solutions is studied by numerical simu-
lation. An algorithm is devised which exploits the screening of solute concentration fields, thereby remov-
ing the restriction to small systems of previous work. Simulation of the coarsening of 5000 droplets at 10'k
volume fraction reveals long-ranged dynamical correlations which broaden the droplet size-distribution
function and increase the coarsening-rate coefficient.

An interesting and important development in studies of
first-order phase transitions is the recent incorporation of
dynamical correlation effects into the mean-field Lifshitz-
Slyosov-wagner (LSW)'2 theory of diffusion-controlled
droplet growth. The LS% theory deals with the final stage
in precipitation from liquid or solid solutions, during which
larger precipitated droplets grow at the expense of smaller
ones, which disappear. The driving force for this process,
known as coarsening or Ostwald ripening, is the increased
solubility of the smaller droplets due to surface tension at
the precipitate-solute interface. 3 At very low volume frac-
tions $ of the precipitate it suffices to consider the growth
of a single droplet in an effective medium. This is the re-
gime of validity of the LS% theory„ in which correlations
between positions and sizes of the droplets are neglected.
The scaling laws obtained by LSW are we11 established: In
the long-time limit the distribution function P(a, t) of drop-
let radii a at time t takes the form p(a/a(t)) a (t), with
the average radius a(t)ret'~'. However, the shape of the
scaled distribution function p(a/a) observed experimental-
ly (even at rather low volume fractions) turns out to be
considerably broader and less skewed than would follow
from the LS% theory. An appealing explanation for this
discrepancy, investigated very recently by Marder, 4 is based
on the effect of correlations which develop during coarsen-
ing. Because of the long range 'of diffusive interactions,
these dynamical correlations may well play an important role
even in dilute systems. Marder's theory is a perturbation
expansion to first order in a/X, with X the screening length
of diffusive interactions. Since X —a/@'I', this is an expan-
sion to order qh'I'. Similar theories to this order have been
studied by Marqusee and Ross, ' and by Tokuyama,
Kawasaki and Enomoto, ' although not to the same extent.

In this paper I take an altogether different, nonperturba-
tive approach, based on a direct numerical integration of the
equations of motion. Such an approach (first proposed by
Weins and Cahns) has previously been taken by Voorhees
and Glicksman (VG).9 Unfortunately, the systems studied
by these authors were too small for dynamical correlations
to develop during the simulation. The largest system con-
sisted of 320 droplets initially; awhile this is already a rather
low number for statistical purposes, it decreases even fur-
ther as small droplets dissolve and disappear. To avoid ear-
ly termination of the simulation, VG regularly added new
droplets with the same size distribution —but at random lo-
cations, thereby destroying any dynamical correlations. The
practical reason for the limitation to small systems of the
VG study lies in the fact that the computation time required

N

Q(=a $ Ztt 6 ——
Qg

(2)

with a= Dduc and 5=(—cp —c )/c d. Here D is the dif-
fusion coefficient of the solute, e the molar solute concen-
tration in equilibrium with a flat interface, v the molar
volume of the precipitate, and d a capillary length (typically
of order 10 ' cm). The constant cp denotes a reservoir
solute concentration representing the boundary condition
"at infinity. " The transport matrix Z satisfies the sum
rule' I, Ztt =

2& Ztt=0, valid in the limit of an infinite sys-
tem. Note that because of this identity the evolution of the
system is independent of 6, reflecting screening of the bulk
of the system from the reservoir. Furthermore, it follows
that
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and hence that the volume fraction @=—gi Trrat3N/ V (with
V the volume of the system) is conserved. 'p " In the
monopolar approximation, Eq. (2) takes the form
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As sho~n in Ref. 12, use of the
monopolar approximation limits the validity of the theory to

for their simulation increases very rapidly as W' with the
number of droplets N. Ho~ever, by exploiting the screen-
ing of diffusive interactions it is possible, as will be sho~n
in this paper, to devise an algorithm for which the computa-
tion time and storage requirements increase only linearly
with N. This will enable us to study much larger systems
than considered previously, and to investigate the nature
and effect of dynamical correlations in the coarsening pro-
cess.

The starting point is the standard model of Ostwald ripen-
ing, ' in which the precipitate is assumed to consist of N(t)
immobile spherical particles [position vectors R, , radii
at(t)] with growth laws

2 Nfl]
at2 =Qt, i=1, 2, . . . , N

dt

The growth rates Qt are determined from the quasistatic dif-
fusion equation, with local-equilibrium boundary conditions
on the surfaces of the droplets. The result can be written in
the form
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the regime $ & 0.1.
The VG simulation is based on Eqs. (1), (3), and (4)

above. The most time-consuming step in their simulation is
the calculation of the growth rates, which is computationally
of order N'. In their scheme the interactions of each drop-
let i with every other droplet j are accounted for. This is to
a certain extent a ~aste, since the major contributions to the
growth rate of a droplet come from neighbors which are at
most a few screening lengths away. By exploiting the physi-
cal phenomenon of screening, the full problem can be ap-
proximated (to a sufficient accuracy, as we shall see) by one
which is only of order N computationally. The outline of
this numerical scheme is as follows. For a given droplet i~
we determine a cluster of neighbors C(ip) within a certain
range. Equation (3) plus the set of Eqs. (4) with i 6 C(ip)
is then solved for Q, , with the proviso that the sum over j
in these equations is also restricted to j 6 C(ip). In this
way the growth rate of the central droplet iQ is determined
with neglect of all couplings between the cluster of neigh-
bors and other droplets in the system. This procedure is re-
peated for each iQ 1, 2, . . . , N, whereafter the growth laws
(1) are integrated over one time step. Note the special role
which b plays in this scheme: In the full problem this
quantity (the reservoir supersaturation) is an irrelevant
parameter, as discussed above. Upon truncation of the in-
teraction range, however, 5 becomes an additional degree
of freedom to be determined by Eq. (3), which is then an
independent equation. There is of course nothing sacred
about this procedure, and one can think of alternative ways
of fixing d, but this particular choice turns out to give a
fairly rapid convergence with increasing interaction range.

Carrying out the above algorithm on a VAX-11/750 com-

puter, we have simulated the coarsening of a system with
initially 5000 droplets at /=0. 1. This volume fraction is
sufficiently high for the screening length to be of the order
of the interdroplet separation, but not so high that dipolar
contributions to the interactions can no longer be neglect-
ed. ' The droplets are located in a cube with periodic bound-
ary conditions, to minimize the effect of a finite system
size. Each cluster of interacting neighbors contains at least
11 droplets and has a minimal radius of 3A.~, ~here

= (4m a, n, ) '/' is the local screening length calculated
from the average radius a~ and number density n~ of the
droplets in that particular cluster. This local criterion gives
some flexibility in dealing with different environments in
the system. To integrate the growth laws (1) we use
Adams' fourth-order predictor-corrector formulas, with one
corrector cycle. The time step chosen is 10 'rc (with
rc-a'/Dvc d the coarsening time scale) and increases,
therefore, as the average radius grows. hen the radius of
a droplet reaches 10 a it is removed from the system.
Clusters are updated after every three time steps. Initially
the droplet-size-distribution function was a narrow Gauss-
ian, and the droplets were located at random positions (no
overlaps). At the end of this first run (when the number of
droplets had dropped to about 300) the system was well into
the scaling regime and its scaled size-distribution function
seemed to have reached a steady state. To be more certain
that this was indeed a time-independent state, I then per-
formed a second run, starting afresh with 5000 droplets
which now had the distribution of sizes found at the end of
the previous run. In addition, this new system reproduced'
the two correlation functions Xpp(r ) and Xii(r ), which are
moments of the pair distribution function,
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Here P2(a, R;a', R') is the probability of finding both a
droplet of radius a at R and a droplet of radius a' at R'.
The results of this second run are sho~n in Figs. 1-5~

The most questionable aspect of this approach seems to
us to be the truncation of the interaction range. The ap-
proximate nature of this device manifests itself clearly in a
spurious drift of the precipitate volume fraction, which dur-
ing the simulation increases from 0.10 to 0.11. To assess
the consequences of this approximation, a comparison was
made of the results of two runs A and B in which different
sized clusters were used: (A) a run with minimal cluster ra-
dius 2.5Xi~ and on average 12 droplets per cluster; (8) the
run described above, with minimal cluster radius 3h.

~
and

19 droplets per cluster, on average. Both runs started from
the same droplet configuration. The increase in interaction
range substantially improved the volume fraction drift,
which decreased from 20% in run A to 10'k in run B. The
evolution of the droplet-size-distribution function, however,
was essentially unaffected, as can be seen from Figs. 1 and
2 where the results of both runs are plotted. The con-
clusion is that the effects of the truncation are reasonably
well under control.

Now let us turn to a discussion of the results. As shown
in Figs. 1 and 2, the system has entered what appears to be
a steady state, in which the width a —= ((a/a —1)2)'/2 and
skewness ~= ((a/a —1) )/o' (with ( ) denoting the
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FIG. 1. Time dependence
gles and dots represent toro
ferred to in the text as runs
of d2/Dvc

of the average droplet radius. Trian-
runs ~ith different cluster sizes (re-

A and 8, respectively). Time in units

l

average) of the scaled size-distribution function are time in-
dependent, apart from statistical fluctuations. The average
radius follows the growth law a(t) =a (0)(1+Kt/rc)'
with re=a'(0)/Dvc d and K =0.88+0.03. The scaled
droplet-radius distribution function p (a/a ) (normalized to
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FIG. 2. Time dependence of the width and skewness of the
scaled droplet-radius distribution function. Triangles and dots as in

Fig. l. Arrows indicate the theoretical results of Marder (M) and
LSW. Time in units of d~/Duc

F16. 4. Correlation functions Xlp and Xli, defined in Eq. (5).
Dots: the present simulation; solid curve: Marder's theory. For
comparison, the results for a hard-sphere distribution are also
shown (crosses).

unity) is shown in Fig. 3. The distribution of sizes found is
broader and less skewed than the mean-field LSW
result —but not at all so broad and symmetric as follows
from Marder's theory for the effect of correlations.
(Marder's curve was actually computed for /=0. 05; his
result at $-0.1 is still slightly broader. '~) Also shown in
Fig. 3 is the distribution function resulting from the VG
simulation, which is less broad than the result obtained here
and resembles more closely the LSW function. The coars-
ening rate coefficient K shows a similar trend. We find
K-0.88, which is much larger than the LSW value of
0.44—but smaller than Marder's result of 1.12. VG find
K-0.69+0.03, which again lies between my result and the
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LSW theory.
One may attribute the finding of stronger departures from

the LSW theory than observed in the VG simulation to the
fact that dynamical correlations were destroyed in the simu-
lation. In Fig. 4 we have plotted two correlation functions
Xil(r) and Xlp(f), defined in Eq. (5). The dots follow
from my simulation, whereas the crosses show the same
functions for a hard-sphere distribution of the droplets.
These latter correlations would have been present in the VG
simulation during which the system was regularly "reshuf-
fled. " Although the sign and order of magnitude of each
correlation function does not differ in the two cases, the
dynamical correlations are of considerably longer range than
the hard-sphere correlations, which are due purely to ex-
cluded volume effects. ' This is consistent with the picture
of correlations developing as a result of diffusive interac-
tions, which (at the volume fraction considered) extend
over several droplet radii. The general long-range form of
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FIG. 3. Scaled distribution of droplet radii (normalized to unity).
The histogram is calculated from 25 distributions corresponding to
the final 25 dots in Fig. 2. The solid curve results from the VG
simulation, dashed curves are the theoretical results of Marder and
I.S%'.
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FIG. 5. Comparison of the distribution of droplet radii found
here (cf. Fig. 3) with experimental histograms taken from Ref. 16
(dashed lines) and Ref. 17 (solid lines).
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the correlation functions agrees also quite well with the
results of Marder's perturbation theory (the solid curves in

Fig. 4). At shorter separations, however, Marder's func-
tions diverge as 1/r, rather than failing off to zero as they
should. This breakdown of the perturbation theory at
short-length scales is most likely responsible for the exces-
sive broadening of the droplet-size-distribution function ob-
tained by Marder at this volume fraction. Presumably this
deficiency will be less important at lower densities. Figure
5, finally, shows the distribution of sizes obtained here to-
gether with data from two experiments at /=0. 1.'6 t7 The
experimental histograms are clearly broader than the LS%
result, and are in reasonable agreement with the simulation.
More accurate experiments are needed, however, before
one can conclude that the broadening is fully explained by

correlation effects neglected in the LS% theory. It would be

particularly interesting and important to have experimental

data for such correlation functions as discussed in this pa-

per.
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