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The pair correlation function and the velocity autocorrelation function of screened-Coulomb colloidal
liquids, interacting via the Derjaguin-Landau-Verweg-Overbeek potential, are calculated using molecular
dynamics. Examination of the structure reveals liquidlike behavior even at the lowest density which corre-

sponds to a volume fraction less than 1074,

The calculated radial distribution functions are in excellent

agreement with experiment. The velocity autocorrelation function exhibits distinct oscillations at all densi-
ties, which indicates that the motion of a single particle is very strongly coupled to the collective modes of

the screened-Coulomb colloidal liquid.

Suspension of electrically charged macroions exhibit a
wide variety of physical phenomena.!”’ The colloidal parti-
cles suspended in water are essentially spherical in shape
and the interactions between them are strongly repulsive.
The strength of the interaction between them is largely
responsible for the variety of fascinating behavior of these
systems. It is now known that these systems can mimic the
collective structures seen in liquids’ and solids.®-'® These
structures are quite delicate and can be easily disturbed, but
will return to the original state if left alone. Mixtures of
different size polystyrene spheres have been observed to
form exotic colloidal alloys!! and classical Wigner glasses.*
These structures have been observed in various biological
systems and in suspensions of colloidal polymers. The de-
tailed study of the structural and dynamical aspects of these
systems is not only of technological importance but may be
useful in understanding the behavior of biological macro-
molecules. From the theoretical viewpoint these systems
are intriguing because these strongly interacting many-body
systems are classical and their interaction potential can be
externally controlled by adjusting a few system parameters.
These colloidal systems are ideal models to study features in
the velocity autocorrelation functions, like the long-time
tails, which are quite difficult to observe in simple liquids.

In this Rapid Communication we confine ourselves to
the elucidation of the structural aspects and to the study of
the self-motion in dilute concentration of polystyrene la-
texes. We assume that the direct interaction between two
particles (referred to as polyballs from now on) can
be modeled by the Derjaguin-Landau-Verweg-Overbeek
(DLVO) potential. One should also include the effects of
the direct interaction between the solvent (water) and the
polyball as well as the hydrodynamic interaction mediated by
the solvent. The direct interaction between the polyballs is
expected to be the most dominant, and consequently we ig-
nore both the hydrodynamic interaction!? and the interac-
tion between the solvent and the polyball. Furthermore, we
treat the solvent as a dielectric continuum which is reason-
able considering the disparity in the size of the polyball and
the solvent. Although this is an approximate model for
suspensions of polystyrene latexes (often used in colloid sci-
ence), it is expected that one can predict fairly reliably the
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structure of dilute suspensions of charged colloids using this
simplified model. However, based on general physical argu-
ments one can show that the neglect of hydrodynamic in-
teractions will have profound effect on the dynamics of
self-motion in colloidal suspensions. Thus, the dynamical
aspects of our simulations of the polyball liquid cannot
directly shed light on the self-motion in aqueous suspen-
sions of charged colloids. The only previous simulations of
these systems that we are aware of are due to Van Megen
and Snook."> They used a smaller system and were only in-
terested in determining the radial distribution function by
Monte Carlo techniques. The simulations reported here are
intended to complement this earlier work.

The advances in emulsion polymerization technique have
enabled one to make suspensions of highly monodisperse
polymer spheres of varying radii. When these spheres are
suspended in water they become highly charged and the
strength of the screened-Coulomb interaction is responsible
for the large (few microns) interparticle separation. In this
note we report the simulation of the structure and dynamics
of charged polystyrene spheres at very low ionic strength
with the view towards complementing the experimental in-
vestigation of Brown, Pusey, Goodwin, and Ottewill.” The
experimental determination of the structure of the poly-
styrene spheres, at five densities, by light scattering tech-
nique, shows clear evidence of liquidlike behavior, with the
short-range order extending over several particle diameters.
They also observed that the reciprocal of the effective parti-
cle diffusion, which was determined from the initial decay
of the nonexponential time-dependent autocorrelation func-
tion of the scattered light field, showed wave-vector depen-
dence.

The simulations were carried out by integrating the classi-
cal equations of motion for a system of 864 polystyrene
spheres. The potential energy of the N -particle system is
taken to be a sum of pairwise potentials, V (|r,—r;|) with
V (r) being the DLVO potential,'*
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In Eq. (1) ¢! is the Debye screening length, Zy is the ef-
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fective charge on the macroion, € is the dielectric constant
of the medium (water), and « is the radius of the particle.
We refer to a system of particles interacting through the
DLVO potential given by Eq. (1) as a polyball liquid. The
unit of length in these simulations is a, kg T is the relevant
energy scale in the problem and the unit of time,
7=(ma* kgT)V2. The mass of the polyball, m, is 6.02
x 10~ g. The present results are based on long molecular
dynamics runs. Typically, the systems were equilibrated for
about 10* time steps. Subsequently, the radial distribution
functions were obtained by following a molecular dynamics
trajectory for about 500 time steps. The velocity correlation
functions of the polyball liquid were calculated by running a
trajectory for about 1500 time steps. For all the cases con-
sidered here the inverse screening length is quite small
which implies that the potential is long ranged. Despite the
long-range nature of the potential we found that the use of
Ewald summation was not necessary for this problem even
at the lowest concentration considered here, for which the
screening length is 25a. We discuss this in detail else-
where.’> The simulations were done at the five experimen-
tal densities. Here we report our results at three of the den-
sities and they correspond to the volume fractions
é1=5.537x107%, ¢,=1.898x10"*% and ¢;=8.116x1075.
In Fig. 1 we plot the radial distributions g (r) as a func-
tion of r/a at the three densities. One of the problems in
using the DLVO potential is that the effective charge on the
polyball liquid is not easily determined. For this system the
experimental value for Z. is estimated to be between 210
and 360. We have found that the g (r) is extremely sensi-
tive to Z.y. By choosing Z.s=211.234 the results of our
computer simulations for g (r) were found to be in excellent
agreement with the experimental work of Brown eral.” A
minor change in Z.y can introduce artificially long-range or-
der, like that obtained in crystals. A value of Z.;=272.56
yields a dramatically different result for g (r)."* It is diffi-
cult to extract the precise numerical values of the experi-
mental pair correlation functions which were obtained by
Fourier transformation of the measured structure factors
S (k). However, a direct comparison of the peak heights, at
all densities, between our simulations and the experimental
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FIG. 1. Plot of the radial distribution function g (r) as a function
of r/fa. Curve A is for ¢, =5.537x10"*4, while curves B and C cor-
respond to ¢,=1.898x107%, and ¢;=8.116x107°, respectively.
The value of a =250 A.
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results shows agreement to within 5%. The location of the
peak heights agree with the experimental values to within
10% at all the densities. Considering the possible experi-
mental error 20% in the peak heights and about 4% error in
the location of the peaks we can conclude that our simula-
tion results are in excellent agreement with the experimen-
tal measurements. This suggests that the DLVO potential
with the appropriate value for Z. may be reasonable in this
concentration regime and one may not need many-body po-
tentials to interpret the structure of the polyball liquid. It is
quite remarkable that these colloidal systems seem to mimic
liquidlike structures over several particle diameters. This is
evident by the fairly pronounced first peak that is seen even
at the lowest concentration. The width of first peak in-
creases, and the height decreases as the concentration is
lowered. At the higher concentrations one also sees the
clear formation of second peaks corresponding to the forma-
tion of second ‘‘solvent shells.”” The position of this second
shell corresponds to a distance of about 400a. The per-
sistence of such correlations over the long distance is due to
the strength of the screened-Coulomb repulsion. One of
the really unsolved issues in these systems is the precise
determination of Z.. The good agreement between our
results and the experimental measurements show that in
this concentration regime Z. is not dependent on the con-
centration. Finally, for the DLVO interaction potential, one
can approximate the thermodynamics of the system by an
equivalent hard-sphere system. The diameter of the hard-
sphere system can be determined using the Gibbs-Bogolibov
inequality for the free energy.'® The structure factors for
the ‘‘best”” hard-sphere system determined this way were
calculated using the Percus-Yevick solution and they are in
very good agreement with the experimentally determined
S(k)." It should be pointed out that recently Hansen and
Haytor!? have calculated g(r) by solving the integral equa-
tion using a rescaled mean spherical approximation (MSA)
and their results also compare favorably with experiment.
We now present our calculations of the velocity auto-
correlation functions, Z (1) = (V¥ (0)V (0))/{V (0)?), for the
three densities. We should stress that, because our model
neglects hydrodynamic interaction, the calculation of Z (r)
cannot be used to interpret the dynamics of self motion in
aqueous suspension of charged colloids. Nevertheless, it is
interesting to compute Z (¢) for the model polyball liquid
considered here. The behavior we find in our simulations
may be found in Z(t) for charged colloids in very low-
viscosity solvents. The velocity autocorrelation functions
Z (1) as a function of time are presented in Fig. 2. The
most striking aspect of Z () is the oscillatory behavior ex-
hibited at all densities. These oscillations persist over a long
period and the frequency of the oscillations increases with
increasing concentration. The presence of the oscillations is
an indication that the single-particle motion is very strongly
coupled to the collective density fluctuations. The physical
picture that is consistent with the behavior of Z (t) emerges
from observing that the tagged particle interacts strongly
with the instantaneous cage formed by the neighboring po-
lyballs. At relatively short times, i.e., times much shorter
than some characteristic interaction time 7; the dynamics of
the particle is essentially that of a free particle. Because of
the nature of the DLVO potential, the force acting on the
tagged particle is very small and consequently the dynamics
of the particle resembles that of the free particle. This was
also reflected in the plot of the mean-square displacement
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FIG. 2. Normalized velocity autocorrelation function Z () as a
function of t/7, where 7 is the unit of time. Refer to Fig. 1 for la-
bels.

(MSD) (AR?(1)) as a function of time which indicated a 12
behavior for short times. For intermediate time (compar-
able to several 7,’s) the particle can be viewed as rattling in
a slowly evolving cage, and for times much larger than 7,
one recovers the long-time behavior of Z (r). The value of
the interaction time may be inferred by examining the
velocity correlation functions and it turns out that 7; varies
from 47 to 87 for the three densities. The physical picture
of the tagged particle being trapped in a cage made up of the
nearest neighbors is further confirmed by the fact that the
maximum in the power spectrum of the Z(r) at nonzero
frequency corresponds well with the frequency obtained
from the second derivative of the potential evaluated at the
mean interparticle distance. The possibility of the ‘‘repul-
sive cage’ dictating the single-particle dynamics was put
forth by Pusey for colloidal suspensions based on the exper-
imental determination of (AR2(#)). It is unlikely that Z (7)
for aqueous suspensions of interacting charged macroions
would show such distinct oscillations as reported here for
the model polyball liquid.

The behavior of Z (1) seen here is very reminiscent of the
marked oscillations reported for strongly interacting one-
component Coulomb plasma (OCP).13-2! In fact, it proves
quite convenient to analyze certain aspects of our results in
direct analogy to OCP. Accordingly, we define a ‘‘plasma”’
parameter ', and a collective mode frequency w,, as

Tps=Z%%/eoasksT , (2a)
wps = [47(Ze)*p/m €lV?, (2b)

where a,= (3/47p)"?. For the three densities considered
here, the values I') lie in the range 56-110. In Fig. 3 we
plot the power spectra Z (w)/Z (0) as a function of w/wp,
by directly Fourier transforming Z (¢). This figure clearly
shows the existence of a peak near w ~ w,;. The peak posi-
tion corresponding to the maximum in Z (w)/Z (0) is quite
constant and OCCUrS at @mgy/wpy=0.68 £0.04. This should
be contrasted with the OCP results for Z(w) which show
that wma/w,=0.9 £0.02.” The comparison of Z(7)
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FIG. 3. Normalized power spectrum of the velocity autocorrela-
tion function as function of w/w,,. Refer to Fig. 1 for labels.

between the colloidal fluid and that of OCP suggests that
the system considered may well be represented by the usual
plasma parameter I' in the range of 60-110. But for
I' ~ 106 (which is the value obtained for the highest density
considered here) the OCP system shows a diffusive peak at
a nonzero frequency which is not observed for the colloidal
liquid. Based on general considerations one can expect such
a peak to appear at slightly higher concentrations. Finally,
we have evaluated the self-diffusion coefficient D, from the
slope of the mean-square displacement at long times. A
log-log plot of D as a function of Iy, is linear and one can
fit it to a form D = Cw,a’I" ", where C =3.0 and n=1.2.
Notice that a similar relation was proposed for the OCP by
Hansen, McDonald, and Pollock.!® The marked resemblance
between OCP and the system studied here suggests that
even for purposes of predicting the dynamical behavior of
colloidal suspensions, OCP may serve as an appropriate
reference state.

The structure of dilute concentration of polyball liquid
shows remarkable similarity to that of simple liquids. The
radial distribution functions obtained are in remarkable
agreement with the experimental measurements for charged
colloids. The single-particle dynamics of a polyball, as seen
in the velocity autocorrelation function, clearly suggests
OCP-like character and cannot be easily analyzed in terms
of dynamics in dense simple liquids. It is interesting to note
that varying the screening length (which can be arranged by
adding dilute acid like HCI), that one can change the range
of the DLVO potential. By continuously varying the ¢~ ',
one can mimic the behavior of liquids that interact via
short-range potential (Lennard-Jones potential) to those
that have essentially infinite range, like the OCP. A more
detailed account of these findings including simulations of
interacting Brownian particles will be given elsewhere.

The authors are grateful to T. R. Kirkpatrick for useful
discussions and for encouragement during the course of this
work. We are also grateful to the Camille and Henry
Dreyfus Foundation for partial support of the work.
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