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Squeezing in nondegenerate four-wave mixing
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Ways to minimize spontaneous-emission noise due to quantum fluctuations in the medium are a major
consideration in experiments designed to produce squeezed states of light, Motivated by the recent experi-
ments of Slusher et al. we present a fully quantized model of nondegenerate four-wave mixing. We show

that the spontaneous-emission noise, important at higher intensities in the degenerate case, may be mini-

mized in the nondegenerate case for certain regimes of cavity and medium parameters.

I. INTRODUCTION

There is presently a considerable experimental'~ effort to
generate a squeezed state of light. 5 Experimental efforts by
Shapiro and co-workers, ' Levenson and co-workers, ' and
Slusher et a/. ' have concentrated on four-wave mixing
schemes, first predicted to give squeezing by Yuen and
Shapiro. However, their model neglected quantum fluctua-
tions due to the medium. A fully quantized treatment of a
medium modeled as N two-level atoms was carried out by
Reid and Walls for degenerate four-wave mixing and opti-
cal bistability. ' Calculation of the output squeezing at the
pump frequency showed two effects due to the medium that
must be minimized if one is to obtain large squeezing;
atomic loss, more important at low intensities, and spon-
taneous emission, important at higher intensities, as one be-
gins to saturate the transition. The implication for a two-
level medium in the totally degenerate scheme is that high
pump intensities, high cavity cooperativity parameters, and
high atomic detunings were required.

In this Rapid Communication wc examine a means of
minimizing the spontaneous emission induced from a two-
level atomic medium at higher intensities. The initial calcu-
lations of Reid and Walls were limited to the degenerate sit-
uation, but the present experiments employ a nondegen-
erate four-wave mixing scheme. Thus, this Communication
is motivated by recent comments made by Slusher etal. '

that spontaneous emission is reduced in the nondegenerate
four-wave mixing scheme they employ. Our work reveals
for which regime of cavity and medium parameters this is
indeed true. Results indicate a more optimistic picture for
squeezing in terms of parameters attainable in experimental
situations.

II. QUANTUM THEORY

We begin with a general description of nondegenerate
four-wave mixing in an optical cavity. The medium is
modeled as W two-level atoms with resonance frequency cop

and is interacting with three cavity modes of frequencies co~,
and cu3. The cavity mode spacing is E = M2 —cd~

= coi —co3. Thc amplitudes of the cavity modes are denoted
by o&. All three cavity modes are assumed to have the
same cavity damping rate x. The central cavity mode ui is
driven by an external coherent input field c of frequency

The cavity detuning co~ —coL is assumed to be much
smaller than the cavity mode spacing ~. The atomic longitu-

dinal and transverse decay rates are yi~ and yj, respectively.
The collision parameter f= yp /2yt is one for pure radia-
tive damping and zero in the large collisional limit.

We proceed as in Reid and Walls' to derive quantum c
number Langevin equations for the field mode amplitudes.
We are interested in the equations describing the gain of the
weak field modes n2, ~3 in the presence of a very strong
pump mode 0, ~. We thus treat n. ~ to all orders, describing
completely the saturation of the medium, while the expres-
sions for the weak-field modes 0.2, o.3 are kept to first order
only.

In the limit of a high Q cavity (n (( yt, yp ) one is justi-
fied in adiabatically eliminating the atomic variables to ob-
tain final equations for the field modes as follows.

2CKo!
&a)= s —n(1+i&)a) +F,(t)(I+ ta, )11

o 2
= —y(&)o'2+ x(~)&3+F2(t)

,= —,(-5)~,+ x(-g)~2+ F3(t),
where we write

y(5) =n(I+ ty)+y, (&)+ tyt(»,
x(s) =x„(s)+ix, (5),

(la)

(lb)

(lc)

rr 1+ 1+if

and the nonzero noise correlations for the sidebands are

(F2(t)Fs(t')) =Ro(t t'), R =Rtt+iRi-

(F2 (t)F3 (t')) =R'5(t t')—
(F2(t)F2 (t')) = (F3(t)F3'(t')) =AS(t —t')

(2)

The parameters y, X,R, and A are functions of thc follow-
ing scaled variables: the cavity detuning $= (cut —toL)/K,
the detuning of the pump from the medium h~ = (top
—tot )/y t, the detuning of the sidebands from the pump
5 = —e/y p, the cavity cooperativity parameter C = g At/
2ytn, the collisional parameter f, and the scaled intracavity
steady-state pump intensity X= ~a~) /np np=y~~yt. / 4g is
the resonant saturation intensity and ~o, ~

~2 is determined by
the optical bistability state equation" which is the steady-
state deterministic solution of (la). The full explicit solu-
tions are presented in the Appendix.

We have assumed in the derivation of Eq. (1) that
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5k 2 ki k2 k3 is zero. This is always satisfied for the
completely forward configuration, but not, in general, for al-

ternative relative orientations of the field propagation vec-
tors.

III. RESULTS

The output light is peaked about the frequencies eoq and
eoL, +~. %e have calculated the squeezing in the output
light at the two sideband frequencies. Squeezing is ob-
served in a homodyne detection scheme ~here the output
of ihe two sidebands at frequency eoL +~ beat with a local
oscillator si.o-ae'~ at frequency coL, . The local oscillator is
obtained by phase shifting the external driving field. The
sidebands and the local oscillator mix on the surface of a
photodetector giving a photocurrent i(e) .The spectrum
of fluctuations in this photocurrent (i2(~)) is measured
with a spectrum analyzer. V(Xy, ~) = y (X~X~+ XqXii )
—(Xii) (Xq ) is the spectral "variance" of the quadrature
phase Xy- a2,„te ' + a3,„,e' and is directly proportional to
(i2(e) ) . Squeezing is characterized by V(X~, a) ( 1.

The key question is the orders of magnitude required for
the experimental parameters b i, 5, 2C, f, and X to obtain
squeezing. The recent studies by Reid and %'alls of degen-
erate four-wave mixing and optical bistability' in a two-
level medium have pointed to at least three important physi-
cal effects due to the medium which may limit the squeez-
ing. These are the loss y~, the spontaneous emission A,
and the degree f of collisional phase damping. The general
principle is to enhance the nonlinear gain terms Xl, RI
responsible for squeezing over both the loss pic (important
at lower intensities) and the dephasing quantum noise terms
(important at higher intensities). In such a regime of
parameter space the four-wave mixing may be described by
an idealized Hamiltonian based on a classical susceptibility
for the medium. '"

In the degenerate case, the general requirements were to
operate in the dispersive regime (hi » I), well below sat-
uration (X«hf) and to have pure radiative damping

(f-1). In this limit the gain to loss ratio of the medium
IXI/yii = X/Ii could be enhanced by increasing the pump
intensity X, except that one had to be careful not to induce
additional spontaneous emission A due to increased popula-
tion of the upper level. The requirement that A/~X~ be
small is X /ht (( 1. In order to attain threshold
(IXI'~ )yl ) without needing to increase X such that spon-
taneous emission was induced, the cooperativity parameter
2C needed to be of the right order (2C+ bi). Yet one
could not increase C to the extent that collisional damping
was important, or that the atomic loss due to the medium
was significant compared to the cavity loss (one needed
2C &( d f). The combined effect of both the atomic loss

yq and spontaneous emission A was to demand high detun-
ings (hi —10 ), high pump intensities (X—6i), and high
C values ( C P 10').

The nondegenerate scheme (5e0) offers advantages over
the degenerate situation. The dephasing spontaneous-
emission noise A is due to the pump saturating the two-
level atom and is peaked about the pump frequency. Thus,
we look for a reduction in this noise as we increase 8. The
limit of interest is that of large detuning of the pump rela-
tive to the atomic resonance (hi » 1), pure radiative
damping (f- I), and a detuning 5 of the sidebands relative
to the pump, but such that 5 (Tghf+2X.

=0
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FIG. 1. High-loss situation (perfect phase matching): Nondegen-
eracy 8 has little effect on squeezing. V(Xq, «} vs scaled pump in-

tensity I hi-100, 2C 3500, $-0.

finds a regime where y and X are essentially unchanged
from the degenerate case, yet the desqueezing term A is re-
duced by the factor (1+52). The condition to avoid onset
of spontaneous emission as one increases the pump intensi-

ty is now somewhat looser; X/dt (( (1+52). Thus, one
can afford higher pump intensities (X/5i) relative to the
pump detuning. The implication is that squeezing becomes
possible at lower pump detunings and hence, most impor-
tantly, for lower values of the cooperativity parameter C.
There is also a somewhat lesser reduction in pump powers
necessary.

The dispersion term yl incorporates the (linear and non-
linear) change in the refractive indices due to the medium
and also any would-be phase mismatch hk that may be
present in configurations ~here the k& vectors have relative
orientations. %e analyze in the first instance the simplest
situation ~here the b, k is chosen to allo~ perfect phase
matching in the medium, that is, so that y~=0 for both
sidebands. Also, the pump mode ni, distinguishable from
the sidebands by a different k direction, may or may not be
in a cavity, but any cavity detuning P is zero. Thus no bi-

stability exists in this situation.
The variance of fluctuations at the sideband frequencies

V(Xz, e) for this particular case is plotted in Figs. 1 and 2

for a scaled detuning hi 100 of the pump from the atomic
resonance. Solutions hold only about a stable steady state
(lx2 c13 0), and the stop in the curves in Fig. 1 indicates
the onset of oscillation (threshold corresponds to
-~+ps). The advantage obtainable in the nondegenerate
case is immediately apparent. In the degenerate case, 8 =0,
the conditions X/b, i » I and X /hf (( 1 are opti-
mized at X —400 (Fig. 1). The optimal C value is, in fact,
that plotted (2C —3500) in Fig. 1. Even at the relatively
high detuning b~ —100 perfect optimization has not been
possible for 8=0, and the effect of atomic loss is still to
limit the squeezing attainable. Thus in the degenerate situa-
tion, one would have to increase the detuning to improve
squeezing (d, i

—104, 2C —106, X—105).
The conditions for the nondegenerate situation X/hi» 1 and X/6 j (( 1+52 mean that, for a given detuning

hi, one can increase intensities to a regime where loss is not
important and still obtain goo@ squeezing, as shown in Fig.
2, for a C value of 500. Thus, good squeezing is obtainable



33 SQUEEZING IN NONDEGENERATE FOUR-WAVE MIXING

1.0 1.0

Vix.,.l

0.5

00 10 15
10 X

FIG. 2. Low-loss situation (perfect phase matching): Nondegen-
eracy 5 has major effect on squeezing. V(X~, ~) vs scaled pump in-

tensity L hi 100, 2C 500, qh-0.

for lo~er detunings bi and hence, also for much lower C
values. To avoid the regime of high atomic loss relative to
the cavity loss, which still limits the squeezing possible and
for which the nondegenerate situation is no advantage, we
still stringently require 2C « hj. This feature is illustrated
in Fig. 1, where 2C —hj and for which little improvement
is seen upon increasing 5. One still needs 2C —hi (to
avoid reaching total saturation before a reasonable order of
X is obtained), but the sensitivity to this latter criterion is
very much reduced, and good squeezing is possible for a
w'ider range of C values compared to the degenerate case.
The advantage in terms of pump powers is not so signifi-
cant, since we have to pump the medium harder to gain ad-
vantage. However, the lower detunings needed do imply a
net reduction in minimum powers needed to attain the same
amount of good squeezing.

Perfect phase matching is not always achievable. Howev-
er, the presence of the dispersive term y~, particularly with
the nonzero cavity detuning iti, does not necessarily reduce
squeezing. The threshold condition is changed ( I& I'= Iy I')
and also the phase 8 required for optimal squeezing will, in
general, be different. The latter feature may well be an ad-
vantage in experiments where a particular choice of 8 is re-
quired to reduce nondesirable phase sensitive noise. '

Next we consider the completely forward configuration in
which all modes propagate in a single ring cavity driven by
an external pump, detuned $ cavity linewidths with respect
to the internal pump o, i. Equations (1) derived describe
this situation directly. This system can show bistability with
respect to the external driving field intensity. The bistability
criteria and the squeezing in the output resonant pump
mode have been examined previously. ' " A rather simpli-
fied criterion for bistability is to require a cavity detuning
such that $ & 2C/b, i, provided C is large in terms of the
detuning hi. For the situation we are currently presenting,
where I5 I « ~Qhf+ 2X, the 5 and x for the sidebands are
essentially unchanged from the values at 5=0. Hence, the
sidebands and pump have identical stability/instability re-
gimes, the stable regions corresponding to IXI2& IyI'. The
steady-state deterministic solutions for the pump is the opti-
cal bistability state equation, " while for the sidebands the
solution is n2=n3=0. In the idealized situation discussed
above we have hi )) 1 (dispersive limit), ye =0 or neghgi-
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FIG. 3. Low-loss situation (forward configuration): The effect of
cavity detuning 4i. V(Xz, a) vs scaled external pump intensity
y Ia/~I2/no hi 1.00, 2C 500, 5=10.

CONCLUSION

%e have considered nondegenerate four-wave mixing via
an N two-level atomic medium in a cavity in which the
weak-field modes are detuned from the pump by 25 atomic
natural linewidths in the pure radiative damping limit. The
squeezing in the output field at the weak-field frequencies is
computed. The key parameters describing the system are
the detuning bi of the pump from the atoms in natural
atomic linewidths, and the intracavity intensity X scaled in

ble atomic loss both relative to the cavity loss (2C « 5/)
and to the gain (X) 4 i), X &( 5 f (low saturation),
X &( ( I +5') AI (low spontaneous emission), and
I5I &( TJ2X+az. The use of effective Hamiltonians be-
comes valid, and the system is identical to that studied re-
cently by Levenson et ai. '3 (but where $ becomes
iti —2C/hi incorporating the linear dispersion). For this
idealized situation, perfect squeezing is attainable at the
sideband frequencies at the critical points where the pump
(and sidebands) become unstable.

Full solutions for squeezing in the case hi= 100 are
presented in Fig. 3. In the low C (2C =hi) situation the
nondegenerate scheme is advantageous over the degenerate
(5-0) scheme. In fact, for such low C values (compared
to hf) the internal intensity X (a minimum of X—4000 for
P —4.5) required to reach bistability under the ideal condi-
tions is high enough to cause saturation (X/hf —0.4) and
bistability is not observed. In fact, the idealized situation
studied by Levenson etal. " is not attainable for b, i=100.
Figure 3 sho~s the dependence of the squeezing on the cav-
ity detuning $. Unlike the degenerate situation, where one
found a high sensitivity with respect to it (the optimal $ be-
ing the highest still giving bistability), the nondegenerate
case allows good squeezing for a relatively large range of $.

For higher C values one obtains bistability with appropri-
ate $. In this case one obtains some advantage in the non-
degenerate situation only if operating in an appropriate re-
gime on the upper branch. However, a high absolute value
of loss compared to the cavity loss (2C not much less than
hf) will tend to limit the order of squeezing possible.
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terms of the resonant saturation intensity no. %e have es-
tablished, in a limit where (5( « ~v a2+2X, approximate
guidelines so that unfavorable noise contributed from the
medium is minimal. These are A~ && 1, X && h~, X & hj,
X « (I+5')hj, 2C « dj, and 2CQ 5t. In a completely
forward configuration, ~here perfect phase matching in the
medium is not possible, one can attain good squeezing by

allotting a cavity detuning between the external and internal
driving fields of $ cavity linewidths, of the order
& 2C/a).

The important feature is that the frequency shift 8 allo~s
spontaneous emission contributed from the medium and

l

peaked about the pump frequency to be minimal. The
result is better squeezing possible at lo~er detunings 5] and
$, much lower C values, lower pump intensities, and also a
broader range of these parameters, thus considerably im-
proving possibilities of obtaining squeezing in such experi-
ments.
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Defining

h2 = 5) + 25f, A3 = b )
—25f,

the solutions are

APPENDIX

(s = 2CK(1+X[a —c+52(d —b)]+ X [bd —ac+52(ad+ cb)]}
(1+zj)II(0) (II(s) I'

y)(5) = 2C~( —A2+ X[d b —52(a——c)]+X [ad+ bc /s2(bd ac—)]}—
(1+aj)11(O)}11(S)}'

2+ 5j+5j —sd 2( 1 + d j) +553(1+LLj)
2(1+5') (1+5j)(1+5j)

(h3 —A))(53+St 5+5+3~])
2(1+5')(1+hj)(1+5j)

D 11(o)}11(5)}(1+5 )(I+&j)(1+Qj)(1+gj), g=

—5(2+ 5j+ ii)) —52(1+5j) +53(1+5j)
2(1+5 )(I+Aj)(1+hj)

(hs —5() [1—hsht+5(hs+ 5() ]
2(1+5') (1+6j)(1+5j)

e= 1+536~+6263 A2A[+5(63 6J 42 52536))

k3 AJ A2 A2A3h) —5(1 +h3Af +62jL3 4 A2f) ~ II(5) = II~ + iIII ~ II~ = 1 + aX II~ = bX

A (r,s) =f(1+5 )2ar — g —I+52ds(1+a j)(1+aj)
[rag+ rbh+ ams+ bns —r(1 —d2h3)/4+s(&2+&3)/4]

(I+aj) (I+aj)
r 1 —A2h3 LLt62 6/LL3 S A2+ 53+ 3 ~

—Std, 23 3, 2g = (1+d, j)(1 —525) + (1+435) (1+4j)
2h= —(I+aj)(a,+5)+(I+aj)(a,—S), 2m= —(I+aj)(a, +5) —(I+aj)(a, —5),
2n = —(1+3j)(1—525)+ (1+hj)(1+535)

Xn(5) =2CxX(e gSfq+X[ae+ bq+sf(be —aq) l}D ', Xr(5) =2C~X(q+Sfe+ Xlaq —be+Sf(ae+ bq)]}D

A 2C~X [I+5j+f fh&313+5(h—&+63)+Xf/2]D ', Rp = —2C~X[f(1+5 )r+XA(r s)+X fB(r s)]D

Rq —2C&X( —f(1+5 )s+ X[A ( —s, r) +52+53 —5263+ 1]+X f[B(—s, r)h~/4 —~] }D
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