
PHYSICAL REVIE%' A VOLUME 33, NUMBER 6 JUNE 1986

Multiphoton absorption by alkali-metal atoms above the ionization thresholtl
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%'e describe a powerful method for computing cross sections for multiphoton ionization of atoms. The

method is especially suited to absorption above threshold.

gI'(E) —gI (E) = —2nis(E —8)) (2)

Multiphoton absorption above the ionization threshold is
currently a topic under active investigation. Most theoreti-
cal works (e.g. , Refs. 2-6) have focused on hydrogen as the
atomic target, with the various numerical methods relying
on the analytic nature of the electron wave functions. An
exception is the approach of Aymar and Crance' which has
been successfully applied to alkali-metal atoms, a case of ex-
perimental interest. In this Rapid Communication we de-
scribe a powerful method for rather quickly obtaining
reasonable estimates of cross sections for multiphoton ioni-
zation of atoms, with no restriction placed, in principle, on
the number of photons absorbed above the ionization
threshold. We report results for four-photon ionization of
Cs, with two photons absorbed above threshold.

We treat the electron-laser interaction as a perturbation,
and use the dipole approximation. The radial Green's func-
tion, gI+(E), for the electron in the atomic field has outgo-
ing wave character, while the radial wave function, ~ uxL ),
of the emergent photoelectron consists of both outgoing and
ingoing waves, luxL) and lu&z), respectively. The transi-
tion matrix element for N-photon absorption can be decom-
posed into matrix elements of the form M'~' = M+' '

+ M-(~~, wh. r.
M+-'"'= (ups [)rg(„+, (E„,) rg(,

+ (Et)r [u„l), (1)

where (a ~
b ) -I dr a (r ) b (r ), r is the radial coordinate

0
operator, i; is an intermediate angular momentum quantum
number, E, is an intermediate energy, and ~u„-,) represents
the initial state of the electron. These matrix elements are
N -dimensional integrals over the radial coordinates
rl, r2, . . . , r~. When some intermediate energies lie above
threshold, that is, when P & N where P is the minimum
number of photons required to ionize the atom, these in-

tegrals are not formally convergent because of the behavior
of the integrand for r; —~. However, the integrand of
M+'"' consists of functions that either decrease exponen-
tially or behave as outgoing waves for r; —~. Consequent-
ly, we can rotate the integration contour in M+(~ into the
upper half complex r plane, that is, we let r, ~r;)e'~; pro-
vided that we choose 0 ( tt ( m/2 the entire integrand de-
cays exponentially, thereby permitting direct numerical in-
tegration. (As a bonus, this transformation produces an in-

tegrand which is less oscillatory, and which can therefore be
integrated rapidly and with high precision. ) The integrand
of M (~' contains functions that, for P & N, have both out-
going and ingoing wave character, precluding a rotation of
the integration contour. However, we have shown previous-
ly how this problem can be circumvented. Using the rela-
tionship

where Ht is the radial Hamiltonian for the electron in the
atomic field, we can express M ' ' in terms of M+' '. It
followss that

N —P
M' '=2Re(M+'"') —2ni X J'"'M'

~i (uKL I rgl (Ew —l) ' ' ' gl~, . +) (EN —i+1)

(3a)

Jt&~ - (u,+, ir iuk„, ,l, ,
)',

x r iu„,I„)", (3b)

(3c)

where tk;= (2mE;)'i' with m the electron mass. The ~ukl)

are normalized on the energy scale. Note that for i =P
+1, . . . , N we have k; & k; I. We see that the integrands
of the integrals [J "')" consist of outgoing waves only, and
so once again we can rotate the integration contour into the
upper half plane. Equation (3a) provides a recurrence rela-

tion for the required matrix elements M'~'.
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FIG. 1. Integrated generalized cross section {in cms sec ) vs

wavelength (in A) for four-photon ionization of Cs by circularly
polarized light.
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The integrals which must be evaluated a11 have the fol-

lowing general form:
t% f ~t

1„(r) = dr„f„(r„)
&

dr„

(S)

gi(r, r';E) = —™I (I + I —iy) W; I+~I2( —2ikr )

~f2
f~ ~(r„~) d r~f~(r

(4)
These integrals satisfy a system of first-order coupled dif-
ferential equations:

dI„" =f„(r)i„,(r), i„(0)=0 .
dr

These differential equations can be integrated extremely
rapidly using the Lawson form~ of the Runge-Kutta class of
algorithms. The Lawson method has a wide region of sta-

I

bility in the complex plane (most algorithms have a narrow
region of stability around the real axis). Consequently, a
large step size gives a meaningful result even when r is
complex. The Lawson method was advocated previously
and used with considerable success in work on the proton-
hydrogen atom scattering problem. '

In our calculations the initial and final continuum electron
wave functions were approximated by Coulomb waves,
modified according to quantum-defect theory, " with the ir-

regular part regularized" at the origin through multiplication
of the cutoff factor (I —exp( —10r/(aoL (L + I) ] ) )'L+'.
The radial Green's function was approximated by a Cou-
lomb Green's function, also modified" as in quantum-
defect theory; it can be expressed in coordinate space as

x 2( —1)'e
x M,„I+pg( —2ikr() + .

)
W,„i+)I2(—2ikr )

21 + I ! I I+1+iy [I+i cot5~ E
(6)

where tk = J2mE and y = Z/(aok ), with Z the atomic
number of the core, and where 51(E) is the phase shift due
to the non-Coulomb part of the interaction; 5I(E) is related
to the quantum defect p~(E) by the relation"'3

cot5~(E) = (1—e ') cote p~(E) +2% iH( —E)
e2%+

where H(E) is the Heaviside step function: H(E ( 0) =0,
H(E~0) =1. Note that Eq. (6) is valid for both positive
and negative energies. The phase shift was obtained by in-

terpolating between (when E (0) or extrapolating from
(when E & 0) the measured values of the quantum defects.
The irregular %hittaker function in large parentheses on the
right of Eq. (6) was multiplied by the same cut-off factor as
mentioned above (but with L replaced by I). For large
values of the argument the (regular and irregular) Whitta-
ker functions were evaluated using the well-known asymp-
totic expansions'„ for smaller values of the argument, where
the asymptotic expansions break down, the %'hittaker func-
tions were evaluated by using the numerical method
described by Seaton. ' The rotation angle for all integra-
tions was taken to be n/4.

%e first tested the method for four-photon ionization of
hydrogen, with 51(E)=0. By using only SO points on the
integration mesh we obtained agreement with the exact
results to at least three significant figures. It was unneces-

l

sary to integrate beyond ~r~ =40 a.u. , even in the case of
above threshold absorption, when continuum-continuum
matrix elements must be evaluated.

%e also applied the method to Cs. For three- and four-
photon ionization of the ground state with 5280-A circularly
polarized light we obtained good agreement with the previ-
ously published values of Aymar and Crance, ' the relative
difference being 45% or less. Again few integration points
were needed (about 70, the slightly greater number being
due to the greater extension and oscillation of the Cs 6s
wave function). In Fig. 1 we show results for the integrated
generalized cross section for four-photon ionization of
ground-state Cs by circularly polarized light at wavelengths
spanning part of the range between the thresholds for one-
and two-photon ionization. The structure in the cross sec-
tion is similar to that" for two-photon ionization at the
same wavelengths. More detailed results for both Cs and
Rb atoms, including angular distributions and comparisons
with experimental data, will be given in a longer forthcom-
ing paper.

The method has a wide range of applicability. It is
straightforward to adapt it to the differential equation ap-
proach of Aymar and Crance, or to incorporate the random-
phase approximation, for example.
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