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In a recent article [Phys. Rev. A 30, 703 (1984)] Hardekopf and Sucher solve the relativistic wave

equation in momentum space for hydrogenlike systems. They find that by surrounding the hydro-

genic Hamiltonian with projection operators for free-particle positive-energy states, the ground-state

energy is lowered. In this Comment, we investigate this problem in some detail and conclude that

the application of unsuitable projection operators will, in fact, introduce negative-energy states to the

Hamiltonian of interest rather than remove them. The general considerations lead to the conclusion

that in studying single-particle corrections to the wave function in a perturbation expansion, the

correct procedure is to include the negative-energy states of the unperturbed Hamiltonian. It is also

noted that the use of relativistic Hartree-Fock wave functions wi11 remove to lowest order of pertur-

bation theory the presence of single virtual electron-positron pairs.

I. INTRODUCTION

The Dirac Hamiltonian

h~=(Pmc +ca p Ze2/4—may )

gives both positive- and negative-energy solutions. ' To
explain why electrons in the real world show no intention
of disappearing into the negative continuum, the negative
states are considered as being filled under "normal condi-
tions. " This property is, however, not included in the
Dirac equation, which causes problems if the equation is
extended to the many-body case. The relativistic analogue
to the many-body Schrodinger equation
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has no normalizable eigenfunctions, as first pointed out a
long time ago by Brown and Ravenhall. As emphasized
e.g., by Sucher the solution provided by quantum elec-
trodynamics (QED) is to surround the Hamiltonian in (1)
by projection operators, A+, which force the electrons to
stay in the positive part of the energy spectrum;

H+e+=~+ gh, (t)+r„' ~+q'+=Z+e+.

(Here and throughout the rest of the paper we have used
atomic units, where fi=4~eo ——ao ——m, = 1. We have also
used the convention that lower case refers to one electron
and upper case to the whole system. ) The projection
operators A+ for positive-energy states are easily written
in terms of products of one-particle projection operators
A,+,
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but less easy to implement in an actual calculation.
In a recent paper, Hardekopf and Sucher solve the rel-

ativistic wave equation in momentum space and include
projection operators for plane-wave positive-energy states.
However, they observe that for hydrogenlike systems the
energy is always lower than the exact 1s energy. It thus
appears that by attempting to remove the negative-energy
states, the reverse has been achieved. This problem is in-
vestigated in some detail in Sec. II C.

While the problems connected with the two-body (or
many-body) equations are severe and fundamental and
deserve careful treatment, the present work deals only
with one-particle equations, where any problems with
negative-energy states are related to the method used to
obtain a solution rather than inherent in the one-particle
equation itself. However, the validity of the commonly
used relativistic Hartree-Fock (HF) approximation

HHF ghHF g(h + HF) (4)

with
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has also been questioned, ' since it is normally derived by
minimizing the expectation value of the Hamiltonian (2)
without any explicit inclusion of projection operators.

It is well known that the solution of the full many-body
Hamiltonian, containing the interelectron interaction, can-
not be separated into one-particle wave functions. In real-
ity a particular state of a system is described by only one
many-electron wave function and one total energy.
within the single-particle approximation certain eigen-
states to our approximate one-particle Hamiltonian can be
classified as having negative-energy eigenvalues and may
be rejected if desired, whereas there is no easy way to tell
from the total energy of the system if anything unwanted
is included or not. This means that the projection opera-
tor has to be expressed in terms of some one-particle basis.
In principle any basis set could be chosen. If we really

1986 The American Physical Society



33 COMMENTS

where we have used the fact that A,
+

~

a ) =
~

a ) for E, & 0
if A,

+ is expressed in orbitals obtained in the same poten-
tial as

~

a ). (This is a natural choice in an iterative pro-
cedure, since the best approximation available for A.

+ is
based on orbitals obtained in the previous iteration. ) To
compensate for the difference between the projected and
unprojected HF potentials it is necessary to surround also
hD in (4} by HF projection operators (although these are
only implicitly included in the equations given by Such-
er ). However, from (a

~

h " i+ ) =0, where
~

a )
and

~

i+) are eigenfunctions to h given in (4) and (5),
follows that (i

~
hD

~

a+ ) = —(i
~

u a+ ) so the ab-
sence of projection operators in one part of the Hamiltoni-
an is exactly canceled by the absence in the second part.
Following the same arguments as above we find that a
positive-energy solution

~

a + ) to the equation
(s, "—It ")

~

a+) =0 contains no negative-energy com-
ponent,

~

i ). From this discussion it should be obvious
that the absence of negative-energy states in

~ a+HF) is a
direct consequence of a positive-energy eigenvalue e, and
does not depend on subtle details in the solution pro-
cedure.

The arguments cannot be directly applied to the mul-
ticonfiguration Dirac-Fock method, " except when all
configurations are expressed in terms of one single basis
set, as discussed by Sucher in Ref. 4.

solve the whole problem, including also corrections com-
ing from virtual pairs, the solution should be projection-
operator independent. However, the so-called no-pair ap-
proximation, which is the approximation used in practice
when dealing with atoms with more than a few electrons,
does depend on the choice.

Sucher claims ' that a good choice of projection opera-
tors is given by solutions in the positive-energy range of
the free-particle Hamiltonian. For heavier atoms he fol-
lows Furry and suggests the use of hydrogenlike projec-
tion operators. Mittlernan has shown that starting from
the projected Harniltonian (3) and looking for the projec-
tion operator A+ which makes the energy stationary
under the condition that the wave function should consist
of a single Slater determinant, leads to a A+ given exactly
by HF projection operators. Thus, the relativistic HF
equations can be considered as an approximation to (3)
rather than to (2}. An alternative proof of the fact that
the solutions to the unprojected HF equations are solu-
tions also to the projected HF equation is given in Sec.
II 8 in a language more familiar to atomic physicists.

II. GENERAL OBSERVATIONS
A. The positive-energy states of a one-particle Hamiltonian

When a one-particle eigenvalue equation,
(su —hp} ~au) =0, is solued for an arbitrary one-body
Hamiltonian i'to, the negative-energy states, if ever gen-
erated, are easily rejected by inspection of the energy
value. A positive-energy solution

~

au+ ) does not contain
any negative component

~
au ) since eigenfunctions to an

Hermitian operator corresponding to different eigenvalues
are orthogonal. Thus insertion of a projection operator
A+ = g~

~

i u+ ) (i u+
~

has no effect on
~ au+ ) and if hu is

rePlaced by a Projected Hamiltonian hu+ =A, +huA, +, the
positive-energy states remain unchanged. The only differ-
ence is that the negative-energy states are not generated
and that the projected Hamiltonian no longer has a corn
piete set of eigenfunctions

It can be noted, however, that minimization of the ex-
pression (a

~
Itu

~

a)/(a
~
a) within an incomplete finite

basis set may lead to negative or too low energies, al-
though the difficulty can be circumvented by requiring
certain relations between the basis sets used to describe the
upper and lower components of the wave function as dis-
cussed by Grant and co-workers. '

B. The positive-energy states
in relativistic Hartree-Fock theory

The argument in Sec. IIA may be applied also to the
relativistic Hartree-Fock approximation (4} and (5} al-
though there is more room for confusion in this case. In
general, (i

~

u "~a+)&0. Thus, the HF potential de-
fined by (5}, above, is different from a projected HF po-
tential, where r j2 is surrounded by projection operators.
One finds

C. Projection operators corresponding
to another Hamiltonian than the orbitals

Consider now a positive-energy solution
~

a i ) to a
given Hamiltonian hi. Applying a projection operator
A.i, corresponding to a second Hamiltonian h2, to

~

a i )
will not in general reproduce

) a, ) since, in general,
(i2

~

a i )&0. If we then expand this projected function
in the eigenfunctions to the original Hamiltonian hi, we
find

l=2"'2 ' lji'-&&Ji'liz &&t2 la'&,
J

where the completeness of the set
~ ji) has been used.
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FIG. 1. Two-dimensional illustration of projection operators

corresponding to different Hamiltonians. The horizontal axis
corresponds to the set of positive-energy solutions

~

a+~ ) to the
Hamiltonian h~ and the vertical axis to the orthogonal set of
negative-energy solutions

~
a& ). The sets of positive- and

negative-energy solutions to another Hamiltonian is represented
by

~
iz ) and

~
iz ). The projection of a positive-energy state

~

a+i ) onto the positive-energy states of h2 is obtained by fol-
lowing the bold dashed line, thereby introducing a small admix-
ture of the negative-energy state

~

a
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There is no reason for the coefficients for
1 j i ) to be zero

in this sum. The situation is illustrated in Fig. 1. Thus
by projecting with projection operator based on any Ham-
iltonian other than that used to generate the orbitals,
negatiue en-ergy eigenstates to the Hamiltonian of interest
have been introduced rather than remoued. It is then not
surprising that too low energy eigenvalues were obtained
in Ref. 5.

D. The HF equations, perturbation theory,
and negative energy states

The question of various basis sets is present when per-
turbation theory is applied to obtain solutions 1 a ) to a
Hamiltonian h =hp+h . Following Ref. 12 the equation
(s, —h) 1a ) =0 can be rewritten as

(e, +5e, —hp)1ap+5a ) =h P1ap+5a ) .

By requiring (ap15a) =0, an expression for 5e, is ob-
tained

5e, = (ap 1h
F 1ap+5a )

and the equation above becomes

(e, +5e, —hp) 15a &

=h 1ap+5a) —1ap)(ap1h 1ap+5a)
= X lip&&iplh'lap+5 &,

lo +ao)

where the right-hand side has been rewritten using the
closure relation. It is then clear that 15a) will contain
negative-energy states 1i p ) although their coefficients
will, in general, be quite small due to the large energy
denominator involved. We see that the positive-energy
state

1
a ) = 1ap+5a ) no longer is orthogonal to the un-

perturbed negative-energy states. Similarly, the correction
15n & to a negative-energy state 1n & will include ad-

mixtures of positive-energy eigenstates 1i p ) to the un-
perturbed Hamiltonian. In this way the orthogonality be-
tween positive- and negative-energy states is still
preserved. However, application of the unperturbed
positive-energy projection operator Q to the right-hand
side of (6) will destroy this orthogonality and force 1a )
to contain part of the negative-energy states

1
n p +5n )

as observed also in Sec. IIC and illustrated in Fig. 1. To
summarize, an exact solution to the perturbed Hamiltoni
an h cannot be obtained if the summation ouer negatiue
energy states to h p are not allowed This has rec. ently been
observed in a numerical calculation by Quiney et al. '

who performed explicitly the summations over all states.
The need to include negative-energy states has been point-
ed out also by Goldman and Drake. ' The only important
requirement is that 1a) is a positiue energy eige-nvalue
solution to h, not that it can be expanded in positive
eigenvalue solutions to any other Hamiltonian hp. Tlirt
phrase "negative-energy state" has no well-defined mean
ing until the single particle Hamilto-nian has been specified

The orbital-modification procedure described and used
by Garpman et aL' uses the above equations to obtain
HF solutions from a set of orbitals obtained in a local po-
tential Uo by setting h =u "—vo. The argument is, how-
ever, not restricted to this case, but can be applied also
when h is an external perturbation. For weak perturba-
tions it is sufficient to keep the lowest-order terms. With

hp ——h"", one gets

(
HF hHF) 15 )

=(h +u )1a ")—1a ")(a "1h +u 1a ")
i HF ) ( i HF

1
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1
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where U is the correction in U
"due to the change in the

orbitals

= Q [(b
1
r i2 (1—pi2) 15b )+ (5b 1r ii (1—pi&) 1

b ) ] .
(7b)

Just as in (6) the right-hand side contains negative states
in terms of the unperturbed Hamiltonian, but

1
a "+5a )

can still be considered as a positive-energy solution of a
generalized Hartree-Fock equation with hr included in
the one-body Hamiltonian. This elegant way of treating
one-body perturbations was suggested by Sandars' in
connection with the study of weak interactions and has
been applied to that problem by several authors to this
problem'6 as well as to hyperfine structure"" and gz fac-
tors. ' lt should also be possible to use Eq. (7) to treat the
effect on the electron orbitals due to the Breit interac-
tion, hs, as well, by choosing hp ——h " and
hF=us=(b 1hs(1 —Pi2)1b &1a &.

The procedure (7) is quite similar to the relativistic
random-phase approximation. ' It is also closely related
to the method of summing all one-particle diagrams "to
all orders" (i.e., one order of the perturbations, all orders
in the electrostatic interaction}, described in Ref. 12.
When applying perturbation theory, normally only excited
states would be allowed, although it is easy to show that
the effects due to the admixture of all occupied orbitals
cancel. However, in perturbation theory also the
negative-energy states should then be excluded from the
right-hand side of (7), corresponding to the application of
the projection operator A,p+ expressed in terms of unper-
turbed HF orbitals. Solving Eq. (7) as it stands means
that the projection operators are expressed in terms of the
perturbed orbitals 1i "+5i ). Thus the methods are not
completely equivalent and if the negative-energy states are
excluded from the right-hand side of (7a}, incorrect results
are obtained, as observed in Ref 13. To. remove the
discrepancy it is then necessary to include "virtual-pair
correction" terms just as observed in the hydrogen calcu-
lation by Hardekopf and Sucher.

III. THE NO-PAIR HAMILTONIAN
AND THE HARTREE-FOCK EQUATIONS

Sucher writes his no-pair Hamiltonian in the form

I+(U) = y [h (U)+A+( U)( V„„,—U)A+( U)]

+-,' g A+(U)V„A+(U),
l,J

(i&j)

where h ( U) =Pmc + ca.p+ U and V„„,is the nuclear at-
traction. The projection operator is expressed in terms of
eigenfunctions to h(U) and V, , is the electron-electron
interaction. The choice of U most often used in actual
calculations for larger systems is U=V„„,+u ". For
perturbation theory the equivalent form
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g V„—QU"" A+(U) (8)
i(+j) i

is more convenient. Sucher expresses concern that the
virtual-pair correction due to 5U = V„„,—U may be large
unless U = V„„,. However, there are also virtual-pair
correction terms Vet,'" due to V, „and it is clear from (8)
that the total virtual-pair corrections to take into account
are the excitations due to V, ,—uH". It is known from
atomic many-body theory that in first-order single exci-
tations (i.e., creation of a single "particle-hole pair") due
to V, , cancel exactly those due to the potential correction
term, as illustrated in Fig. 2. (If the restricted Hartree-
Fock approximation is used, single excitations caused by a
valence electron mill still be present. Single excitations
due to the Breit interaction will also be present, unless this
is included together with the electrostatic interaction in
the HF equations. ) From the perturbation theory point of
view, this is a more important criterion than the energy
minimization, since it reduces the number of diagrams to
be evaluated. This property should hold also for excita-
tions from the negative energy states, if these are defined
through the HF Hamiltonian. Thus the Hartree-Fock ap-
proximation, for orbitals as well as for projection opera-
tors, should be a good—in some sense the best—starting
point for calculations based on the no-pair Hamiltonian
0+.

IV. CONCLUSION

Every choice of projection operators divides the com-
plete Dirac space into two halves. The division is dif-

+i. b+i
b

FIG. 2. Single excitations due to the electron-electron in-

teraction, V, , {first and second diagrams) and due to the poten-
tial correction term (third diagram) cancel if the Hartree-Fock
potential is used. A summation over all occupied orbitals is im-

plied for the internal lines. Relation holds for all eigenstates

~

i ) and
~
j) to the HF Hamiltonian in Eqs. (4) and (5)—also

for orbitals with negative energy.

ferent for different choices of basis sets and thus of pro-
jection operators. The projection-operator dependence can
only be removed when going beyond the "no-pair" ap-
proximation, allowing creation of virtual electron-positron
pairs.

For atoms with more than a few electrons the exact
problem cannot be solved —not even without QED
effects—and a good starting point is essential. From the
point of view of perturbation theory, the main advantage
with the Hartree-Fock potential is not that it minimizes
the energy but that it reduces the number of diagrams,
since the potential correction term cancels exactly the "ef-
fective one-body interaction" due to the interelectronic in-
teraction and there are no "single excitations" (i.e.,
creation of a single particle-hole pair) in first order. This
property should be welcome also in studying QED effects,
since it applies to the negative-energy states, as well, if
these are defined by the HF potential and all "pair-
correction terms" (due to the creation of a single
electron-positron pair) vanish in first order.
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