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We show explicitly that, in a realistic model of diffusion-controlled dendritic solidification,
Ivantsov’s continuous family of steady-state needle crystals is destroyed by the addition of surface
tension. Our starting point is the exact integro-differential equation for the one-sided model, in two
dimensions, in a moving frame of reference. In the limit of large undercooling, where the range of
the diffusion field is much smaller than the radius of curvature of the tip of the needle, we are able
to reduce this problem to a linear, inhomogeneous differential equation of infinite order. We derive
a solvability condition for this equation and show that solutions cease to exist for arbitrarily small

but finite, isotropic surface tension.

I. INTRODUCTION

Growth of a solid from an undercooled or supersaturat-
ed melt gives rise to dendritic pattern formation, a process
characterized by propagation of a needle-shaped tip and
the persistent emission of sidebranches. A full under-
standing of the shape of a dendrite, for example, of its de-
gree of self-similarity, is still a completely open problem.
Most theoretical investigations of dendritic growth, in-
cluding the one to be described here, have been attempts
to determine from first principles the values of the growth
velocity v and the radius of curvature of the tip p, two pa-
rameters which appear experimentally to be sharply
selected by the dendritic growth mechanism."?

An essential first step toward a modern theory of den-
drites was Ivantsov’s solution of the ‘“needle-crystal”
problem in the limit of zero surface tension.>* A needle
crystal, by definition, is a steady-state solution of the soli-
dification problem in which a needlelike solid—a para-
boloid of revolution in Ivantsov’s case—grows into the
liquid at constant speed v, without change of shape, along
its axis of symmetry. Ivantsov’s solution follows directly
from the fact that the diffusion equation in a moving
frame of reference is separable in parabolic coordinates;
thus, a paraboloidal isotherm at the melting temperature
T =Ty is an acceptable solidification front so long as
surface tension, via the Gibbs-Thomson condition, does
not require T, to vary with the curvature of the surface.

This analysis at zero surface tension, however, does not
produce a unique v and p at any given temperature of the
melt, as does nature, but rather, produces a continuous
family of solutions. To be specific, Ivantsov’s solution
produces only a single relation between the dimensionless
undercooling A=(Ty —T ,)c/L and the Péclet number
p =pv/2D. (In these formulas, T is the temperature of
the melt very far from the growing solid, L is the latent

33

heat, ¢ is the specific heat of the fluid, and D is its
thermal diffusion constant. Throughout this paper, we
shall use only the language of thermally rather than
chemically controlled solidification, although much of our
discussion will be technically more appropriate to the
latter case.) What is happening here is that the Ivantsov
problem is missing a length scale. The only quantities in
the theory with the dimensions of length are the tip radius
p and the diffusion length / =2D /v; thus, one dimension-
less relationship between p =p/I/ and A is all that can be
expected. It is also not too surprising that the Ivantsov
solutions turn out to be manifestly unstable.>

This dimensional degeneracy of the Ivantsov problem
suggests that capillarity is an essential physical ingredient
of the dendritic selection mechanism. A new length scale
associated with the surface tension y is conveniently
chosen to be dy=yTyc/L? a quantity which is ordinari-
ly of order angstroms in contrast to / which may be of or-
der millimeters or larger. Of the various attempts to in-
corporate d into the theory, the one which has been most
successful so far in explaining experimental data is the
marginal-stability hypothesis.® In its most rudimentary
form, this theory starts with the observation that the
geometric mean (dyl)!/? is the characteristic scale of mor-
phological instabilities in solidifying systems, and then
makes the guess that this stability length sets the scale of
the tip radius p. Thus, the ratio o =dyl/p*=2d,D /vp*
appears in the theory as a A-independent constant whose
value provides the extra piece of information required to
determine unique values for v and p. No rigorous dynam-
ical basis for the marginal-stability hypothesis has yet
been discovered.

More recent developments in the dendrite theory have
focused attention on the mathematically singular nature
of the surface tension as a perturbation of the Ivantsov
problem. Work along these lines has been based primarily
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on simplistic but relatively tractable models®~? of solidifi-
cation in which the fully nonlocal and retarded dynamics
of the diffusion field has been replaced by phenomenolog-
ical local laws governing the motion of a two-dimensional
stringlike solidification front. The conclusions from most
of these studies”’ are that the addition of surface tension
causes the Ivantsov family to break up into at most a
discrete set of needle-crystal solutions, and that the
dynamically selected dendritic tip, if it exists at all, will
have the same v and p as that of the fastest and sharpest
of these solutions. In general, some finite degree of crys-
talline anisotropy seems to be required either to permit the
existence of any needle crystals or to stabilize them.

The important question to which the present paper is
addressed is whether the mathematical structure of these
local dynamical models carries over to the more realistic
nonlocal description of solidification. None of the
currently fashionable local models has been derived sys-
tematically from first principles. However, the
boundary-layer model of Ben-Jacob et al.®® is at least
couched in the language of solidification theory and ap-
pears to have some physical justification in the limit of
large Péclet number p =p/I, where the range of the dif-
fusion field / =2D /v is much smaller than the charac-
teristic length scale p of the solidification pattern. This
limit can be obtained by letting the undercooling A ap-
proach its maximum value of unity. (A > 1 sometimes can
be achieved experimentally, but the physics becomes very
different and need not be considered here.) Our strategy
has been to look at the realistic nonlocal model in the lim-
it of small e=1—A and to ask whether the mathematical
structure of the needle-crystal problem in that limit
resembles that of the boundary-layer model. We assert
that the answer to this question is “yes,” that surface ten-
sion destroys the family of Ivantsov solutions of the fully
nonlocal free-boundary problem and replaces it by, at
most, a discrete set of needle crystals for which v and p
satisfy a solvability condition.

The scheme of this paper is as follows. We start in Sec.
II by writing down the exact integro-differential equation
for two-dimensional steady-state solutions of the one-
sided model of solidification.">!%!! This is the version of
the solidification problem in which no diffusion occurs in
the solid phase. We have chosen this version because it
most closely corresponds to the boundary-layer model, al-
though it is slightly more complicated mathematically
than the symmetric model'? in which diffusion is the
same in both phases. The derivation of the starting equa-
tion!! and a brief description of the solvability condition
for the symmetric model have been placed in Appendixes
A and B.

The main part of Sec. II is devoted to a formal expan-
sion of the basic equation in powers of the small parame-
ter //p, where p may be interpreted for the moment as the
radius of curvature at an arbitrary point on the boundary.
Our result is a nonlinear differential equation of infinite
order. We check that, for zero surface tension, this equa-
tion correctly generates the asymptotic expansion of the
Ivantsov solution at small € and correspondingly large p.

From this point, our method of analysis proceeds in
parallel with recent work by one of the authors on the

boundary-layer model,'® except that the novel form of the
equation that we encounter has forced us to invent some
techniques that seem plausible to us but which we are un-
able to justify rigorously. The first and possibly most
dangerous of our guesses is that we can linearize our equa-
tion for the boundary around the Ivantsov parabola. This
linearization was also used in Ref. 13 where it was possi-
ble to make a direct check of its validity. The result of
this linearization for the present problem is an inhomo-
geneous linear equation, still of infinite order, which con-
tains two system parameters € and v=d/I.

In Sec. III, we show explicitly that the homogeneous
part of this linear equation has solutions which oscillate
very rapidly for small € and v and which grow without
bound as one moves away from the tip of the needle. The
requirement that these divergent homogeneous solutions
not be present in the solution of the inhomogeneous equa-
tion leads us in Sec. IV, via another mathematical conjec-
ture, to a solvability condition which becomes a selection
criterion for v as a function of €. Finally, in Sec. V, we
evaluate the solvability condition explicitly for the case of
an isotropic surface tension and small v, and show that no
needle-crystal solutions survive except at v=0.!%!> The
search for solutions at larger values of v or for anisotropic
surface tension is left for later investigation. Section VI
contains a few concluding comments regarding implica-
tions of these results.

II. EXPANSION OF THE STEADY-STATE
EQUATION AT LARGE UNDERCOOLING

The defining equations for the two-dimensional one-
sided model, written in a frame of reference moving at
velocity v in the z direction, are the following. The dif-
fusion equation is

du ou
== —y? 2%
ar u+2 3 (1)

where u=(T —T_,)c/L is the dimensionless thermal
field and lengths are measured in units of / =2D /v, times
in units of /2/D. Let the position of the interface be
z={§(x,t), x being the Cartesian coordinate orthogonal to
z. Heat conservation at the interface requires

A-Vu=—02+&n,, )

where i is the outward unit normal and £ =93¢ /3t Final-
ly, the Gibbs-Thomson condition is

u=A—vrx , (3)

where v=d,/I as before, ¥ =—¢&"/[1+(£)*]*/? is the
curvature of the interface, and primes denote differentia-
tion with respect to x.

From Egs. (1)—(3) one can derive a closed integro-
differential equation for {(x,tz). This derivation is per-
formed in Appendix A. In the stationary regime to which
we restrict ourselves here, this equation reduces to'!
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where

SR S D S | —Ex)— 27T
g(y,flx,O)—“m_exp 47'{(y x)+[Ey)—&(x)—27]°)

We are interested in the regime where the diffusion
length [ is everywhere small compared with the radius of
curvature of the front. This means that, in our reduced
units,

£'x) <1, (6)

and, more generally, because we look for a needle-shaped
profile, that £ << 1 for all n >2. We are then naturally
led, in the integrals of (4), to use the Taylor expansion

EN—E0=YED+ 3 ot @
niz2 M

(where Y=y —x) in which we separate out the small
terms with n >2. We rewrite the diffusion kernel as
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Expression (8), which is at this stage formally exact,
separates a diffusion kernel associated with a locally pla-
nar front with space and time ranges of order unity from
a priori small corrections describing curvature effects.
Similarly, we rewrite the expressions inside the second in-
tegral in (4) with the help of the Taylor expansion (7).
The Y and 7 integrations then can be carried out trivially
for each term of the resulting infinite expansion.

Taking advantage of the fact that

[ dr [T avgovrig=1, (11)

one can formally rewrite (4) as

‘f+§[_1?<§z;_'>iim=§"[ao+%bo;“+ Feold P 1@ 018+ eng e+ o]
+£9 @y b2+ Fen(E ) +enl" + (P +dnl S+ Tdnt P4 - ]
+ o 48 Mag by 8 1, (12)
[

where €é=1—A << 1. In the right-hand side of (12) we
have ordered the terms so that the series multiplying £'™
contains all possible combinations of the form
(EM*2AE") B -+ X(EM)® (with any set of positive a;)
but no derivative of £ of order higher than n. The coeffi-
cients a;,b;,c;;,. .. are functions of {'(x) and also depend
on the capillary parameter v. The reason for this ordering
will become clear shortly.

In the Ivantsov limit, v=0, Eq. (12) yields the parabola
£"=—p~'=const, with

—e=({"[ag(v=0)4+bo(v=0)"+ 1. (13)

One easily finds that in this limit

e

»
s|&

ap=1, bo= , (14)

» €Co

etc. That is, Eq. (13), which gives {" ~ —2¢, precisely
represents the first terms of the asymptotic expansion in
powers of " of the two-dimensional Ivantsov relation

A= |
=

This result, which can easily be shown'® to hold to all or-
ders, simply expresses the fact that the Ivantsov parabola
exactly solves the integral equation (4) at zero capillarity,
as has been shown directly by Pelcé and Pomeau.'”

A naive interpretation of (12) would seem to indicate
that we have already achieved a useful expansion in
powers of € of the solution at nonzero v. Note that, be-
cause of the translational invariance of the system, neither
x or {(x) appear explicitly in (12). The natural indepen-
dent variable is §’, and the function of principal interest

172 172
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£"(&') is of order €. All higher derivatives can be written
in the form

d n—-2 d n—2
(n)= ' ”2: -2 ”" , (16)
and thus appear to be small of order €" ~'. One is there-

fore tempted to truncate the right-hand side of (12) at
some finite order in € and then try to solve the resulting
differential equation by conventional techniques. The sit-
uation is not so simple, however. A differential equation
containing operators of the form (16) can generally be ex-
pected to have solutions which are essentially singular in
€, that is, which are rapidly growing or oscillating func-
tions of £’ whose speed of variation increases without
bound as € becomes small. Such solutions may be of no
physical interest; but if, as in the present case, one’s in-
terest is to determine whether smooth physical solutions
exist, then the possible appearance of singular solutions is
of crucial importance.

To investigate this situation in more explicit terms, let
us assume that we are close enough to some smooth solu-
tion £ that we can linearize around it. For present pur-
poses, the most convenient choice of smooth solution is
the Ivantsov parabola for small €, that is, we write

§"(x)=—2e[1+h({)] . (17)

The reason for the ordering on the right-hand side of (12)

brackets become (—2ed /d{’')" ~%h, all of which we take
to be of order unity and therefore retain. The quantities
inside the square brackets each contain a leading term a,
plus corrections of higher orders in € and #. We immedi-
ately discard the higher orders in 4 in the hope that our
linearization is legal (see Ref. 13), and keep only the first
correction of order €. The result is

3
l—+--‘-"L-L——a0-+-6b0+0(62)

27 2
z_l’ﬁh,;. i [a, —2eb, +O0(€*)] —25_d_, "h ’
2T & ¢
(18)
where
p=p()=[1+(&7?]"12 . (19)

The coefficients a, and b,, which are, respectively, the
coefficients of £"*2 and of £”¢*+?) in the expansion of
Eq. (4), are found to be given by

Y"*+2 (2r—YC)

(n +2)! T

a, (&)= ["dr [T dvgo(v,r|)

n
—v,u3% ] , (20)

should now be clear. The factors £'™ outside the square  and
|
o © Y"Ht (e =22 1
b, (&)= d dYgo(Y,r| ¢ -
O= [, dr [_ d¥eYri$) 50—y 272 r
© © Y" +2 1 1
+vu? dr dYgolY,7|§'){—— (Y& —27)
H fo f—m 8o 6 { 27 b= (n +2)!+2(n!)
n+1 1 200 (B 4+2)
3ui——=—yr+t |,
T o | TR Y } @b
r
. . III. WKB SOLUTIONS OF THE HOMOGENEOUS
Finally, using EQUATION
w
ao—s— 5 (22) Equation (23) is an inhomogeneous linear differential
equation which, however, is of infinite order and therefore
we rewrite (18) as of a highly nonstandard type. We emphasize once again
, that the solution we propose here is by no means rigorous.
Lo—2eL,— Y lh(e)=vul+eb ) 23) We start by looking for solutions of the homogeneous
0 ) 6 H 0 part of (23). The form of the linear operator immediately
b suggests that we try to construct these solutions in the
where WKB form
2 ., d |’ : L
Lo= Y a,(&) | —2e—— | , (24) hy(&')=exp |—S(&€) |, (26)
n=0 dg €
and where
. Rt S(L,€)=So(&')+€S,(£)+0(€) . 27
Li= 3 b,(&) *Zfd—é_, . (25)  The function exp[S;(£’)] is an e-independent multiplica-
n= tive factor in (26) which we shall need in our final formu-
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la for the solvability condition; it is in order to compute
S, correctly that we have retained terms of order € in
(23). Accordingly, we insert (26) into (23) and use

n
h=

(SH)"+€|n(Sy)" 1S

o
d¢’

+ n(nz—-l)S(’)’(SE))n_z}

+o<e2)1h , (28)

where S'=dS/d¢’, to obtain the following equations at
the zeroth and first orders in € for S, and S;:

3

LO(Sz),g')z—sz‘— , (29)
OLo(Sh,E")  S§ 3*Lo(Sp,E)

s; 2LolS0.6) | So 9o ,°f —2L,(54,6)=0, (30)

aS, 2 ASy)

where

Lo(S,8) =3 an(&)(—28p)", (31)
n=0

L1(S5,8) =3 by(&)(—25p)" . (32)

n=0

I

Our next step is to insert the integral formulas for a,
and b,, Egs. (20) and (21), into (31) and (32). If we first
perform the sum over » inside the integrals, we can then
carry out the integrations. The algebra is tedious but
straightforward, and yields the results

, 1 v’
Lo(Sp,E) = - , (33)
(S0, R +(142S5¢)RY2 2R
o 3
L,(So,8 ):W
31/]_],3 (§'—2S€))S()
+ 2 R5/2
Iy 1+265 (34)
s, | TR ’
where
R=1+44£'Sy—4(Sy)?, (35)

and R'/? is defined as the determination of the square
root whose real part is positive when the real part of R is
positive. These resummations are unambiguously legiti-
mate only within the domain of convergence of the series
(31) and (32). We shall assume that L,(S,{’) and
L,(Sp,&') are defined everywhere in the complex S plane
by the analytic continuation of expressions (33) and (34).
S now can be obtained from (33) by solving (29). This
means solving a quartic equation for Sy and retaining
those of its roots which satisfy (29), an algebraically diffi-
cult process that may best be carried out by numerical
means. In order to construct an analytic treatment of the

problem, which seems necessary to gain some qualitative
insight into the effect of capillarity, we shall therefore
solve it in the limit of small v.

We set

So=7(&+¥l1+(1), (36)

and notice that the determination of R!/? imposes that,
forO<argy<mand |¢¥] >1,

R1/2=y’1(1—d/2)1/2=—%!}—[1+0(¢"2)] ;G
and for —mr<argy <0and |¢¥| >>1,
R‘/2=%—[1+0(¢"2)] . (38)

Then, for v << 1, one finds that (29) has two solutions

56+(€')=;‘§—2‘;exp - %9@') +%§’—§+0(W2> :
(39)
and
So-(£1=S51(5)=—So, (£ . (40)

Here, 6=tan~ !¢’ is the angle between the growth direc-
tion and the local normal to the solidification front. In-
tegrating (39), we obtain
So4(EN)=S5_(&")

i tan— ¢’ e —i0/2
= 6
Vv f 0 cos’0

+%<§')2—§§'+ow*/2) . 41)
The associated values of S, turn out to be
Sy (E)=St_(£)= —%itan-‘g'+0(v“2) . @

A crucial point to notice here is that the homogeneous
solutions obtained by inserting (41) and (42) into (26) do
indeed exhibit the divergent oscillations which were
predicted in the previous section. To see this in a particu-
larly useful way note first that the curvature of the
Ivantsov parabola is

H = %-g— =2ecos’d , (43)

where £ is the arclength measured in units of /. Thus, the
dominant part of S(£') in the limit of large |£'| and
small v can be written in the form

-*St(é")z‘—/-;(iié'-i—‘é'l), (44)

which demonstrates that hy({’) behaves in a physically
unacceptable way in the limits £— + «. The length scale
associated with this divergence is v!/2. In physical units
this is v!/2l =(dy/)!/?, which is precisely the stability
length mentioned in the Introduction.
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IV. SOLVABILITY CONDITION
FOR THE INHOMOGENEOUS EQUATION

In the absence of a known systematic method for solv-
ing the inhomogeneous equation (23), we look for a partic-
ular solution Ap(£’) in a form which is suggested by the
formal solution of a second-order differential equation in
the WKB approximation. Our guess is

Yy ho(E)  h_(&)
hp(g')= d F - 4
pE)=i [~ _dné(nF(n) o o | @Y
where
d(n)=vu*(n)+0(e) . (46)

h, and h_ are the homogeneous solutions associated
with S, and S_, respectively, and F(7n) is an unknown
function.

To confirm the validity of (45) and thereby determine
F(7n), we apply to (45) the operator

n
L =Lo—2eL,—3wil= 3 I, |—2€ d, , (47
n=0 dg
with
3
l,=a, —2eb,, a,,=a,,—ﬂ;—8,,,0 . 48)
Taking advantage of the fact that £ h . =0, one obtains
Fh=A,—A_, 49)
with
Ai= 2 I —26'_‘,"
p§0 n=p+2 " dé’
1 a """
—2€iF)p— | —2e-% .
X | (—2e€i )¢hx Tz hy
(50)

We are interested in extracting the term in F which is
dominant at small €. Noticing that ¢ and S'; are regular
functions of €, we can write, to dominant order,

i3 3 (=285, )P (=285 P
p=0n=p+2

28

p
X e ] (—2eF)=1. (51)

Thus, the equation for (—2€F) has exactly the same struc-
ture as Eq. (23) for A, and the question arises of whether
the solution for F itself involves, as does A, an essential
singularity in €.

In order to decide this point, let us look for solutions of
the homogeneous equation associated with (51) of the fol-
lowing form: —2eFy=exp[Xy({')/€]. One finds, to
dominant order in €,

S 3 an(—2XpPl(—25p, P!

p=0n=p+1

—(=2Sp_)—P-11=0,

(52)

which can easily be resummed into

1 1

H(Xy) - — —— -
So+ —Xo  So-—Xo

3
Lo(Xj.6)— -

|
=]

(53)

The only roots of the second factor on the left-hand side
of Eq. (53) are X =S¢+, for which

oL (X,8")

lim H(Xy)= :——"é}—f’i #0.  (54)
Xo—Soz O |xp=sp
From this, we deduce that the homogeneous part of the
equation for (—2€F) has no solution singular in €, that is,

that derivatives of F do not produce inverse powers of €.
We can now calculate F to lowest order in € by retain-
ing only the terms with p =0 in (51). The result is, after a

little more algebraic manipulation,

So.S6_
(So4 —So_)N1—=2vu?) ’

2

F()= |-
i€

(55)

which completes the determination of hp(&’) in (45). Note
that F({’) is a real symmetric function of §'.

The general solution of (23) is the sum of the particular
solution hp and any linear combination of the homogene-
ous solutions k.. However, because £, and h_ both
diverge as {’'— + w0, and because we already have chosen
the lower limit of integration in (45) so that hp vanishes
as {'— — o, we are no longer permitted to add any com-
ponents of h . to hp without disqualifying our solution as
a physically acceptable capillary correction to the shape of
the needle crystal. This criterion also must be applied for
§{'— + «, in which limit we have

hp(&')=i[h  (§")—h_(E)](ev), {'—>+ (56)
where
® (9)F(q) ® (n)F(n)
Iew= [" an@ED _ = 4, $F )
ev=[_ dn o () S dn h_()
(57)
In writing this last relation, we have used the symmetry of
¢ and F and the fact that S, (—7)=S%(9)=S_(n),
which implies that [ is real and independent of the speci-
fication + or —. The major conclusion from all of our

analysis is that, in order for Ap to remain well behaved in
(56) for £'— + «, we must have

I(e,v)=0. (58)

Equation (58) is a solvability condition which must be sa-
tisfied if needle crystals are to exist.



448 B. CAROLI, C. CAROLI, B. ROULET, AND J. S. LANGER 33

Two alternative interpretations of the function I(e,v)
are useful for understanding where the solvability condi-
tion (58) stands in relation to other work in this area.
First, the strategy that has been used for computing the
shapes of needle crystals in the various local models”®!3
of dendritic growth has been to integrate the (finite-order)
steady-state differential equations from {'= — « to {'=0,
and to compute d.% /d@ at the latter point. In principle,
we can imagine having carried out the same procedure
here. It is a simple matter to deduce from our preceding
equations that

dx

S =S, (=00 =~/ (59)

6=0

where the second form is valid in the limit of small v. By
symmetry, one knows that d. % /d0 must vanish at 6=0
if a needle crystal is to exist; thus we arrive at the same
solvability condition (58) but with a specific interpretation
of the quantity 1.

The second interpretation is less secure mathematically
but possibly more useful for future work. In standard
treatments of inhomogeneous linear differential equations
such as (23), but of finite order, the equation is said to be
solvable if the inhomogeneous term on the right-hand side
is orthogonal to the null space of the operator on the left.
Apparently the functions h ;3 'F are the left null eigenvec-
tors of this operator—this is exactly what happens for the
second-order equations encountered in the local
models'>—in which case (58) is precisely the required
orthogonality condition. There are many unresolved
mathematical subtleties associated with this interpreta-
tion, however, and we shall not pursue the matter beyond
the suggestion that it might be a clue to a more general
approach to selection problems of this kind.

V. ASYMPTOTIC ESTIMATE FOR I(€,v)

We conclude the technical presentation of this paper by
describing a few basic properties of the function I(e,v).
It appears that there is a great deal to be learned from
evaluation of this function, especially if one includes crys-
talline anisotropy via a prescribed 6 or ' dependence of
the capillary length dy,. However, we shall leave most of
these details for later publication.

For the present, let us look only at the special limiting
situation in which v approaches zero while € is held small
but fixed. That is, we consider how I (€,v) approaches the
Ivantsov limit. In this case, S, is dominated by the
term proportional to v~!/? on the right-hand side of (41).
It is useful to transform the variable of integration to
7' =tand so as to write this function in the form

e T (1 i3 )17 0
Sor(m= = [ dn' =iy (1+in) " +0().

(60)

Note that Sy, has stationary points which coincide
with branch points at n==*i. The path of deepest de-
scent from 7=—ow to W=+ o for the function
exp[— So, (17)/€] passes through 1= —i, bending through

a finite angle there because of the branch point. Because
the latter function dominates the integral for I in the limit
of interest to us, we can expand it in the region near its
peak. Let = —i +iz/2, so that
ay S7/4
So+(n)= - (61)
o+ E T T VA

where

1 1
a,=—ﬁfo du(1+u)/4(1—u)¥*=0.4355. . . ,

(62)

We next must evaluate the other ingredients of the in-
tegrand. Our results are

L o, 3/8
-S R L/ P .l 63
exp[ —S14(n)] 1—in I (63)

1 2974
Fln)=— Vo l— 2w 172 =T 3 ’
eVv(l—2vu )u(l+pu) eVv(z 2v)
(64)
and

(M=vd=— . (65)

Note that the first-order correction to the WKB formula,
Eq. (63), makes a leading-order contribution to I. Com-
bining terms, we find

e 7/4
238exp | ———
] v a, f p P 1oy
~ exp | — 2 ,
e P Ty [ e (232 —2v)

(66)

where the contour of integration C runs from —ic to
+ico and stays to the right of the pole at z =(2v)*/3. In
the limit v* <<€, this pole merges with the branch point
at z =0, and we find

211/47TV13/28

€X
(7€)15/141(15/14)

as

Vv

I(e,v)=~— p (67)

Several remarks are now in order. [ vanishes rapidly in
the Ivantsov limit v—0, but has no other zeros within the
range of values of €,v for which (67) is valid; thus the
Ivantsov family of solutions disappears completely for
small but finite isotropic surface tension. The fact that I
has an essential singularity in v at v=0 means that no
technique for computing the correction to the shape of the
Ivantsov parabola as a power series in v can give any in-
formation whatsoever about whether the corrected shape
is actually a solution of the needle-crystal problem. The
dimensionless parameter that characterizes the singular
behavior of I is the product €V'v. Because e=[/p in our
solution, this product is the same as (do/)!/?/p=0'"?,
where o is the parameter identified in the Introduction as
playing a fundamental role in stability-related theories of
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dendritic pattern selection.’ We do not yet claim to
understand the implications of this fact.

VI. CONCLUDING REMARKS

We have shown here, in the limit of large under-
cooling—and with the proviso that our mathematics be
legitimate—that surface tension acts as a singular pertur-
bation on the capillarity-free Ivantsov solutions of the
needle-crystal problem. That is, whatever its magnitude,
surface tension breaks the degeneracy of the Ivantsov
family of solutions and, under some circumstances, causes
those solutions to disappear altogether. Our result is ex-
pressed in terms of the solvability condition (58) which,
when it can be satisfied at all; is an equation determining
the dimensionless capillary length v=dy/l =dgv /2D as a
function of the dimensionless undercooling A=1—e.
This equation, together with the relation
—£"(0)=1/p=2e, predicts both the tip radius p and
growth velocity v as independent functions of the under-
cooling.

This result has been obtained in the one-sided model.
In order to show that it does not depend crucially on the
absence of thermal diffusion on the solid side of the soli-
dification front, we have performed the same analysis for
the symmetric model, that is, for the case where the two
phases have the same thermal properties.'> This analysis
is summarized briefly in Appendix B, where we show that
the mathematical structure of the symmetric problem is
the same as for the one-sided model. In particular, the
homogeneous equation for the departure from the para-
bolic shape has two solutions, both of which diverge at
§'—+ . One therefore obtains a solvability condition in
the form (58) where the only difference between the one-
sided and symmetric models appears in the detailed ex-
pressions for the functions S¢(&’), S1(£'). It appears that
this kind of capillary-induced breakdown of steady-state
solutions must be a commonly occurring feature of
pattern-selection problems.

Another question of some interest is the extent to which
the mathematical structure discovered here is actually
consistent with what we know about the local models.
The latter models, after all, provided the rationale for the
present investigation; and the boundary-layer model is
supposed to have some physical validity in the limit of
small e. We do not yet have a detailed answer to this
question but are able to see some aspects of what is hap-
pening. At the most basic level, our solvability condition
with its exponential dependence on v~!/2 is identical to
that of the boundary-layer model."* The underlying equa-
tions for the shape of the needle crystal look superficially
quite different, however. In particular, the analog of (23)
for the boundary-layer model is a second-order differen-
tial equation (which can easily be written as an equation
for h as a function of ') in which the capillary parameter
v multiplies the derivatives instead of the undifferentiated
term.!> Something much closer to the structure of the
boundary-layer model is obtained, however, if one
operates on (23) from the left by the inverse of the opera-
tor Lo+e€L,; and then expands the resulting equation to
second order in —2ed/d{’. In this way, one is approxi-

mating the branch cut singularities in L,+€L; by poles.
Much of the structure of the realistic diffusion problem is
lost in this procedure, but it remains to be seen how cru-
cial these losses may be.

By far the most important unresolved question is how
much the existence of a solvability condition tells us about
dendritic pattern selection. It seems possible that we shall
be able, in the not too distant future, to carry out time-
dependent numerical simulations of the one-sided or sym-
metric models of solidification and check whether needle
crystals which satisfy solvability conditions do, in fact,
identify the dynamically selected modes of growth. This
is what has been discovered to happen in the relatively
more tractable local models.”® If we had a better under-
standing of how realistic the latter models are, for exam-
ple, and if we could answer the questions raised in the last
paragraph, we might be quite confident about proposing
the same selection mechanism for real dendrites. In any
case, we shall eventually have to deal with the dynamical
properties of the realistic models studied in this paper.
We know that in both the geometric and boundary-layer
models there occur needle-crystal solutions, with small
but finite anisotropy, which satisfy solvability conditions
but which are unstable against tip-splitting deformations.
Such solutions are not physically realizable dendritic
growth modes. Thus, even if the analogy between local
models and real physics turns out to be complete, a tech-
nique for studying dynamical stability will be an essential
part of any theory of dendrites. The intriguing appear-
ance of stability-related parameters in the present investi-
gation gives us hope that the techniques we have been ex-
ploring will also yield some dynamical information.

APPENDIX A:
DERIVATION OF THE INTEGRO-DIFFERENTIAL
EQUATION FOR THE ONE-SIDED MODEL

Let us introduce the following notation: v=(p,?),
p=(r,t), ps=(v,E{W)), p:x’i\-}-y’j, r=p+zf(, where
z ={§(v) is the position of the interface. Lengths are mea-
sured in units of / =2D /v, times in units of /2/D.

In order to find the solution of the diffusion equation
(1):

_a__z_a__v2

5 2% u(p)=0, (A1)

lim u (p)=0

Z— 0

we introduce the retarded Green’s function G(p,p’), de-
fined by

d d
Vi_2—+— |G(pp)=—8(p —p"),
r 2 azr + atr (pp ) (p p
G(p,p')=0 fort—t'<0 (A2)
so that
o do dk eiw(t—t’)+ik-(r—-r’)
G(p,p')= - (A3)
pp f-m 27 Q7  io+k*—2ik,
or
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ot —t') 42 G(rt;r',t_)=1imG(rt;r',t —€)=8(r—r') . (A6)
Gpp)=————"57P |— 7 . | (A4) €—0
[4m(t —1t")] 4t —1") .
Note that, setting
where O is the unit step function, and ~
P k=q+k,k (A7)
A= |p—p' |2 +[z—2'+20 —1)]. (AS)
Hence in (A3) and integrating over k,, one obtains
]
do ioti—1) elao—p) gy g _z
Gipp'= [T Geiwt =) [ Ao e~z =2+ |2 =2 [m(g)=11)), (A8)
where
m(go)=1+1+iw+g>)"?, (A9)

with Re(l + io+¢%)"/?>0.
Using Green’s theorem, one finds from (A2)

- f:; dt' [ dS'8"V,Glp.p;)—2 f:;dt'fdp' 5::,, 'az' (p.p")

+f ar [ ap' [ dz' ——G(p,p )=0, (A10)

where 1 is the unit vector normal to the interface pointing from the solid [z < £(v)] into the liquid [z > £(v)], and f as’
denotes an integration over the interface. Moreover,

f:;dt’fdp’ S, 2 Gipp)= f dr’

t_ .
=1+ [ _ar [dp'¢w)G(pp)) (ALD

i S G2+ [ dp 006 (50

where use has been made of (A6) and of lim,_, _ G (p,p")=0.
On the other hand, one can write

[- _dr [dp’ ;)d’ Gloph= [~ _dr [dp’

In order to evaluate the first term in the right-hand side of (A 12), we note that because G (p;r’,t +€)=0, we can write
with the help of (A8),

f dt' fdp lim G(p;p’,z;,t')

Z‘—»m

hm G(pip',z1,t')—Gp,p.) (A12)

© da) d eiq‘(p—p')—(z—zl)[Z—m(q,w)] 1
= lim dt' | dp’ el =t 9 =—. (Al
f— Jar | / (2m)? 2[m(g,0)—1] 2 - A

Z|—® © 277'
Substituting relations (A 11) through (A13) into (A 10), we find

t_ . L
[~ ar [dp'[2+£w)1G (p.p; )— f_wdt'fds'ﬁ'-v,.G(p,p;)=o. (A14)

Returning to Eqgs. (A1) and (A2), multiplying them by G (p,p’) and u (p’), respectively, adding and integrating, we find
with the help of Green’s theorem

t

- ' ’ a ’ 2% = ’ ’ a ' '
J 40 [ s @8 37 (G PP (P11 =2 Jat [ @7 5,7 (G 2P P
t.._
— [ " dr [ ds'®-[G(p.p; 'Veu(p)—u(p; )VeG (pp)] , (A15)

so that, because lim,_, ,u (p)=0,

t_ . , ,
u(p)=— f_ dt’ f dp'[2+&(w")]ulps )G (p,ps ) — f dt’ f dS'f' - [Gp,p, Weu(p; ) —u(p; V.G (p,p;)]. (A16)
We then get, from (A 14) and (A16)
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t_ . t_
ulp)= [ dr' [ dp'[2+5@)l1—u(p)IGp.p;)— [ ar' [ dS8"V,u(p)1G (pp;)

+f dr' [ dS'[u(p;)—118"-V,G (p,p;) .

The ¢ appearing in the first term of (A17) is absent from the analogous equation derived by Dee and Mathur'® for
directional solidification. It is clear that this term must be present because (A17) must be Galilean invariant. The error
in Ref. 10, which affects only dynamical predictions and not the results of that paper, stems from overlooking the time

(A17)

dependence of the position of the interface in the derivation of (A16).

Applying to (A17) the theorem on the discontinuity of the heat potential of a double layer,

10.17 a¢ccording to which

!__ t_
tim [ dr [ dS' 7DV G gl = p)+ [ b’ [ dS' i VG ippl) Aa18)
we find
t_ . t_
u(pg)+1=2 f_wdt'fdp'[2+§(v’)][1—U(Ps' )]G (ps,ps ) —2 f_wdt’de'[ﬁ’-Vr'u (ps )]G (ps,ps )
t_
+2 fﬁwdt'de’[u(pS')—l]ﬁ’-V,IG(ps,ps'). (A19)

Finally, using Eqs. (2) and (3) and applying (A14) to (A17), we obtain the following closed integro-differential equation

for the position of the interface:

v - ' ’ 3
A—Zxw= [ dr [ dpT2+gw

t_
_Vf_ dt'de'W(v’)ﬁ'-V,'G(ps,p;),

where % (v) is the curvature of the interface at the point
(v,6(v)).

In the two-dimensional stationary case studied in this
paper, §(v)=0; {(v)=§(x). The function G (p,,p, ), when
integrated over x’, yields the two-dimensional Green’s
function defined by (5), and (A20) finally reduces to (4).

APPENDIX B: THE SYMMETRIC MODEL

For the symmetric model, the integral equation for the
stationary interface is"

—vwx)=2 ["dr [* dyg(yr|x0.  (BD

One can perform on the right-hand side of (B1) the same €
expansion around the Ivantsov solution as that performed
in Sec. II for the one-sided model. Noticing that the
right-hand side of (B1) is the v=0 limit of the right-hand
side of (4), one immediately finds that the departure from
the parabolic interface must satisfy

(LY —2eLY —vudn(&)=vu’+eby (B2)
where
d n
L(O) 2 a(O) 26“-12_‘7 ] s (B3)
LO=3 60 |—2e-2 | | (B4)
n=0 dg

and a\”(¢’') and b0(&") are given by expressions (20) and

L .
NG (pepi)+v [t [ dp' 24801 H (0)G (py,p;)

(A20)

M
(21) with v=0.

We then look for solutions of the homogeneous equa-
tion associated with (B2) in the form given by (26). S
must be the solution of

1

(0' — 3
(S, = =3 (BS)
O R T (a2sieR 2

In the small-v limit, this equation yields the approximate
solutions

i6g)

I
> |+

5 (B6)

from which S+ can be computed with the help of (30).

It is clear that, as in the one-sided case, the homogene-
ous solutions A4 (&) both diverge at {'—* «. One may
then carry out the analysis along the same lines as in Sec.
III, arriving at (57) and the solvability condition (58), the
only difference being that S,, S, and F must now be cal-
culated using (B6) instead of (39).
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