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Dynamics of the SU(1,1) Bloch vector
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In this paper we introduce the Bloch vector of the SU{1,1) space in full analogy with the well-known vec-
tor of the two-level systems.

The dynamics of generalized coherent states has been ex-
tensively studied in a number of recent papers. The theory
of these states associated with SU(2) and SU(1,1) Lie alge-
bras deserves particular interest in connection with the pos-
sibility of reducing the fluctuations. '

A large body of literature in this field has also been de-
voted to clarify the mathematical problems underlying the
operatorial ordering of SU(2) and SU(l, l) algebraic struc-
tures.

In particular, Truax' has generalized the Acyl disentan-
gling formula for exponential operators of the type

A A0, +PH2+P 0,5=e
where H~ 2 3 are the generators of the SU(2) or SU(1,1)
algebra, and a and P are complex numbers. Gerry' has dis-
cussed the dynamics of the SU(1,1) coherent states and has
also developed a formalism to treat the evolution of quan-
tum states driven by a Hamiltonian written in terms of the
SU(1,1) generators. In Ref. 4 ordering techniques, relevant
to Hamiltonian time-dependent linear combinations of
SU(2) and SU(1,1) generators, have been discussed within
the framework of the Wei-Norman algebraic method. ~

The SU(2) coherent states have been extensively studied
in quantum optics. 6 In particular, it is well known that their
relevant dynamica1 properties can be studied following the
evolution of the associated Bloch vector, which also played a
crucial role in elucidating the dynamics of the two-level sys-
tems. '

In Ref. 1 it has been suggested that the SU(1,1) algebraic
properties can be recovered from those of SU(2) (and vice
versa) by means of a suitable complex rotation specified
below. In this paper, according to the above suggestion, we
construct explicitly the SU(1,1) Bloch vector and show that
its dynamical properties can be directly "translated" from
those well known, relevant to the SU(2) case.

Let us consider a Hamiltonian written as a linear com-
bination of the generators of the SU(1,1) group, namely, '

It is straightforwardly checked that the k components
obey the following commutation relations:

[kI,k j =iRI~„k„, I, m, n =1,2, 3

d"
dt
—k„=~( „k(O (7)

where 0 are the components of the vector 0

& = (2lplcos@, —2IPlsing, —a) (8)

Equation (7) can be understood as a vector product in the
SU(1,1) space. More precisely it turns out that the expecta-
tion value of the k vector obeys the following equation

(—k) =(k) xQ
dt

(9)

where the vector product is defined in the non-Euclidean
SU(1,1) space according to the new structure constants.

The metric of the SU(1,1) space is suggested by the
relevant Casimir invariant, which can also be deduced as a
dynamical invariant from Eq. (7), i.e.,

'

C = k3 —(k f+k2)

which also defines the "norm" of the k vector. Going a
step further it is immediately realized that the scalar product
in SU(1,1) must be defined as

where ~l „, the structure constants of the SU(1,1) algebra,
may be understood as the Ricci tensor of a non-Euclidean
space. The components of the ~ tensor read

~a 3
&I,m, n

= ( I ) '
&I.~n,

~here 5 is the Kronecker symbol and ~ the Ricci tensor.
The Heisenberg equations of motion for the components of
the k vector can be written in the following single equation:

H = uko+ pk ~ +p'k (2)
~1&1 u2&2+ u3&3

where ~ and p( = IPle'~) are assumed to be constant, real,
and complex numbers, respectively. The operators kp, k+
satisfy the commutation relations'

Following a well-known procedure, the Euclidean metric
can be regained by means of the following transformation:

[ko, k+i= +k+, [k,k+j=2ko
A

%e introduce the operator vector k with components

(3) u- u=((u, ,iu2, u3)

(i.e., the rotation suggested in Ref. 1).
Thus we find

(12)

k1= k++k A

k2= k+ —k A

k3= kP
A A

[kI,k ] =ill „k„ (13)
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and therefore
rh—k=kxO,

dt
(14)

according to the Euclidean metric involved.
In the hypothesis of constant "torque" vector 0, a solu-

tion of the system (14) can be found by exploiting the Rabi
method of the successive rotations. ' In our case three rota-
tions are required: the first around the 3-axis through the
angle g, the second around the 2-axis through an angle 8,
defined by

tan& =
2 p

(15)

and finally, the third around the 1-axis through the angle
—[Q]r, where [ ] denotes the norm in the pseudo-
Euclidean space, namely,

[O l =~~'-4IpI'
These rotations yield the solution of the Heisenberg equa-

tions of motion (14) as
3

i, (r)= X R, (r, y)k, , (17)

where R i (r, P) are the elements of the rotations matrix
R (r, qh) and explicitly read:

R
& &(r, @)=R

& i(r0, )cos'@+cos([Q]7)sin'p

Ri 2(r, @)=Ri p(r, 0)+ ~[ cos([ O]r) —R i, i(r, 0)]

R i, 3(r, @)= R i 3(r, 0)cosljl+R $, 3(1, 0)sin@

Ri t(r, @)=R2 i(r, 0)

—~[R i, i(r, 0) —cos([O]r)]sin2&

R2, i(r, P) = Ri, i(r, 0)cos'P+R i, (ir, 0)si n'@

R p 3(r, @)= Ri, 3(r, 0)cosg —R i i (r, 0)sing

R3 /(r, @)—R3 i(r, 0)cos@—Ri 3(r, 0)sing

R 3 i(r, $) = R 3 2(r, 0)cos@—R 3 i(r, 0)sin@

R3 3(r, y) = R3 3(r, 0)

Furthermore, Ri (r, 0) are the matrix element for p real
(@=0),i.e.,

R (r, 0) =

—4 I pI'+ a'cos( [0 ]r )
[O]'

sin([Q]r)
[O]

sin( [O ]r )
[O]

cos([O]r)

1

[O]
sin

sin([Q ]r )
[O]

(19)

4 lpl „.„2 [O].
[Q ]'

2i IPI . ([Q l )
a' —4IPI'cos([Q lr)

[Q] [Q l'

The above result is the complete solution to the problem of the time evolution of the SU(l, l) Bloch vector in the hy-

pothesis of constant torque.
Identical results can be obtained, however, using the disentanglement theorem discussed in Refs. 1 and 3 or the more

general %ei-Norman technique exploited in Ref. 4.
The technique we have discussed can be extended to more complicated cases, e.g. Hamiltonian operators written as a

linear combination of the SU(1,1) group and Weyl-Heisenberg algebra (a, a+, I), s i.e.,

H=ciko+Pk++P'k +y+a+"y.a(P= IPle'i', y= lyle'")

with the following representation of the SU(1,1) group

(20)

P

k+=~a k =~a, ki ——T(a+a +aa+) (21)

Introducing the Hermitian squeeze operators
A + A

a +aa~=
2

a2=
a+ —a (22)

one finds that their time evolution is given by
1

ai(i) = [T[Q]c([O])+IpIsiny ([s]O)] (a) r—os([O]) ——IpIcos@ ai(ro)+ IyIsinxs([Q])
2

+ ——cosx+ IpIcos(g —x)+sinx ll —c([Q])1
4 2

f

ai(r) = [I[Q lc([Q l) —Iplsin@s([Q ])]a,(io) + s([O]) —+ IpIcos@ a i(lo)
2

(23)

+ Iy I costs ( [O ] ) + —s in' —
I p I

sin�(p

—x ) + cosy [1—c ( [ Q ] ) ]
4 2

It can be straightforwardly shown that starting from the vacuum state we have
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2

aa)'(r) = —,
' cos[Q]r+ s([O])'+Y[Q][P[sin@c([Q])s([Q])—u)P(costs([O])'

2

2

aa,'(4) =7 c os[Q]r+ s([Q])'—T[Q](p(singe([Q])s([Q])+u(p)costs([O])'
2

(24)

cos[(xr)/2] sin[(xr)/2]
x/2

'
x/2

The method of the Rabi rotations storks in the hypothesis
that a and |3 are not time-dependent; if not so, different
techniques, as the algebraic ordering procedure exploited in
Ref. 4, should be used.

It has been shown that in this case the solution of the
problem depends on a single Riccati's equation with time-
dependent coefficients. An analytical solution can therefore
be found only in a restricted number of cases.

However, exploiting the analogy discussed so far, one
could speculate about the possibility of finding exact solu-

l

tions, e.g. , generalizing, to the SU(1,1) case, the well-
kno~n hyperbolic-secant time dependence of the pulse or
the more general solutions discussed in Ref. 9.

Let us finally point out that the analogy we have dis-
cussed in this paper can be generalized to higher groups. To
give an example, the properties of the SU(3) "Bloch vec-
tor" can be exploited to discuss the evolution of the corre-
sponding SU(2, 1) vector.

These last two problems, namely, the time-dependent
case and the higher group analogy, will be discussed in a
forthcoming paper.
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