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We show how the causal interpretation provides a physical basis for the Signer phase-space for-
mulation of quantum mechanics by analyzing the case of a relativistic spin-zero particle in an exter-
nal electromagnetic field. The Wigner function can be interpreted as both a generalized transforma-
tion and a field which defines a quantum potential in phase space. We also propose a Lorentz-
vector distribution function which always associates positive probability densities with the real
motions of particles and antiparticles in phase space.

The %igner-Moyal' phase-space approach casts quan-
tum mechanics into a representation suitable for compar-
ison with classical mechanics expressed in the same
language. The existence of such a formalism involving
the simultaneous use of position X and momentum P
variables to represent quantum motions, and the introduc-
tion of a quasidistribution function F(K,P) in phase
space, has always been something of an enigma since it
appears to confiict with the basic tenets of the
Copenhagen interpretation. However, when one reflects
that the latter view involves philosophical assumptions
which cannot be derived from the quantum-mechanical
formalism, it would seem that the Wigner-Moyal theory
(and other similar approaches) should most appropriately
be viewed as a representation of quantum phenomena
complementary to that provided by the causal interpreta-
tion of quantum mechanics. The latter theory, which
reproduces all of the usual results of quantum mechanics,
introduces the notion that a quantum particle always has
simultaneously well-defined position and momentum
coordinates (although the motion it executes is of course
nonclassical due to the quantum potential derived from
the wave function) and so it might be expected to provide
a physical basis for the Wigner-Moyal method.

The relation between these two representations has been
examined in the nonrelativistic one-body case by Taka-
bayasii who showed that while the description given by
the quantum Liou ville equation is mathematically
equivalent to that provided by the Schrodinger equation
(when the density matrix and distribution function satisfy
the pure state condition), the physical picture implied by
each is different. On the one hand, a particle motion is
represented in a Hamilton-Jacobi phase-space formalism
by a mean continuous trajectory which is subject to action
by the quantum potential and the external potential; on
the other hand, the coordinate X of the particle changes
continuously with velocity X=P/m while its momentum
I' in general jumps with a certain "transition probability"
dependent on the external potential. In fact, using the

Wigner function as a weight, the variables X,P are subject
to the uncertainty relations bXduP & Rl2 and we are led to
a stochastic picture in phase space, although it is neces-
sary to admit negative "probabilities. " Mathematically,
quantum mechanics becomes a nonlocal matrix algebra, in
contrast to the point-to-point canonical transformations
of classical mechanics. The aim of the present paper is
to extend this investigation to the relativistic case by a
consideration of the motion of a spin-zero particle in an
external electromagnetic field.

The relativistic generalization of the Wigner-Moyal for-
mulation may be sought in several different ways. Firstly,
one may proceed via Dirac's formulation of relativistic
particle dynamics in which a proper treatment of the con-
straints allows a Hamiltonian description of different
physical systems for which the so-called "no-go theorem"
maybe circumvented. This is the case with the motion of
a charged particle in an external electromagnetic field for
which, as pointed out by Dirac, the constrained Hamil-
tonian may be written as

H =—[m2 —(P —eA) ]=0,
2

where lL, & 0 is a Lagrange multiplier and the weak equali-

ty = means that the X and P have to be considered as in-
dependent parameters when one calculates the Poisson
brackets. In general, for a spinless particle one constructs
an eight-dimensional enlarged phase space I'= T'M from
the four-dimensional pseudoriemannian manifold M and
its tangent bundle T M and imposes on I a symplectic
structure with canonical 2 form to=dX hdP However, .
the proper choice of the state in the quantum version of
the theory with the required classical limit which could
serve to form the density operator and consequently the
Wigner distribution function remains an open problem, in
particular with respect to the coherence of the transfor-
mation applied to the whole operator algebra and to the
set of state vectors. Secondly, one may try to elaborate
the relativistic generalization of the Feynman path in-
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tegral in phase space by focusing attention on the proper-
ties of the evolution operator and its time dependence.
Thirdly, for boson particles an obvious generalization can
be obtained in the framework of the Feshbach-Villars for-
malism by applying simultaneously the Weyl transforma-
tion to the operators and to the density matrix formed
from the two-component wave function. Finally, one may
define in a straightforward way a relativistic scalar gen-
eralization of the standard Wigner function.

In our approach we introduce instead a Lorentz-vector
distribution function and bring out the two distinct ways
in which negative "probabilities" appear in such an ap-
proach. One, connected with the second ord-er nature of
the Klein-Gordon equation, can be causally interpreted in
terms of antiparticle motions. The other, associated with
the very nature of the Wigner distribution (in both the rel-
ativistic and nonrelativistic cases) expressed as the mean
value of the probabilistic characteristic function operator
in a given pure quantum state, arises from the constraints
imposed by the uncertainty principle.

We start with the laein-Gordon equation in an external
electromagnetic field [in units irt=c =1 and with metric
(1,—1,—1, —1)]:

(iB„eA&)—(it)t' eA")—P(x)=m it(x) . (1)

Substituting /=Re' we obtain Hamilton-Jacobi and con-
servation equations:

(dps+eAp)(c}t'S+eA")=m +OR/R: M(x—), (2)

Bp"=0, j"= tP'(it)" 2eA—&)f= (t)i'S+eA"),
2Ptl /Pl

(3)

where M is de Broglie's "variable mass" involving the
quantum potential. In the stochastic interpretation,
(p&+eA") (p& ——B„S) is the drift momentum lying along
the lines of fiow defined by the probability density current
j". The particle thus acquires a drift 4-velocity

x I" =dx&/dr=(pt'+eA")/M,

( —1/m)R2(x)[p +eA (x)]gp„—a„s) .

The scheme may be written in terms of Hamilton's equa-
tions in the form

dH . dHx"=, p„=—= ap„= ax~

where the I.orentz scalar

(4)

H(x,p) = [(p„+eA&)(p&+eA&}]'~z M(x) =0 . —
If we restrict the solutions to (1) to those whose initial

conditions satisfy M & 0 at t =0 for all x, then an initial
timelike particle motion will remain so for all times and
no anomalies can arise (such as the evolution of a particle
into an antiparticle solution). '

We now pass to a phase-space version of the above
theory based on new independent coordinates X", P&. In
a relativistic theory it is appropriate to define a distribu-

r being the proper time. In this formulation the momen-
tum is uniquely fixed as a function of x once S(x) and
the initial conditions are known and the phase-space dis-
tribution function is given by

tion function by a Lorentz vector and we choose
4

F„(X,P, e) = l ~ 1, zX+2' —~ 2Ptl 2

i —2eA (X)
aX~

I'" XPe P=j"X, (6)

the Klein-Gordon current. Integrating by parts, the vec-
tor (5) may be expressed in terms of the relativistic scalar
Wigner function

F(X,P)= f p' X+—f X ——e " d'z
ce 2 2

(7)

(g)F„(X,P, e) =(1/m)[P„eA&(x)]—F(X,P) .

The apparent divergence of the integral (5) may be dealt
with by a "normalization in a box" argument as has been
discussed elsewhere. "

Writing now Eq. (1) as two relations in the scalar densi-

ty matrix p(x, x')=g(x)1('(x'), we pass to c.m. and rela-
tive coordinates X= —,'(x+x'), z =x' —x and apply the
transformation (7). Assuming the external field varies
only slowly with z, i.e.,

z aA„
A X+—=A (X)+—z" "(X},

2 2 ()X"

we find the following two phase-space relations:

[P„eA„(X)][—P" eA "(X)]-
e aA~(X) a'F+

4 F +
2F aX. axuap

=N XP
(10)

[P& eA I'(X)] +e[P"—eA "(X)] — =0 . (11)
t)F ~A„ BF

ax~ ax ap„

Clearly, if we had included higher-order terms in Eq.
(9), or not assumed any approximation, we would have ob-
tained higher-order momentum derivatives or nonlocal in-
tegrodifferential equations, respectively, for Eqs. (10) and
(11).

It is important to realize that in these relations X, P&,
8/BX&, and 8/BP& act as a set of relativistic superopera-
tors, '2 the original density matrix p(x,x') now being
represented by a vector F(X,P} in a higher vector space. '

The scheme is mathematically equivalent to that of Eqs.
(2) and (3) if F(X,P) satisfies the Wigner-Moyal
equivalent of the pure state condition

f p(x, x')dx'p(x', x")=f p(x', x')dx'p(x, x") .

For then, starting from Eqs. (10) and (11),we may retrace

X/X ——e "dz.
2

1

This vector is evidently real and although F may become
negative (see below) we propose to treat F& as a phase-
space probability density current, this being justified by
the relation
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our steps via an inverse Wigner-Moyal transformation to
deduce Eq. (1).

The physical interpretation of the theory is as follows.
The variables X», P» —eA»(X} represent the simultane-
ously existent position and momentum of a particle in an
ensemble. According to Eq. (10) the particle motion lies
on the quantum mass shell (N being the phase-space
analogue of de Broglie's variable mass) and the term
U,F/4F derived from the Wigner function acts on free
particles as a quantum potential in phase space, with sup-
plementary terms appearing when an external field is
present. The particle 4-velocity is X»=(P» eA»—)/N.
Equation (11}divided by X then becomes the Liouville
equation

(12)

where the I.iouville operator

aH a aH a=
ap„ ax» BX» ap„

has a classical form associated with the scalar Hamiltoni-
an

H'(X, P) =
I [P» eA„(X—)][P" eA "(X—)]I

'~

=N(X,P} .
Note that although the motion is governed by Hamilton's

equations X"=BH'/BP„P„= —BH'/BX", the system
does not reduce to that described by the classical
Lorentz-force law due to the mass shell constraint (10)
and the uncontrollability of the initial conditions.

We thus have a scheme based on Eqs. (10) and (11)
analogous to that based on Eqs. (2) and (3), in which the
Wigner function plays three distinct roles. Firstly,
F(X,P} does not define a point-to-point canonical
transformation but rather a nonlocal unitary (through the

—iP s&
term e " ) transformation which goes outside of the
usual local unitary operations of the quantum theory in
that it represents the passage from an operator to a su-
peroperator theory. Secondly, F(X,P) is a physically real
field in phase space which guides particles through its
determination of the quantum potential. Thirdly, F(X,P)
enables one to define a probability density function.

To complete the physical interpretation we have to
show that the current (5) satisfies a conservatian law in
phase space, and we have to explain the fact that our
chosen density F (X,P,e) may take on negative values in
certain regions. The first problem is easy to solve. Em-
ploying Eq. (8) in Eq. (11) shows that we may write the
latter as

(13}
gy

A

where y"=(X»,P») and f"=(F",e(BA "/BX")F„). The
conserved charge Q associated with this 8-vector is then
obtained by integrating f over the seven-dimensional hy-

persurface orthogonal [with respect to the phase-space
metric (1,—1,—1,—1, 1,—1,—1,—1)] to X . We find
using Eq. (6)

Q(X')= f" f'd'Pd'X= f" F'd4Pd3X

=f j(X)d X,

that is, the usual Klein-Gordon probability. From the
vector f" we may derive an 8-velocity vector
u"=dy "/dA, (i.e., the unit tangent vector to a trajectory
in phase space) so that Eq. (13) may be written

( uA) (}
3'

(14)

NFco =K, E constant (16)

along a phase-space trajectory. By arguments similar to
those presented elsewhere' for the case of Eqs. (2) and (3),
we can now show from Eq. (16) that initial timelike future
pointing motion is preserved all along a trajectory, on
which F is a constant of the motion.

To deal with "negative densities, " consider the charge
conjugate solution to Eq. (1), f'(x)=g'(x). Constructing
a vector distribution function

F»(X,P, —e)=(1/m)[P»+eA»(X)]F'(X, P)

from this antiparticle wave function, where F (X,p) satis
it is easy ta see from Eq. {

that
F„'(X,P,e) = F„(X, P, ——e) . — (17)

Thus, a negative value of the probability density
Fo(X,P,e) for particles may be interpreted as a positive
probability density for antiparticle motions with opposite
4-momenta. In general both kinds of motion must be in-
tegrated over at a point X" in order to obtain, say, a given
positive particle density j (X) &0 in the Hamilton-Jacobi
representation. In this way we always have positive densi-
ty real motions in phase space and F (X,P, e) may be
viewed as a genuine probability function.

It is of interest to see why our interpretation breaks
down in the nonrelativistic limit. The Wigner function
for the Schrodinger wave function

'3

F, (X,p, )=rf p'(X+ —,
'
z, r) p(X ——,

'
z, r)e' *d'z

2'7T

may be derived from Eq. (7),

F, (X,P, t) = f F(X,P)dP (18)

where X = t and has the weil-known property

f (FX,P, )drP=
~
f(X,t)

i

From Eq. (18) we see that the sign of F, is correlated with
that of I'. However, our interpretation based on antiparti-
cies concerns the sign of E" rather than F itself, there not
being apparently any physically meaningful operation

where p = (f„f")
' is an invariant density and

d A. =d++dP»dP". Following the analysis of
Halbwachsi4 for space-time, we may express Eq. (14) in
the farm

(pro) =0,1 d
(15)

co dk,

where co is an 8-volume element such that
(1/co)dao/dk, =au"/By". For simplicity, let us consider
the case of a free particle [A„(X)=0] so that p=NF from
Eqs. (8) and (10) and A, =r. Equation (15) then says that
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which reverses the sign of E. The existence of a negative
"probabihty" density in phase space in Eq. (19) therefore
cannot be explained by our m.ethod in nonrelativistic
theory. (Royer' has shown that F, is the expectation
value of the parity operator about the point X,P and may
be expressed as the difference between two positive densi-
ties corresponding to symmetric and antisymmetric parts
of the wave function. )

To summarize, we argue that the only consistent physi-
cal interpretation of phase-space formulations of quantum
mechanics fof the type introduced by Wigner) is to assume
that quantum particles actually possess real trajectories in
space-time so that the notion of a simultaneous probabili-
ty distribution for position and momentum may be given
a meaning. It is in no way a requirement of a trajectory
interpretation that the distribution function be a delta
function (we have replied to such an objection' ' else-
where' ). In the causal interpretation the uncertainty rela-
tions represent dispersion conditions and do not imply any
inherent restriction on the simultaneous physical reality of
variables associated with noncommuting operators. In
our view the Wigner function has three aspects: it deter-
mines a generalized transformation between two causal
representations of quantum mechanics, it is a conserved
field which defines a quantum potential in phase space,
and it is involved in the definition of probability. We do
not imply, of course, that one could set up an experiment
to "measure" the distribution function, in either the usual
approach of the causal interpretation or in the Wigner-
Moyal method. Rather, these functions relate to an objec-
tive physical process into which they enter both as physi-

cal field guiding the motion and as density functions, and
the process so described has an existence independent of
any observer.

Our approach puts on a firm theoretical basis the
phase-space plots of the Wigner function' which were
made precisely in order to give a classical-type trajectory
view of quantum phenomena, and can be extended to
underpin those phase-space treatments which employ qua-
drilinear distribution functions in order to define a posi-
tive definite probability function, ' as well as the super-
operator theory of Prigogine et a/. ' In all these ap-
proaches it seems that the same basic identification of the
(X,I') variables as simultaneously existent parameters as-
sociated with real motions subject to action by the quan-
tum potential will remain valid.

The present work complements that of a recent paper o

where we showed, following a suggestion of Guerra and
Marra, ' ho~ to give a canonical phase-space representa-
tion of relativistic quantum mechanics by taking as vari-
ables the density and phase fields.

The derivation of a superoperator version of the spin- —,
'

Feynman-Gell-Mann equation in phase space has been
given elsewhere. The generalization of the present tech-
niques to the relativistic n body -problem treated accord-
ing to the methods of predictive mechanics~~ will be dis-
cussed in a further paper.
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