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Origin of solitons in the "real" world
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In experiments, solitons emerge from arbitrary initial data even when the Hamiltonian perturba-

tions are quite large. In this paper, it is shown explicitly through lowest order that the perturbations

which appear in ion acoustic wave and shallow-channel water-wave experiments do not destroy, but

merely renormalize, their velocity and shape. Comparisons with other perturbation approaches are
made.

I. INTRODUCTION

Solitons, nonlinear wave packets which propagate
without dispersing, are a beautiful phenomenon, and have
been observed experimentally in many different physical
settings including plasmas, glass fibers, and solids. Since
they were first observed by Russel in 1834, they have
been a continual source of fascination for physicists.
Some years ago, Gardner et al. ~ showed that solitons
emerge from arbitrary initial data in a completely calcul-
able way when the underlying equation is the
Korteweg —de Vries equation and the initial data tend to
zero at +op. Shortly thereafter, Zakharov and Fadeev4
showed that the Korteweg —de Vries equation is a com-
pletely integrable, Hamiltonian system and that the spec-
tral transform and its inverse, by which means the
Korteweg —de Vries equation is solved, are canonical
transformations. Similar results have since been obtained
for other special field equations, such as the nonlinear
Schrodinger equation.

In the physical world, none of these integrable field
equations is ever realized exactly (except perhaps at the
microscopic level of elementary particles). Instead, they
must be obtained by making a small parameter expansion.
For example, in the case of ion acoustic plasma waves,
one begins with the two-fiuid equations, ignoring electron
inertia, and arrives at the Korteweg —de Vries equation by
expanding, in the small parameters 5n /n, the pulse densi-

ty divided by the undisturbed plasma density, and T; /T„
the ion temperature divided by the electron temperature.
Similarly, in the case of shallow-channel water waves, one
begins with Euler's equation, along with free-surface
boundary conditions on the upper channel surface. One
arrives at the Korteweg —de Vries equation by expanding,
in the small parameters L /d, the pulse length divided by
the channel height, and d/Ii, the channel height divided

by the pulse height.
The systems of equations froin which the Korteweg —de

Vries equation is derived are Hamiltonian. Continuing
the small-parameter expansion beyond the Korteweg —de
Vries equation, one finds corrected equations which are no
longer completely integrable, but which are still Hamil-
tonian. Moreover, the corrected equations have the same
Poisson bracket as the Korteweg —de Vries equation at
every order.

In experiments both in plasmas and in water chan-
nels, ' it is found that solitons emerge from arbitrary ini-
tial data even when the small parameters are quite
large —as large as 0.3 in the plasma experiments and 0.6 in
the water-channel experiments. The large deviations from
integrability appear to have no adverse effect on the soli-
tons, merely renormalizing their shapes and velocities. By
contrast, non-Hamiltonian, dissipative perturbations lead
to radiation tails and soliton destruction. Hence, the dis-
sipation must be kept quite small in experiments.

Why do solitons emerge from arbitrary initial data in
the "real" world of experiments, where Hamiltonian devi-
ations from the Korteweg —de Vries equation are often
quite large? In order to address this question, we" recent-
ly showed that solitons emerge from arbitrary initial data
to all orders in the small parameter in a completely calcul-
able way. We also discussed evidence which indicates that
with suitable restrictions on the initial data, the perturba-
tion series may actually be convergent when s is suffi-
ciently small. Kodama' has also recently addressed this
question by showing that an infinite series of constants of
the motion can be constructed through the two lowest or-
ders in c.

Our theory, because it was developed to deal with a
large class of perturbations and arbitrarily high orders, is
complicated and does not permit easy comparison with
other perturbation theories, like those developed by Karp-
man and Maslov, ' Kaup and Newell, ' Kodama and
Taniuti, ' Ko and Kuehl, ' and Kodama and Ablowitz. '

The primary purpose of this paper is to demonstrate ex-
plicitly, for perturbations of practical interest, that soliton
solutions exist through lowest order and will emerge from
initial data in a completely calculable way. By explicitly
exhibiting the apparatus of the theory, the underlying
physics behind the demonstration that these results hold
to all orders should become more transparent. A se-
condary purpose of this paper is to compare our theory
with other perturbation theories.

The remainder of the paper is organized as follows: In
Sec. II, the apparatus of the perturbation theory is con-
structed. In Sec. III, we derive single soliton solutions
and compare our results to those of Kodama and
Taniuti. ' In Sec. IV, we discuss solutions whose initial
shapes are proportional to sech (ax). Comparisons are
made with the theory of Karpman and Maslov. ' Section
V contains the conclusions.
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II. PERTURBATION THEORY

H =Ho[u]+Hi [u],
5F a 56
5u ax 5u

(lb)

where 5/5u indicates the usual Frechet, or functional
derivative, and

Both ion acoustic plasma waves and shallow-channel
water waves are described through first order in the small
parameter, which we will designate c, by the Hamiltonian
structure

aa,
aq (k)

aH,
q(k)= =Sk

ap (k)

aHO =0,

p(k)=—

ensure that the perturbation theory yields real values for
p(k) and q(k) at high order. The partial derivatives in

Eq. (6b), with respect to p(k) and q(k), are to be inter-

preted as Frechet derivatives. The zeroth-order system is
clearly integrable since the Hamiltonian depends only on
the canonical momenta. The equations of motion are

Ho[u]= f dx(u +u~/2),

Hi[u]= f dx(au +bu u +cu ) .

(2a)

(2b) q = = —2W2p = —SK
aH, 3/2 3

The coefficients a, b, and c differ in the two cases men-

tioned previously. Using the relation
In order to write u and ultimately Hi[u] as a function

of the canonical variables, we first write "
u, =[u,H], (3) u(x)=u (x)+2 K(x,x), (8)

we find that Eqs. (1) and (2) yield the equations of motion

u, =6uu —u +e(12au u„+Sbu„u
where

+4buu~ +2cu~~ ) ~ (4)
u (x ) = —2K~sech (K~ +q /2)

q (k) = —(1/2i)ln[r (k)/r ( —k)],
2

Pa 2+a~ 9a a '

Using the relationship r (k) =r ( —k)' on the real k axis,
we find that p (k) and q (k) are real on the real k axis and
that p (k) ~ 0 when k & 0. One may show that the Hamil-
tonian structure, when c.=0, is given by *"

Ho ——f dk (8k )p (k) —(4v 2/5)p (6a)

The theory of this paper and our preceding work" can be
extended to deal with more general Poisson brackets than
that of Eq. (lb). We do not do so, since these more gen-
eral brackets do not appear to be necessary in practice.

Our first task is to express the Hamiltonian, Eq. (2), in
terms of the spectral data. Since we will be studying solu-
tions close to a single soliton, we must first establish the
transformation u (x)~[r (k),K,c ], where r (k) is the
continuous spectrum and K and c are the spectral pa-
rameters corresponding to the soliton. The appropri-
ate canonical variables corresponding to the spectral data
are

p (k) = — in[1 r(k)r ( —k)],—2k

is the single-soliton potential and K(x,y) is given by the
solution to the Marchenko equation

K(x,y)+F(x,y)+ f dz K(x,z)F(z,y) =0 . (10)

The kernel F(x,y) is given by the relation

dkF(x,y) = r (k)g (x,k)g (y, k),

where

k —iK t nah( ~K+q /2)
g (x,k) =exp( ikx )— k+i~

(12)

X
K(x,y) = F(x,y)+ f d—z F(x,z)F(z,y) (13)

which can be shown to always converge. " For the exam-
ples considered in this paper, it will be sufficient to use
the approximation

is the left Jost function corresponding to the single-soliton
potential. Equation (10) can be solved for K(x,y) by
making the Neumann expansion

aI' Oa
aq(k) ap(k)

BF BG

ap(k) aq(k)

K (x,y) = F(x,y ), —

so that Eq. (8) becomes

u(x)=u (x)—2 f r(k)g (x,k) .
d ~ dk

dX —~ 2K

Defining

(14)

We evaluate the integrals in Eq. (6) over positive k rather
than over all k, as do Zakharov and Fadeev, in order to

g =x +q ~ /2K~,

Eq. (15) becomes, explicitly,

(16)
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d - dk [k —i»~tanh(»~g) ]
u(g)= —2» sech (» g) —2 f ~

r(k)
~
exp[ —iq(k)+ikq /» ]exp( —2ikg) zdg —~ 2' (k + i»~)

where
~

r(k)
~

=r(k)exp[ —iq(k)] depends only on p(k). Substituting Eq. (17) into Eq. (2b), and using the Fourier-
transform relations listed in the Appendix, we obtain

Hi =( „a+ ',0, b+ „c)» —
~

r(k)
~
exp( i—P)k(k i»—)

CO

Xi[ ",,'a(k +4»~)+ ",,
' b(2k +3»~)—,'c(3k +2»~)]mk csch(~k/» ), (18)

where P =q (k) =kq~/» .
In this work, we will carry out Hamiltonian perturbation theory using the Lie approach that was first invented by

Hori' and Deprit. ' The notation which we will use is due to Dragt. Given any pair of functionals F and 6, we let

:F:6 = [F,G] .

The operator:F: is referred to as a Lie operator. The Lie approach is based on the following two theorems.
(1) The transformation p(k)=exp(:F:)p(k), qg=exp(:F:)q is a symplectic transformation for any functional F.

Hence, the Poisson bracket of Eq. (6b) is preserved.
(2}Given an arbitrary pair of functionals F and 6, it follows that

exp( —:F:)G[exp(:F:)p(k),exp(E:)q(k), exp(X:)p~, exp(:F:)q ]=6[p(k),q(k), pm, q ] . (20)

The goal of Hamiltonian perturbation theory is to make a variable transformation which eliminates all coordinate
dependences in the Hamiltonian through the order to which one is working. The system is then formally integrable
through that order. Explicitly, to lowest order in er (k), we first divide the perturbation Hi into two pieces,

H] ——H)+H(,
~here

(21)

] (
5i2 + l02

b
256

)
7

depends only on the momenta and is independent of the coordinates, and

Hi[p(k), q(k),p, q, ]=—f ~

r(k)
~
exp( iP)k(k ——i» )'

Xi[",,'a(k'+4»')+ „b(2k +3» )+, c(3k2+2»i)]nkcsch(mk/» )

(22)

(23)

H'"—:exp( —e:Fi.)H =Ho+eHi+0(e ), (24)

is coordinate dependent. We now search for a generating
functional Fi which has the property

It follows from Eq. (20) that the desired variable
transformation is given by

p"'(k) =exp(e:Fi.)p(k),

or, through lowest order in s,

[Fi»o]=Hi

Integrating over the unperturbed orbits, we obtain

dk k —i]c
Fi ——f ~

r(k)
~

exp( i/)—
2'7T k+i~

(25)

q"'(k)=exp( :eF)q(k),
p" =exp(e:Fi. )p

q" ' =exp(s X, :)q

Through the order to which we are working, one finds

(&) (1)
&a =&a~ 9a =Ca s (28)

X[—",, a(k'+4»2)+ —„b(2k'+3» )

+ 3'c(3k +2» )]m.k csch(mk/» ) . (26)

since the lowest-order corrections are proportional to
e

~

r(k)
~

. Henceforth, except in certain instances where it
is retained for emphasis, the superscript (1) will be
dropped from» and q . One further finds

r

r(k}=exp( —E Wi..)r'"(k) =r"'(k)+is —[—„a(k +4»~)+ —„b(2k +3»~)

+ —", c(3k +2» )]nk csch(~kl» )exp( ikq~/»~) . —(29)
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Substitution of Eq. (29) into Eq. (17) y1elds

tt ' "(("')=u (g). [Equivalently, we can obtain u" ' direct-

ly by using the relationship u" =exp( —:F:)u, as

described in Ref. 11].
%e now obtain the time variation of the canonical vari-

ables and from that

r'"(k) =
~

r'"(k)
~
exp[ iq—"(k)]

{1)Pa =—

aH("
aq")(k)

(1)
(1)(k) 'BH

ap")(k)
aII'"
gq

(1)

g("=g=x+q /2)r

Using these results in Eq. (17) yields the time variation of
u'"(g'") =u (g). From Eq. (24), it follows that

(30)

so that

It immediately follows that

r" )(k, t) =r"'(k, O)exp( Sik—'t),

g(t)=g(0) —4~ [1—e~ ( —,",a+ ",, b+—,'c)]t—.

In the remainder of this paper, we will be primarily
concerned with two special solutions. In the first, we set
r("(k)=0. This choice leads to solitary waves and allows
us to compare our theory to that of Kodama and
Taniuti. ' In the second, we set r(k)=0 initially. This
choice corresponds to setting u(g)= —2a. sech (a g) ini-
tially and allows us to compare our theory to that of
Karpman and Maslov. '

III. SOLITARY WAVE SOLUTION

From Eq. (32), it immediately follows that if r("(k,0)=0, then r("(k, t) =0 for all time. It is interesting to note that
r(k) obtained from Eq. (29) is no longer legitimate spectral data in the sense of Fadeev ' and Deift and Trubowitz.
Substituting r (k) into Eq. (17), we obtain

[k —ia tanh()~ g)]2
tt (()= 2)r—sech (~ g)+is J mk csch(nk/a )exp( 2ikg)—

d —~ 2nk

X[—„a(k +4)t~)+» b(2k +3~~)+ —", c(3k +Zx~)] . (33)

The quantity q(k) does not appear in Eq. (33); the only time dependence in Eq. (33) is through the dependence of g on

q~. Hence, Eq. (33) represents a solitary wave solution.
Using the integrals in the appendix to explicitly evaluate Eq. (33), we obtain

u(g)= —2)r [I+a)1,( —', a+ —'„'b+ —,c)]sech (z g') —sa. (
—5'a+» b ——,'c))( (sech ()( g)tanh()c g)

—2ev (
—„o+» b+ —,'c)sech (~ g)tanh(v~g)+m (4a +16b+60c)sech ()( g), (34)

where we have integrated ouer the pole at k=0. While u (g)~0 as g—+ ao in Eq. (34), the explicit appearance of the fac-
tor )t~g makes this result nonuniform. We may render Eq. (34) uniform by replacing it with the equivalent expression
through O(s),

u (g) = —2~~[ 1 +)1~(—,a +—„b+—', c)]sech I ~ [1—e~~( —,a + „' b ——,c)](+8—]

+a~~(4a +16b +60c)sech I)c~[1—e)(~( —,
' a + —,", ——'

, c)](+8), (3S)

where

8= —e)( ( —,", a + ', b + —,
' c) . —

If we had integrated under the pole at k=O, instead of
over, we would still have obtained Eq. (3S). The quantity
9 would simply have been reversed in sign. Since it rnere-

l

ly represents a shift in the origin of the x axis, it may be
safely dropped, which we will do henceforth.

In order to compare our result to the predictions of the
theory of Kodama and Taniuti, ' we make the transfor-
mation

x=x [1—ca ( —',a+ ,", b ——,c)] . —



33 ORIGIN OF SOLITONS IN THE "REAL" %'ORLD 4371

Through lowest order in s, Eq. (35}becomes

u (g) = —2K [1+SK (4a +8b +20c) ]sech (Kg)

+SK (4a +16b+60c)sech (Kg) . (37)

From Eq. (32), we further find

((t)=x —4K (1—SsK c)t, (38)

where we have set q~ =0 at t=0.
Reduced to its bare essentials, the approach of Kodama

and Taniuti consists of trying to solve the perturbed equa-
tions with the following ansatz: We may define the de-
gree of any term as [(d —1)/2]+p, where d is the total
number of derivatives and p is the number of factors. All
the perturbations in Eq. (4) are of degree 3. We next as-
sume that any term of degree J+ 2 is multiplied by e .
This last assumption is not really necessary, but appears
to always be fulfilled in real, physical systems. We
now substitute into the perturbed equation the assumed

OITIl

j=O

N N

Q SBt sech~i Kx+ g e 1' t
l=j m=0

where N is the maximum order to which we wish to carry
out the perturbation theory. Kodama and Taniuti showed
that it is always possible to satisfy the perturbed equation
through order N by an appropriate choice of the pjt and

y~, as long as all terms in the perturbed equation are of
integral degree. For the case we are considering here,
N= 1, and the ansatz becomes

u =( —2K +spoi)sech (Kx —4K t+cyit)

+epiisech (Kx —4K t + s7'it) . (40)

After straightforward but tedious algebra, one can verify
that this ansatz yields Eq. (37). The connection of this
ansatz with Hamiltonian perturbations is not altogether
clear. Dissipative perturbations like c.u and c.u are clear-
ly excluded since they are not of integral degree. It ap-
pears that the systems treatable by this ansatz may all be
Hamiltonian systems in the generalized sense of Koda-
ma, but this result remains to be demonstrated.

The I.ie approach appears to require somewhat more
algebra than the approach of Kodama and Taniuti, but it
has the advantage that it allows us to explicitly relate the
soliton shape and velocity to the initial data. To lowest
order in e

~
r(k) ~, any initial choice of r(k) will lead to a

soliton shape and velocity given by Eqs. (32) and (35).
This point will become more clear in the next section.

In the original spectral space [r (k),K,q ], the effect of
the perturbation is to generate a radiation cloud which
travels along with the soliton, renormalizing its velocity
and shape. Analogies can be made with the radiation
cloud in quantum electrodynamics or the Debye cloud in
plasma physics. In the former case, the analogy is good in
the sense that the radiation cloud is an integral part of the
electron or soliton to which it is attached. It is a bad
analogy in the sense that the renormalization is finite in
the case of solitons, but infinite in the case of the elec-
trons. In the case of Debye clouds, the situation is re-
versed since Debye clouds lead to a finite renormalization
of the electron potential through screening by positive
ions, but there is a clear physical distinction between the
electron and the Debye cloud which screens it.

IV. SOLUTION WITH ARBITRARY INITIAL RADIATION

From Eqs. (29) and (32), it immediately follows that

r(k, t) =r(k, O)exp( Sik t)+i s— —[—,', a(k +4K~)+ —",, b (2k +3K~)+ —', c(3k +2K~}]

X17k csch(77k /K ) I exp[ ikq (t)/K ]——exp( Sik t) ]i, — (41)

where for convenience we have set q (0)=0. We then find, by substitution into Eq. (17),

u (g) = —2K [1+SK (4a +Sb +20c)]sech (Kg}+SK (4a +16b +20a)sech (Kg)

—2 exp[ —8ik t SikK [1——SK ( —„a+»b+ —,c)]t] exp( 2ikg)—dg -~ 2~ (k+iK )

k + lK~
X r(k, O) —ie

k —isa
n s hc(cnk/ )K[ —,', a(k +4K )+»b(2k +3K )+ —,c(3k +2K~)]

(42)
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where we recall from Eq. (36) that

~=a. [1—s ( —,'a + ,",—b——,'c)] .

Equation (42) consists of the solitary wave which we

found in the preceding section, along with a radiative con-

tribution which phase mixes and ultimately disappears as

t~ao, leaving only the solitary waves. Equation (42) is

sufficient to demonstrate through lowest order in
~

r (k)
~

and s that a solitary wave will emerge from any initial
data whose spectral transform contains a single ~~ and q .
In Ref. 11, this result is extended to arbitrarily high order
in s and

~
r(k)

~

and to arbitrary initial data which can
contain any number of solitons.

If we set r(k, O) =0, then at t=O

which ultimately vanishes. Karpman and Maslov' have
extensively considered the evolution of initial data given

by Eq. (43) under the influence of a variety of perturba-
tions. The bulk of their attention has been devoted to dis-
sipative perturbations, and they have shown that these
perturbations lead to radiation tails and soliton destruc-
tion. However, their approach applies equally well to the
Hamiltonian perturbations considered in this paper.
While in this paper we compare our results to those of
Karpman and Maslov, we note that Kaup and Newell'
independently obtained results equivalent to those of
Karpman and Maslov, and our results could be just as
well compared to those of Kaup and Newell.

%'riting quite generally

u = —2a~sech (~~/) . (43) u, =6uu„—u +eR [u], (44)

At succeeding times, Eq. (42) implies that u breaks up
into the solitary wave solution and a radiative correction

Karpman and Maslov derive the relations for the case
u (x,0)=u = —2a. sech (~~),

i~= ——f d(R [u ]sech'(a. g), (45a)

= —8x + f dg R [u~]sech (I~~g)[x. g+ —,
' sinh(2a. g)],

2K~

7f 00 [k + ia tanh( lr g) ]r (k) = —'8ik r(k) — f dg R [u~] exp(2ikg)exp( ikq~—/s~) .
2k (k —ix )'

(45c)

When comparing Eq. (45c) to Karpman and Maslov s work, it should be recalled that they use right Jost functions, while
we use left Jost functions, so that their defmition of r (k) differs from ours.

In order to show the equivalence of Eq. (45) with our earlier results, we first note R [u]=(B/Bg)5H~[u]/5u. It fol-
lows, then, that

5Hi[u ]
8a-2 —~ dg 5u

In similar fashion,

dH, [u ]
dg =0.

8~'
(46)

5H, [u ] 5u 5H, [u ] BH,
+ 8~ = — dg g tanh(~ g) =E f dg = e

2'~ 5u — 5p 5u Bp

Finally, to obtain Eq. (45c), we work backwards, starting from the expressions

[k ik~ tanh(a~—g)]
5u = —2 r(k)

2 exp( 2ikg)exp(ikq—/x )
d ~ 27r (k+is. )

and

r'(k) + 8ik r ( k) =a[r (k),H i ]
5H)[u ]f dg [r(k),5u]

(47)

(48)

5H i [u~ ] d [k + i~~tanh(a~/) ]
dg exp(2ikg)exp( ikq /~ )—

2k —~ 5u d (k —ix }2
(49)

Integrating by parts, we obtain Eq. (45c). Additionally,
Karpman and Maslov have shown that the amplitude of
the radiation tails produced by the perturbations is pro-
portional to

q =
4 f dgR [u~jtanh (s~g) . (50)

By analogy with Eq. (46), one readily obtains q=O for
Hamiltonian perturbations, indicating that no radiation
tails are produced, consistent with this paper*s result.

The perturbation approach of Karpman and Maslov
has the advantage over ours that it allows one to treat
both dissipative and Hamiltonian perturbations, rather
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than just the latter. Unfortunately, their approach tends

to obscure the very important qualitative distinction be-

tween the two sorts of perturbations. Additionally, it is

very difficult to extend their approach to higher order in

~

r(k) ~, or even to deal with more general pulses than
those which initially have the form u . In particular, it is

very difficult to extract the solitary wave solutions which

we found in the preceding section. Using the Hamiltoni-
an approach, it is possible to treat the solitary wave solu-

tions and the solutions for which u =u at t=O in a uni-

fied fashion. For Hamiltonian perturbations, the Hamil-

tonian approach is thus simpler to use, particularly at
high order, and more revealing.

V. CONCLUSIONS

In experimental observations of ion acoustic plasma
waves or shallow-channel water waves, it is observed that
solitons emerge from initial data even when the Hamil-
tonian deviations from the Korteweg —de Vries equation
are quite large, although their velocities and shapes can be
substantially changed. By contrast, only a relatively small
amount of dissipation is needed to prevent the emergence
of solitons.

To explain this result in a qualitative fashion, we" have
shown how to construct a Hamiltonian perturbation
theory for a large class of possible perturbations. We then
demonstrated that solitons emerge to all orders in the
small parameters. In this paper, we explicitly apply this
approach to the lowest order perturbations which appear

in ion acoustic plasma-wave and shallow-channel water-
wave systems. The solitary wave solution is obtained and
it is shown that for initial data close to this solitary wave,
the solitary wave will always emerge from the initial data.

Comparisons are made to the perturbation approaches
of Kodama and Taniuti, ' which can be used to obtain the
solitary wave solution, and the approach of Karpman and
Maslov, ' which is used to study pulses for which u =u
at I;=0. The approach of Kodarna and Taniuti' is less
algebraically complex but does not allow one to relate the
solitary wave solution to the initial data. The approach of
Karpman and Maslov' is more algebraically complex
than the Hainiltonian approach and less revealing. It is,
however, not restricted to systems which are Hamiltonian.

Much work remains to be done —experimentally, com-
putationally, and theoretically —before a full quantitative
understanding of how solitons emerge from arbitrary ini-
tial data in the "real" world of experiments is achieved.
This work represents a step along that path.
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APPENDIX

In obtaining Eq. (18) from Eq. (17), we used the relations

sech j g tanh ~ exp —2i
in.2" ' k'

+ (i —1) csch(n. k/a. ),
K 2J.

(A 1)
00 ~z'Jf d(sech J(ttf)exp( 2ikg)= — g +(i —1) csch(mk/ic),

CO k (2j —1)!

which may be obtained from the basic integral

f dg tanh(tcf )exp( 2ikg) =—— csch(n k/tt) (A2)

by repeated integration by parts. Equation (A2) can be found by using contour integration.
In obtaining Eq. (34) from Eq. (33), we used the basis integrals

f dk [k —iztanh(tcg)] exp( 2ikg) =itt[1+—tanh(ting) —(1+2tt()sech (tcg)],
(k +z)

dk csch m.k ~ k —i~tanh x exp —2ik =ix 1+tanh x —sech ~ ——', sech ~ tanh ~

In evaluating the integrals in Eq. (A3}, we integrated over the poles at k =0.
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