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The way in which surface tension acts as a singular perturbation to destroy the continuous family

of needle-crystal solutions of the steady-state growth equations is analyzed in detail for two local

models of solidification. All calculations are performed in the limit of small surface tension or,
equivalently, small velocity. The basic mathematical ideas are introduced in connection with a

quasilinear, isotropic version of the geometrical model of Brower et al. , in which case the continu-

ous family of solutions disappears completely. The formalism is then applied to a simplified

boundary-layer model with an anisotropic kinetic attachment coefficient. In the latter case, the sol-

vability condition for the existence of needle crystals can be satisfied whenever the coefficient of an-

isotropy is arbitrarily small but nonzero.

I. INTRODUCTION

There is growing evidence that pattern selection in local
models of dendritic solidification is closely connected
with the existence of so-called "needle-crystal" solutions
of the steady-state equations of motion. In both the
geometrical'2 and boundary-layer ' models that have
been introduced recently, as well as in more realistic non-
local models of solidification with diffusion control,
there exists a continuous family of "Ivantsov" needle
crystals when surface tension is omitted. The addition of
surface tension, however, is a singular perturbation of
these systems which, at least in the local versions —that is,
the geometrical and boundary-layer models —destroys the
family of solutions and opens the possibility that sharp
selection of growth rates, tip radii, etc. , occurs via a solva-
bility condition. It seems possible that a similar
phenomenon occurs in the fully nonlocal problem.

The purpose of the present paper is to examine in some
detail the breakdown of the Ivantsov solutions in both of
the local models. The way in which this breakdown
occurs provides some interesting clues about the roles
played by surface tension and crystalline anisotropy in the
dendrite theory. Moreover, this singular perturbation
problem is of mathematical interest in its own right. As
we shall see, the method of solution proposed here seems
reasonable but is not rigorous or even systematic. It can,
however, be tested by direct numerical computations; and
the results of such tests make it plausible that the analytic
approximation captures the essential features of the
relevant phenomena. Indeed, as this paper is being writ-
ten, it appears that there may be important new progress
both in understanding the inathematical nature of the
problem as posed here and in showing that the basic
features of this model problem also appear in the more
realistic systems. " This paper has therefore been or-
ganized to serve as a starting point for study of these later
developments.

%'e shall begin in Sec. II by looking at the simplest non-
trivial version of the geometrical model in order to
describe the mathematical strategy with a minimum of

unnecessary complication. That strategy will be outlined
in Sec. III. In Sec. IV we shall apply this method to a
minimal version of the boundary-layer model, and shall
see there how crystalline anisotropy may play an essential
role in the selection of needle-crystal solutions. Some
mathematical and computational details pertaining to
both models are relegated to an appendix.

u„(K,d EC /ds, . . . ) = v cos8, (2.1)

so that the interface is moving at constant velocity v,

without change in its shape, in a fixed direction. A needle
crystal, by definition, is a solution of (2.1) that has the
general form shown in Fig. 1 in which

LiQUID

FIG. 1. Geometry of the needle crystal.

II. THE QUASILINEAR GEOMETRICAL MODEL

In all of the following, we shall restrict our attention to
two-dimensional local models in which a moving one-
dimensional interface is described by specifying its curva-
ture K =t)8/t)s as a function of arc length s. The
relevant geometry is illustrated in Fig. 1. The basic as-
sumption of the geometrical models' is that u„, the nor-
mal velocity of the interface, is a function only of E and
its even derivatives with respect to s. The steady-state
condition is simply
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K~O, 8~+m/2 as s~+ao . (2.2)

The analog of the Ivantsov limit in the geometrical
model occurs when we set v„ to be a function of K alone.
If (2.1) is piecewise invertible for K as a function of 8,
then K(8)=d8/ds is a first-order ordinary differential
equation which generally is solvable for 8 as a function of
s. We may further expect that these solutions will satisfy
the needle-crystal conditions {2.2) for some continuous
range of values of the parameter U Fo. r example, the sim-

plest possible choice is U„=K, for which it turns out that

8=cos '(sechus), (2.3)

a relation which satisfies (2.2) for all v. The family of
Ivantsov solutions is conventionally characterized by the
relation between U and the tip radius 8 =K '(8=0),
which in this case is trivially Ru =1.

The above solutions are all strongly unstable. In fact,
the model as it stands is not even dynamically well de-
fined because the amplification rate of deformations is un-

bounded at short wavelengths. In order to produce a
model whose time dependence is meaningful, it is neces-
sary to add a term which mimics the effect of surface ten-
sion and stabilizes the system at short wavelengths, The
easiest way to do this is to write

2d Kv„=K+y-
GB

{2.4)

where y plays the role of a capillary length. Equation
(2.4) defines what might be called a quasilinear geometri-
cal model; the right-hand side is linear in K. This model
does not actually produce dendrites, but its dynamical
behavior is well defined and quite interesting in some
respects.

Our aim now is to see what effect the second derivative
in (2.4) has on the needle-crystal solutions (2.3). To do
this, it is convenient first to rewrite the steady-state equa-
tion (2.1) in the form

K —cos8—:YKi (2.7)

point at 8= n—/2, x =A, =O; similarly, only one trajectory
enters the reflected fixed point at 8=+@./2. For a needle
crystal to exist, these two pieces must belong to a single
trajectory which joins the fixed points and, by symmetry,
passes through some point on the a axis with 8=X=0.
There is no special reason for this to happen. In general,
the trajectories entering or leaving the fixed points, even if
well approximated by some finite number of terms of the
above series in powers of v, need not reach 8=0—the tip
of the needle —with A, =de. /dg=O. Our goal in what fol-
lows is to compute A, at 8=0 explicitly and to discover
under what conditions it might vanish.

As we shall see immediately, the mathematical problem
posed above is highly nontrivial. To make some progress
analytically, we shall look only at small values of v; that
is, we shall look in the neighborhood of the known solu-
tion of (2.6), ~0(8) =cos8 at v=O. We then shall consider
solutions of (2.6) for nonzero v that satisfy the needle-
crystal conditions (2.1) for 8~+ir/2, and shall examine
their behavior near 8=0. This strategy is based on the as-
sumption that, if v is sufficiently small, the difference be-
tween K and ao also will be small in the interval
0(8 (ir/2 and may be computable by a linear approxi-
mation. For arbitrary v, the continuation of this solution
to negative 8 may not remain small or even well defined,
but the latter behavior need not invalidate an approxima-
tion in the region of interest. The trouble with this pro-
cedure turns out to be that A(8=0) vanishes more rapidly
than any finite power of v. Indeed, a systematic expan-
sion in powers of v must necessarily recover just the
asymptotic series described above for which A,(0) vanishes
identically term by term. As a result, any useful scheme
of approximation must go beyond a simple series in
powers of the small parameter v.

To examine this situation in greater detail, define

Kv= cosL9 —v

where v=(yu), K =u~, and /=us. Equivalently,

v 8 K
x =cos8 ——a

d6I

(2.5)

(2.6)

and write (2.6) in the form

K) 4fg )

2
—»tan8 + ~

[1+v(1—3cos 8)]a.,d0 ~ cos 8

(1—2cos 8)+..$~(~, ), (2.8)
cos6I

The latter form, in which g has been replaced by 8 as the
independent variable by using a. =18/gg, is very useful
but can produce spurious difficulties unless a. is every-
where non-negative.

Equations (2.5) and (2.6) can be used to illustrate some
points that have been made in previous papers. ' If we
iterate the right-hand side of (2.6), we generate a series ex-
pansion for x in powers of v and cos8. Each term in this
series is consistent with the needle-crystal conditions (2.2),
and the series appears to produce an accurate estimate for
~ especially far down the needle where cosO is small.
However, we know that this series can be at best asymp-
totic. To see this, write (2.5) as a set of three coupled
equations for a g-dependent trajectory in the space of vari-
ables 8, ~=d8/d(, and A, =de/dg. As has been noted
previously, only one trajectory emerges from the fixed

where. V(vi) is a nonlinear term of orders v zi and v a.
&

containing at most two differentiations of these quantities
with respect to 8. The structure of (2.8) suggests that
each differentiation with respect to 8 produces a factor
1/v v. We shall see this explicitly in what follows. Thus,
a systematic approximation for (2.8) might involve drop-
ping -V and the term proportional to v in square brackets
on the left-hand side, or perhaps treating these terms per-
turbatively. The term containing vd~&/dO, which is for-
mally of order v v, turns out to be essential. In Sec. III
we shall examine the consequences of the above approxi-
mation. It will be useful to describe the calculation in
general terms so that the technique may be applied to the
boundary-layer model in Sec. IV without repetitive ex-
planations.
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III. APPROXIMATION SCHEME

The general structure of (2.8), with or without the terms
to be omitted, is

K) dK]
v +vp(8) +q(8)~, =r(8) .

d8 d0
(3.1)

«'i —rp(8)/qo(8), 8-+m/2 (3.2)

where ro and qp are the values of r and q at v=O. Final-
ly, the problem that we pose for ourselves is to compute
A. =de/dg, or simply d~/d8, at 8=0.

For sufficiently small v, (3.1) can be solved by a
Wentzel-Kramers-Brillouin (WKB) approximation. The
homogeneous solutions are

The range of 8 is [O, m. /2]. Boundary conditions are to be
imposed only at 8=@/2. These are the needle-crystal
conditions (2.2) which require that z and
=1«/dg=«d«/d8 vanish as g~ oo, 8~m/2 .If .we are
working only to first order in «&, then this condition re-
quires that «i and ~pd«, /d8 vanish at ir/2, where «o
denotes the Ivantsov solution; that is, «'o ——cos8 for the
geometrical model. Another way of stating this is that we
want «i to be consistent near m/2 with the asymptotic ex-
pansion of ~ in powers of v and cos8. To lowest order in

v, this means

horn( 8) horn( y ) (3.7)

where the %ronskian 8'is
horn

dK+

dP

horn
horn
+ (3.&)

The lower limit of integration remains to be chosen. Be-
cause both of the homogeneous solutions ~+' (8) which
appear in (3.7) are inconsistent with the needle-crystal
conditions, the only possible choice for this lower limit is
ir/2. Using (3.3), we find

2iIY(8)= exp —f p dt}} (3.9)

and

~/2 ro(({})«)(8)=- dP
[qo(8)qo(0)]'"

8
Xexp ——,

' f p, dy'

to compute a particular solution of (3.1) by means of the
formula

«~i'"(8) =— dP ' ~+ (8)«"' (P)
'

ho

W'($)

8
I~+' (8}=

&&4 exp + ~ P(8) —, f pp(P—)dP (3.3) X sin I ( I/i/v)[t((8) —g(P)] ] . (3.10)

where

i((8)= f qo ($)dQ, (3.4)

To check that (3.10) does satisfy the asymptotic condition
(3.2), integrate (3.10) twice by parts, integrating the sine as
if to obtain a series in growing powers of v. The result is

and we have neglected terms of order v v or smaller in the
exponent and in the prefactor. These solutions should be
accurate as long as

ro(8)
«i(8) = +vM(8)+

qo 8
(3.11)

1 dqo qo

' 1/2

(3.5)

for all 8 in [O,m/2].
For the quasilinear geometrical model, qo

——(cos8)
and (3.5) is satisfied for v g&1. Moreover, P(8) in (3.4) is
equal to the unperturbed dimensionless arc length g ob-
tained from «p=d8/dg=cos8. Using pp= —2tan8, we
fmd

where M is a function of 8 which is of no special interest
except for the fact that it exists and is well behaved near
8= ir/2.

Our goal is to calculate d«. /d8 at 8=0, which we
denote by the symbol x'(0). Note that the symmetry of
the system requires that q and r be even functions of 8
and that p be odd. Thus

~n rp(8)
«'(0) = ——,

' [qp(0)]' f d8—m'/2 [q (8))i~~

1 i 1+sin8«~' (8)=, 2 exp + ln
(cos8)i~2 v' v cos8

=(cosh(}'~ exp + . (3.6)

Xexp —,
' f pdy

P(8)X cos (3.12)

For small v, these are rapidly oscillating functions whose
amplitudes diverge as 8~@'/2, gazoo. Equation (3.6) is
an analytic statement of the fact that only one trajectory
in O, ~,k space enters the fixed point at 8=m. /2, ~=A. =O,
and all other trajectories spiral out and away from that
point. It also justifies our expectation that differentia-
tions in (2.8) produce factors of I/V v.

The next step is to use the homogeneous solutions (3.3)

Equation (3.12) is the principal result whose validity and
implications are to be explored in the remainder of this
paper.

Remember that the condition for existence of a needle
crystal is that v (0) vanish. It is interesting, and possibly
useful for future analysis, to note that (3.12) with «'(0) =0
can be interpreted as a solvability condition for the (for-
mally} linear inhomogeneous equation (3.1). To see this,
consider (3.1) in the whole interval [—ir/2, +m/2] and
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look for solutions in the space of symmetric functions
Ki(8). The function

K,
' (8)= exp ——, p dp cos (3.13)

is the WKB approximation for the solution of &K=0,
where W denotes the linear operator on the left-hand side
of (3.1), and

2i 1
'

)
e '

g(8)
i~4 exp i p df cos

V QO

(3.14)

K'(0)= ——,
' f dg(sech ~ g)(2 sech g —l)ei~~

5&
exp

v 2 v
(3.16)

where

=1.8906 .
15

(3.17)

The derivation of the second form of (3.16), valid in the
limit v&~ I, is summarized in the Appendix. The impor-
tant point to notice is that (3.16) has an essential singular-
ity at v=O, consistent with the failure of expansions in
powers of v.

A comparison between (3.16) and a direct numerical in-
tegration of the fully nonlinear equation (2.5) confirms the
basic form of (3.16), both the exponential function and the
power of v in the prefactor. The numerically determined
value of 3, however, appears to be about 3.7+0.2, larger
than that given by (3.17) by a factor of about 2. This
comparison was made for values of v in the interval
0.002& v&0.01, across which «'(0) changes by right de-
cades. The validity of the asymptotic evaluation of the
integral in (3.16) was also checked in this interval by

is the solution of the adjoint equation &K=0. Thus, the
solvability condition derived above has the form

K sym (3.15)

which is the usual statement that the inhomogeneous term
r(8) can have no projection onto the null space of W if
(3.1) is to have a solution. One obscure aspect of this in-

terpretation is the definition of the function space; the
divergent functions «"' (8) would not seem to belong to
the space of acceptable needle-crystal solutions. One can
make this difficulty seem less severe by working with the
bounded functions W '~

K; that is, by transforming away
the first derivative in (3.1). But this mathematical point,
among many such points raised in this paper, requires
further scrutiny.

The general character of (3.12) can be seen by evaluat-
ing it for the quasilinear geometrical model where

qo ——(cos8), po ———2 tan8, ro (2 cos 8——1)/cos8—,
1(=g, and cos8=sechg. Then, transforming to g as the
variable of integration, we find

direct numerical integration, thus confirming that these
values of v are small enough to be in the asymptotic re-
gion.

The source of this discrepancy is related to the fact that
the power of v in the prefactor in (3.16), i.e., v ~, is
determined by the highest power of sech/ in the in-

tegrand, which in turn can be traced back to the highest
power of cosP in ro($) in (3.10). (This will be seen expli-
citly in the Appendix, but should be apparent from (3.16)
because there we are computing the high-frequency—
small-v —behavior of a Fourier transform. ) Now think
about a first nonlinear correction to r. That is, consider
using the approximation for «. i given in (3.10) to evaluate.W(Ki) and including the result in r on the right-hand side
of (3.1). The resulting corrections to r will be formally of
relatively high order in v but will contain various powers
of cos8, and the latter will produce inverse powers of v in
the final expression for K'(0). The exponential part of
(3.16) will be unchanged by this procedure, but apparently
the prefactor is not being computed systematically.

This line of analysis will not be pursued further in this
paper. It appears that there may be a much more elegant
and mathematically controlled way of arriving at formu-
las such as (3.16). The interested reader —along with the
author —should be alert for new developments in this class
of problems.

IV. THE MINIMAL BOUNDARY-LAYER MODEL

The boundary-layer model ' has been introduced as an

attempt to include in a local description some physical
features of the real solidification problein that are missing
in the purely geometrical approach. In particular„ the
dynamics of a thermal boundary-layer field defined along
the sohdification front mimic some of the nonlocality and
history dependence associated with a more realistic
thermal diffusion field. The model has had some
successes. Its steady-state solutions, including the para-
bolic needle crystal in the Ivantsov limit, are nearly identi-
cal to those of the full model. The boundary-layer model
does produce time-dependent dendritic patterns whose
growth rates and tip radii are numerically consistent with
solvability conditions for needle crystals with nonvanish-
ing surface tension. At present, however, it is still not
known whether the model produces a physically realistic
picture of dendritic sidebranching.

In order to make the following analysis reasonably
tractable, we shall consider only a minimal version of the
boundary-layer model in which the dimensionless under-
cooling 6 becomes vanishingly small. This is not the
physically most realistic limit of the model, but it retains
most of the features which seem essential for present pur-
poses. (The opposite limit, 5~1, will be discussed else-
where. ) The steady-state equation to be considered is the
same as that of Ref. (3), Eq. (5.17), supplemented by an
anisotropic kinetic attachment coefficient. Specifically,

K=cos 8—vKcos 8 (K+b~cos8)d K d
cosO d8

J

(4.1)
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&—cos 8=—'vK),3 = (4.2)

and rewrite (4.1) in terms of «i. The result is an equation
of the form (3.1) with

where the i~ in Ref. 3 has been replaced by v«. in order to
emphasize the analogy to (2.6). Here, v=dpu/Dh, where

dp is a capillary length proportional to surface tension, D
is the diffusion constant in the liquid, and u is the growth
velocity as before. Note that, as in the geometrical model,
v vanishes in the limit of vanishing surface tension and
velocity T. he quantity b in (4.1) is the 8-dependent ki-
netic coefficient. In the notation of Ref. 4,
b~ =ah (1—cosm8). From here on, we shall specialize
to the case m =4, and write b4 ——8P4cos 8sini8.

The Ivantsov limit of (4.1), «p(8)=cos 8 is a parabola
which has unit radius of curvature at its tip and which
trivially satisfies the needle-crystal conditions (2.2) for all
v. In analogy to (2.7), let

pp /7 27T

I'(2p/7)
(4.12)

8 0.7189
«.'(0) = —

+9 s exp (4.13)

with

8 = —", C( —, )=0.4703 . (4.14)

Both numerical evaluation of the integral in (4.6) and nu-
merical integration of the fully nonlinear differential
equation (4.1) confirm the general form of (4.13). Specifi-
cally, a graph of

As in (3.16), the dominant exponential in (4.9) is in-
dependent of p, but the power of v ' in the prefactor in-
creases with increasing p. For P4 ——0, the leading p is —,,
and

pp(8)= —5tan8+ (cos 8sin 8),gP4 d
cos 8 d8

(4.3)
—2v ln[ —«'(0)] =a —2aM v+

GU
(4.15)

qp(8) =
cos I9

(4.4)

rp(8) = 3 cos8(5 cos2 —4)

8pg d 2 d
cos (cos 8sin 8)

cos 8 d8
(4.5)

Inserting these functions into (3.12), we obtain

«'(0)= ——,
' f dorp(8)(cos8)

X exp(10P&sin 8)e'i"~

where A. = —", + 12P~ and

(4.6)

&(8)= f d& vz2
(4.7)

Notice that, in contrast to the geometrical model (3.16), ib

in (4.7) is not quite the same as the unperturbed arc length

g defined by

g(8)= f dP = f dg (4.8)

(4.9)

a, = f (1—u ) r du= —,v'2/n[I ( —,')] =0.7189. . . ,

(4.10)

p 1

7 2
' (4.11)

The integral on the right-hand side of (4.6) can be evaluat-
ed asymptotically in the limit of small v. Look, for the
moment, at the case P4 ——0, so that the only integrals need-
ed are Fourier transforms of powers of the function
cos8(g). An analysis which is outlined in the Appendix
yields the estimate

f df(cos8)"e'~~ "=C(p)v exp( —a, /V v),

where

versus v v, evaluated for 0.0015 & v &0.01 and extrapolat-
ed to small v v, yields a =0.71+0.02=a, and a value of a
of about unity, consistent with —,", . A value of 8 of about
0.8 fits the integration of (4.1), whereas numerical evalua-
tion of the approximation (4.6) confirms (4.14) in giving a
value of 8 of about 0.5. The latter discrepancy is in the
same sense and of about the same size as that which oc-
curred for the geometrical model.

The idea that the dominant behavior of «'(0) at small v
is determined by the highest power of cos8 in (4.6) pro-
vides some interesting information about the effect of
crystalline anisotropy. When the anisotropy coefficient P4
is nonzero, the dominant 8 dependence in rp(8) comes
from the second term on the right-hand side of (4.5) and
enters with the opposite sign. That is, the leading term in
rp(8) is proportional to —p4cos 8 instead of +cos~8. As
a result, «'(0) must be positive as v approaches zero. At
larger values of v, however, the exponential factor in (4.6)
is no longer oscillating so rapidly, the slower variations in
rp(8) make the dominant contributions, and «'(0) be-
comes negative again. The situation is illustrated in Fig. 2
where ~'(0) is drawn as a function of v for P4 ——0, 0.1, and
0.2. These graphs extend out to v=0. 1, well beyond the
asymptotic regime, and have been obtained by integrating
the fully nonlinear equation (4.1). Equation (4.6) does
seem to remain a qualitatively good approximation as
shown by the dashed curves in the figure.

The important point is that, for P4&0, «.'(0) vanishes at
a finite value of v, indicating the existence of a steady-
state needle crystal. For this particular version of the
model, that is, the minimal boundary-layer model (b,~0)
with the special form of kinetic anisotropy indicated in
(4.1), such steady-state solutions occur at arbitrarily small
but nonzero values of the anisotropy coefficient Pq. How-
ever, the selected value of v=doU/Dh becomes small as
P4 decreases, and it seems highly unlikely that needle crys-
tals with very small U or, equivalently, small do can be
stable. Thus, it seems that the minimum value of P4 re-
quired for dendritic behavior in this model is nonzero and
is determined by a stability requirement.
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1 1iso(ri)=i f drit 2, +i f dro'
( I +~2)1/2 o (2 )1/2

K (0)
0'- and

~——+(2lco)
7T . ] /2

2

' 1/2

—0.4

00

fp(v) =exp — dro
2 v

1 2l 67

(21~)(1+p)/2 exp

2m
exp

v(P —1)/21. (p ) 2mv
(A5)

-08-
0 0.02

I

0.04 0.06
I

O.OS O. IO

Note that, as mentioned previously, the dominant power
of v in the prefactor comes from the largest value of p;
thus, in (3.16),

FIG. 2. ~'(0) as a function of v for the boundary-layer model
with various values of the anisotropy parameter P4. The solid
curves have been computed by numerical integration of the non-
linear differential equation {4.1), and the dashed curves by nu-

merical evaluation of the approximation {4.6). The heavy dots
indicate values of v at which the solvability condition is satisfied
for the corresponding values of P4.

a'(0) = —f7/2(V) . (A6)

00 1 l
Fp(v) d ) 2 (2 —3)/4 exp ~ 0B{7)(I+q )

"- V

(A7)

The same technique works for the integral in (4.9),
which we shall denote by F„(v). We have

APPENDIX: SOME MATHEMATICAL DETAILS
with

fp(v) = f dg(sech()Pe'& (Al)

in the limit v~0. This integration is most conveniently
carried out by transforming to 7)=tan8, where 8 is the
original angular variable that satisfies cos8=sechg. This
technique is slightly more cumbersome than necessary for
the geometrical model, but turns out to be specially suited
for both the boundary-layer model to be considered next
and the fully nonlocal problem. " In terms of 7), we have

00 1 l
fp {v) = d ri „, exp Po(ri), (A2)

(1+71 )''+P' v

where

8 1
TG 9 0 gf O

9 (1 2)//2
~/i ( )= d8' (A3)

Inspection of {A2) and (A3) indicates that we should de-
form the contour of integration so as to pass near 7)=i
and then carry out a steepest-descent calculation in the
neighborhood of that point. (The procedure in this case
requires that the path of steepest-descent pass through the
branch cut »d back o«ag»n) If n=i+~ l~ I

«I
then

Asymptotic estimates for a'(0). To derive the asymptot-
ic relation (3.16) for the geometrical model, we must
evaluate integrals of the form

QB(7))= f d8' = f drt, (1+7)', )'/ . (A8)

as 00

F„(v) =exp — d co
00

1

( 2i~ )
(2P —3)/4

Xexp (2ito), (A9)
7 v

which can be evaluated without further approximation to
obtain the results shown in Eqs. (4.9)—(4.12).

Numerical methods. Numerical integrations of the
nonlinear differential equations (2.5) and (4.1) were car-
ried out with an implicit scheme using 8, ~, and
A, =da/d( as functions of arc length g. Initial conditions
were computed using the asymptotic expansions as close
to 0=m. /2 as possible, and then the equations were in-

tegrated back to 8=0. Because, in practice, one can never
start precisely on the trajectory which enters the fixed
point, there will always be some components of the oscil-
lating homogeneous solutions (3.3) in the function being
computed. The frequency of the oscillation in (3.3) pro-
vides an estimate of the minimum step size dg required to
resolve these oscillations accurately. In addition, the rate
at which the magnitudes of these homogeneous solutions
decay in going toward 0=0 from 8=m. /2 provides an esti-
mate of how accurately one must locate the correct trajec-
tory near m/2 in order to obtain a desired accuracy of the

Again, writing 7)=i+to and integrating along the path of
steepest descent through 7) =i, we find
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solution at 8=0. These estimates were confirmed numeri-

cally (roughly) and were useful for achieving convergence
of the numerical procedure.

Numerical evaluations of the various forms of the sol-
vability formula (3.12), specifically (3.16) and (4.6), were
performed using the trapezoidal rule with uniformly
spaced intervals in P (as if performing a numerical
Fourier transform). Results were extrapolated to
dg/v v~O and tested for convergence in the outer cut-
off.

Note added in proof Th. e connection between singular
perturbations and solvability conditions has been dis-
cussed by Barenblatt and Zel'dovich' ' in the general
context of similarity solutions of partial differential equa-
tions. A recent development along these lines, closely re-
lated to the work described in the present paper, is the
discovery of a solvability condition for pattern selection in

the theory of viscous fingering. An excellent review of
the latter topic has been prepared by Bensimon, Kadanoff,
Liang, Shraixnan, and Tang. ' I am grateful to L. Kan-
danoff for informing me about Refs. 12 and 13 and for
sending me a copy of Ref. 14 prior to publication.
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