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Manifestation of classical chaos in the statistics of quantum energy levels
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We investigate the quantum energy-level sequence of two coupled quartic oscillators. The classi-
cal system is a scaling one and has been shown elsewhere to undergo a transition from regular to ir-
regular motion for increasing coupling strength. The distribution of spacings between adjacent ener-

gy levels P(S) and the h3 statistic indicate a corresponding transition from an uncorrelated spec-
trum where successive levels arrive randomly to a spectrum described by the Gaussian orthogonal
ensemble of random matrices. For P(S) we use Berry and Robnik's semiclassical formulas which

depend on the volumes of regions in phase space filled with chaotic trajectories and the extension of
this ansatz to the h3 statistic. We investigate systematic deviations from this picture due to quan-
tum effects and discuss their universality. We find that P(S) is mainly sensitive to the total irregu-
lar fraction of phase space, whereas b, 3 strongly reflects its partitioning into several parts. For van-

ishing coupling strength, where the system becomes integrable, we find extremely slow convergence
to the semiclassical limit.

I. INTRODUCTION

The phrase "quantum chaos" has by now become very
popular. Much work has been dedicated to the problem
of how the classically well-defined attributes "regular"
and "chaotic" behavior' for bound Hamiltonian systems
are mirrored in their quantum counterparts, where their
definition is less obvious or even meaningless. From the
correspondence principle, however, it is clear that there is
a connection between classical and quantum systems.
Thus there have been several attempts to link certain clas-
sical properties with their quantum counterparts, e.g., via
the motion of wave packets. Several other indicators for
quantum chaos have been proposed, such as correlation
properties of wave functions, ~ apphcability of semiclassi-
cal quantization, or sensitivity of energy levels to pertur-
bations.

While most of these ways try to transfer classical
dynamical concepts into the corresponding quantum sys-
tem, a very fruitful approach to characterize quantal man-
ifestations of regular and chaotic behavior is the inspec-
tion of statistical properties of the quantum energy-level
sequence. In nuclear physics this point of view has a
long tradition, where appropriate random matrix ensem-
bles have been used to describe features of complicated ex-
perimental spectra. ' In particular, several useful statisti-
cal measures have been introduced, the most important
ones being the distribution of energy-1evel spacings
(nearest-neighbor spacings, nns) I'(S) and the bi statis-
tic, measuring short- and long-range correlations of the
spectral sequence, respectively. More recently, these
methods have also been used in the description of highly
complex atomic' and molecular" spectra.

For a regular, ' i.e., classically integrable, system it has
been proved, for the generic case, that in the semiclassical
limit fr~0, successive energy levels arrive randomly, re-
sulting in a Poisson distribution for P(S) 'For generic.

irregular systems it has been conjectured' that spectral
fluctuations are universally reproduced by appropriate
random matrix ensembles, e.g., the Gaussian orthogonal
ensemble (GOE) for systems with time-reversal symmetry,
giving for P(S) a signer distribution. 67 This is con-
firmed by several numerical investigations ' as we]i
as theoretical arguments. A recently published semiclas-
sical thixiry on the hi statistic for both regular and ir-
regular systems agrees with these results, namely Poisson
spectrum and random matrix prediction, respectively.

Recently, special attention has been paid to systems
that classically show a transition between the two limiting
cases of totally regular and chaotic behavior as a parame-
ter is varied, e.g., the coupling strength or energy. '

For intermediate systeins the classical phase space has a
complicated structure, consisting for two degrees of free-
dom of infinitely many distinct regions filled with regular
or irregular trajectories, respectively. ' For more than two
degrees of freedom all irregular regions are connected due
to Arnold diffusion. ' It has been argued by Percival that
in the semiclassical limit a spectrum should consist of reg-
ular and irregular parts that are associated with the classi-
cal regular and irregular regions in phase space. Assum-
ing that regular and irregular regions yield energy-level se-
quences with Poisson and %'igner spacing distributions,
respectively, and that the whole spectrum is generated by
a statistically independent superposition of those se-
quences, Berry and Robnik obtained semiclassical for-
mulas for P(S) that interpolate between the two limiting
distributions.

The most simple ansatz then gives a nns distribution as-
sociated with a classical phase space divided in one irregu-
lar part with I.iouville measure q, ~ and a regular part with
1 —q, ~. By a least-squares fit of this function P(q;S) to a
level spacing histogram for a given spectrum one obtains
a quantum-mechanical value qq for this parameter.
Indeed, numerical calculations have shown that q, l and
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qq are closely related. ' As expected, the quantum
system also exhibits a transitional behavior analogous to
the classical transition that is reflected in spectral fiuctua-
tion properties. ' It is of course possible to use other
(more or less ad hoc} ways of interpolating between regu-
lar and chaotic behavior' in order to parametrize the
smooth transition of P(S}from Poisson to Wigner distri-
bution, but these distributions are not directly amenable to
a classical interpretation.

In the present study we therefore shall use Berry and
Robnik s approach for the description of the nns distribu-
tion P(S}and its extension to the h3 statistic. One of our
aims here is to explain the discrepancies found between

q, ' and qq in view of (nonsemiclassical) quantum effects
and details of the classical phase-space structure. Another
point of investigation is the sensitivity of different scales
of spectral correlation lengths on the underlying classical
motion, i.e., do P(S) and h3 correlate to different classical

properties)
In order to reveal such effects as clearly as possible, it is

advantageous to study systems that classically have scal-
ing properties. This assures, as already emphasized by
Berry and Robnik, that the phase-space structure does
not depend on energy. For such systems the semiclassical
limit A'~0 is equivalent to the high-energy limit E~oo,
thus the convergence to the semiclassical limit can be
studied unambiguously. In this limit, spectral fluctua-
tions are energy independent and many levels can be in-
cluded for the statistical analysis.

In the following we thus shall investigate a system of
two quartic oscillators that are coupled via a quartic term
in the coordinates,

H= —,'(p'+p„2+x +y ) —kx y (1)

The potential energy is a homogeneous function of the
coordinates, implying that apart from scaling the classical
motion is independent of energy. Choosing quartic os-
cillators also avoids the nongeneric properties of harmonic
oscillators. ' Classical calculations for this Hamiltonian,
performed by Meyer 2 show that the chaotic fraction q, &

of phase space increases from zero to one if the coupling
parameter k, Eq. (1), increases from zero to 0.6.

II. NUMERICAL DETAILS

chosen such that the trace of this matrix is minimal. This
choice of co is always possible, because the matrix ele-

ments of the kinetic, viz. , potential, energy are proportion-
al to different powers of co. For small matrix dimensions
we have tested numerically that this procedure yields a
maximum number of converged eigenvalues. By the
method of Givens rotations ' the matrices were trans-
formed to tridiagonal form that was subsequently diago-
nalized by a standard routine. As a criterium for con-
vergence we required level spacings to be accurate within
1%. Like other authors we have found that spectral
properties change very rapidly as soon as this limit is ex-
ceeded

We performed calculations for values of k=0.12, 0.2,
Q.3, Q.4, and Q.6. For k=0.2 (intermediate coupling) a di-
mension of 5476 was used and by comparison with small-
er matrices we considered =2500 eigenvalues to be con-
verged. Each diagonalization required about six hours on
an IBM 3081D computer For all other coupling parame-
ters matrices of dimension 4032 were used [=2.5 h of
CPU (central processor unit) time]. For k=0.6 (strong
coupling) we found only =850 levels to be converged.
For the remaining values of k this number was estimated
accordingly. After having checked that spectral proper-
ties are essentially independent of the symmetry class, we
averaged all statistical measures over the four independent
level sequences to obtain results which are statistically
more significant.

Before performing statistical analysis one has to remove
the secular behavior of the spectral density of the level se-
quence [E„). In general, this unfolding can be done by
using the scaled sequence [8'„=X,„(E„)),where N,„(E)
is the average number of states below energy E. ' In the
case of a classically scaling system with f degrees of free-
dom, where the potential energy is a homogeneous func-
tion of degree s of the coordinates, this can be done easily
by

g Ef/2+fl'

The right-hand side of Eq. (2) gives the semiclassical
behavior of N(E), i.e., the number of cells with volume
(2M) enclosed by the energy shell

To obtain quantum energy levels, we expand H, Eq. (1),
with A'= 1 in a suitable basis set. For a correct statistical
analysis of the level sequence it is important to treat each
symmetry class separately, since the corresponding sub-
matrices are independent. In our case H has C41 symme-
try, leading to four one-dimensional irreducible represen-
tations A&, A2, 8&,82 and one two-dimensional E repre-
sentation. For reasons of consistency we did not consider
the latter one. Using a basis of syxnrnetry-adapted linear
combinations of harmonic-oscillator functions with fre-
quency co, four submatrices have been diagonalized for
each coupling parameter k, Eq. (1) (see Ref. 30 for further
details). All basis functions up to a given zeroth-order en-
ergy were included; the resulting matrices are banded. Be-
cause of the variational principle all eigenvalues of the
truncated matrix are upper bounds to the corresponding
exact energy levels and so the harmonic frequency cu was

H(p» ipfiV» ~ ~Sf)=E

in phase space. We have checked that in our case +=2,
s =4} this procedure essentially gives the same results for
the subsequent statistical analysis as when unfolding by
using cubic spline functions for the smooth behavior of
N(E}.

III. SHORT-RANGE
SPECTRAL CORRELATIONS: P (S)

As outlin& before, for the analysis of the nns distribu-
tion we shall use Berry and Robnik's semiclassical ap-
proach. P(S}for the superposition of X independent lev-
el sequences is then given by 7
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( )
dZ(S)

S

Z(S)= g p;
i=1 i=1

Z;(S)=I dcrP;(o)(cr S—) .

1IpIZ;(S), (3)

P; is the nns distribution of the sequence associated with a
classical phase-space region of Liouville measure p;. We
shall use the simplest form given by

P(q;S)=exp —(1—q)S ——
q S

4

X 1 —q +—
q S—(1—q) R(qS)

2

R (Z) =1 exp—(nZ /4)erfc(~trZ/2),

which is generated by superposing a Poisson sequence,

P(S)=e

and a sequence with signer distribution,

P (S)
~ S s'sil4—
2

(4)
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with relative weights 1 —q and q, respectively. P(q;S),
Eq. (4), for qE[0, 1] smoothly interpolates between the
limiting forms for P(S), Eqs. (5a) and (5b).

Figure 1(a) gives the least-squares-fitted values qq of

the parameter q in P(q;S), Eq. (4), for various level spac-
ing histograms. For each coupling constant k, Eq. (1),
several overlapping energy ranges have been analyzed. In
Fig. 2 the qq values obtained from the highest-energy
range [cf. Fig. 1(a}]are comparel with the classical results
for the chaotic phase-space fraction q,i. First, one notes
that the fitted values qq in Fig. 1(a) depend on energy.
This dependence, however, decreases with increasing de-

gree of irregularity of the system. In particular, for the
smallest nonvanishing coupling parameter k=0.12 the
system does not seem to have settled to a stationary distri-
bution of P(S) within the energy range under considera-
tion. For this value of k the values for qq are all far
apart from the corresponding classical value of q, ~

——0.08.
For the other coupling parameters both values q, ~

and

q, are closer together.
In order to understand the behavior of the weakly irreg-

ular system, i.e., k=0.12, we have studied the limiting
case of vanishing coupling k =0, where the system is se-

parable, hence integrable, and the nns distribution, in the
semiclassical limit, should be given by Eq. (5a), i.e.,
qq

——0. The spectrum can be easily obtained by a one-
dimensional calculation and a subsequent combination of
the levels. Thus far more eigenvalues than in the nonse-

parable case k&0 can be generated. Figure 1(b) shows the
resulting values qq for fitting the distribution P(q;S),
Eq. (4), to level spacing histograms obtained from several

energy ranges. At lower energies, qq is quite large and
there is very slow convergence to the expected limit

qq
——0. For q &0.1 the distribution P(q;S), Eq. (4},

looks very close to a Poisson distribution, but since the
number of levels included per histogram in the corre-
sponding energy range was very large (=2X 10 ), the de-
viations from the semiclassical limit are statistically signi-
ficant. In particular, for small level spacings S we ob-
served deviations from exponential behavior; cf. Ref. 33
for similar observations.

In light of these results we assume that the nearly in-
tegrable system, k=0.12, is still far from the semiclassical
limit within the numerically accessible energy range. This
explains the unexpected large values of qq . A more de
tailed discussion will be given in Sec. V.

We consider now the opposite case of strong coupling,
k =0.6, where the corresponding classical system is total-
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FIG. 1. Fitted values qq . (a) For energy intervals of width
IE=150 for E &675 and ~=125 otherwise. The number of
levels per interval varies from =500 to 1500 (all four nondegen-
erate symmetry classes are included). (b) For the integrable sys-
tem, Eq. (1), with k =0; a1so see text.

FIG. 2. Classical irregular fraction q, ~
with respect to the

coupling parameter k, Eq. (1), taken from Ref. 29 (solid line)
and quantal values qq for the highest converged energy range,
cf. Fig. 1(a).
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FIG. 3. {a) Level spacing histogram for k =0.2 and energy
range 700 &E & 1000, containing =3600 levels {four symmetry
classes). Solid line, I' (qq; S), qqm =0.50; dotted line, I' {q,~,

' S),
q, ~

——0.64; dashed line, P{S),p, =0.27, p2
——p3

——0.185; also see
text. {b) Same as (a) with k =0.3, 300 &E & 700, =4000 levels,

qqm 0.71, and q, ~
——0.8 1; also see text.

ly chaotic, i.e., no regular trajectories could be detected
numerically. The fitted values qzm for all energy ranges
of the quantal spectrum are very close to one

(qq = 1.09, . . . , 1.02). These unphysically large values

are due to statistical fluctuations; a X analysis shows ex-
cellent agreement with the Wigner distribution, Eq. (5b).
The system thus, for P(S), exhibits the spectral behavior
of the GOE. In contrast to the weak-coupling ease, the
nns distribution here appears to be translational invariant
with respect to energy, i.e., P (S) almost immediately set-
tles to its limiting form.

So far we have discussed the limiting cases of nearly in-

tegrable and totally chaotic systems. Figure 2 shows the
values qq of the highest-energy range [cf. Fig. 1(a)j and
the classical irregular fractions q, i as functions of the
coupling strength k. In the transition region of inter-
mediate coupling the quantal values qq follow the trend
of the classical curve q, , ( k ), but are generally below it.
As already noted and conjectured by other authors i '

this is most probably due to the details of the classical
phase-space structure. For two-dimensional systems the
irregular part of phase space consists of infinitely many
irregular regions. ' However, only those of significant
measure have to be considered; levels deriving from the
remaining regions having negligible spectral density.
For P (S), then, one has to superpose a regular and several

independent irregular sequences. For a given total irregu-
lar fraction q the resulting nns distribution tends to a
Poisson spectrum as the number of irregular sequences in-

creases. Thus it is obvious that fitting the simple distribu-
tion P(q;S}Eq. (4), will give values qq & q,~.

In order to study this in more detail, Fig. 3(a) shows a
level spacing histogram for k =0.2. For this system, clas-

sical computations have shown the irregular phase-space
region to consist mainly of three parts with Liouville mea-
sures p &

——0.27 and pz
——p3

——0.185, adding up to a total ir-
regular fraction q, i ——0.64. Also shown are the nns dis-
tributions P(qqm', S) Eq. (4), with the fitted value

qq =0.50 (solid line); P(q, ',S), q, ' =0.64 (dotted line); as
well as P (S)=P(pi, pi,pi', ) =P(S) generated by Eq. (3}
when using the classically detected three irregular regions
(dashed line). Obviously, the level spacing histogram is
not described by P(q,~,S). For S & 0.5 (in units of mean
level spacing) the histogram is very well approximated by
P(S), but for smaller S there are substantial deviations.
The fitted distribution P(qq;S ) lies between the classical
curves, trying to match small- and large- S behavior.
Similar observations have been made by other authors.

Figure 3(b) shows an analogous plot for k=0.3. Classi-
cal computations for this system gave a total irregular
fraction q, i ——0.8 1, but did not reveal a clearly visible
structure of the chaotic region in phase space. For
reasons of simplicity we thus assumed the same relative
partitioning of the irregular fraction as for k =0.2. The
curves P(qq-;S), qq =0.71, and P(q, i,S) are more simi-

lar in shape than in Fig. 3(a). P(S) completely fails to ac-
count for the small-S part of the histogram, although for
larger level spacings S it reproduces quite well the ob-
served behavior; small systematic deviations may be due
to the above assumption of the Liouville measures enter-

ing P(S).
There is the general trend that P(qq,'S) and P(q, ~',S)

tend to come closer for increasing irregular fraction q, '
(cf. Fig. 2). This can be understood by the observation
that for increasing coupling strength k the frontiers be-
tween distinct irregular regions form an ever more com-
plicated interwoven structure. Thus the effective coarse
graining that is imposed on quantal calculations by the fi-
nite value of fi washes out such fine-scale structures. So
effectively will the quantum system "see" only the gross
features of phase space, and only in the semiclassical limit
as R-O, increasingly finer details will manifest them-
selves in the quantum behavior. Equivalently, this may be
characterized by quantum tunneling through dynamical
barriers which separate the distinct classical irregular re-
gions.

From these arguments one can conclude that the simple
nns distribution P(q;S), Eq. (4), is a suitable ineans to
detect quantal manifestations of classical chaos, although
there is no exact correspondence between the classical ir-
regular fraction q, ' and the fitted quantal value qq . To
summarize briefly, as is for q, &

in the classical case, the
behavior of the parameter qq indicates a smooth transi-
tion from regularity to irregularity for the quantal system.
Deviations between the classical and quantal parameters
q, ~

and q q, respective1y, for srna11 values of q, ~
can be

explained by the slow convergence of the regular spectrum
to the semiclassical limit. For larger values of q,1, devia-
tions are due to the partitioning of the irregular phase-
space fraction, although this influence is reduced by quan-
tum coarse graining. There remains the question of why
level spacing histograms for larger spacings are better ap-
proximated by semiclassical predictions than for smaller
spacings. This problem will be discussed in Sec. V.



4338 ZIMMERMANN, MEYER, KOPPEL, AND CEDERBAUM 33

IV. LONG-RANGE SPECTRAL CORRELATIONS:
STATISTIC

Besides the distribution of level spacings, the b, 3 statis-
tic is another well-established measure for spectral fluc-
tuation properties. Given the staircase N(8') (for the un-

folded level sequence), i.e., the number of levels below en-

ergy 8', it is defined as

E+I
b, &(8',L)=—min& s f [N(8")—A8"—8] d8"

L

b3(8';L) is the least-squares deviation of E(8') from the
best straight line fitting it over an interval [8', 8'+L].
Thus it measures spectral long-range correlations over dis-
tances L. b, & is also referred to as spectral rigidity or
stiffness. The ensemble average b3(L), i.e., bs(8';L)
averaged over a suitable energy range (see below for de-
tails), for an uncorrelated Poisson spectrum [P(S)
=exp( —S) ] is given by6

b3(L) =L/15 . (7a)

1
b s(L ) = lnL —0.007,

2
(7b)

This statistic was at first introduced in random matrix
theory, where for the GOE, for large L, it is approximate-
ly given by

interval thus only a finite number of sequences will con-
tribute. Varying, e.g. , the quantum number n;, for large
n; the level spacings of this sequence are given by fun;,
where co; is the corresponding classical orbital frequency.
Assuming for simplicity that in this energy range all fre-
quencies co;, i = l, .. .f, are locally constant, the sequence
of level spacings of the superposed sequence in this range
will repeat itself after an energy interval fico,„
=flmaxIcoi ]. Iil uillts of Iileail level spaclllg (d ) this
argument reproduces Eq. (8). So the spectral pattern
essentially repeats itself after bE=L,„(d) ' and addi-
tional spectral correlations appear beyond distances
L &L,„,which explains the saturation of 53(L ).

Our results for b,s(L) for various energy ranges and
coupling constants k of the spectrum of the Hamiltonian,
Eq. (1), are shown in Figs. 4 and 5. For each energy range

~

8', 8'+ 68'] we calculated b,&(8",L ) for 250 overlapping
intervals [8",8"+L](:[8',8'+68'] in order to obtain
the mean value b, &(L). For k&0 the average subse-
quently was taken over the four different symmetry
classes. In the figures are also shown the Poisson predic-
tion, Eq. (7a), and the exact GOE behavior of bi(L), as
well as the values of L,„(crosses), Eq. (8), with T;„at
energy E being given by

T.;.=4 =(2S)-'"I'(-')Z~Z, (9)
0 +2E 4

where I denotes the usual gamma function. Figures 4(a)
and 4(b) show the regular (k=o) and totally chaotic
(k=0.6) systems, respectively. As expected, in both cases
b,3(L) for small L follows the predicted Poisson and GOE

with L in units of mean level spacing. In actual calcula-
tions we have used the exact GOE form of Zi(L); see Ref.
34, Eq. (4). This behavior of hq(L) has been found in
several investigations of experimental ' and numeri-
cal' ' ' ' data, where also the nns distribution was
described by GOE predictions.

The observed universality of the b, i statistic has recent-
ly been explained by Berry using a semiclassical theory
for b, &(L). In particular, for L «L,„,he essentially ver-
ified Eqs. (7a) and (7b) for classically regular systems and
chaotic systems with time-reversal symmetry, respective-
ly. For L ~~L,„, b,s(L) is shown to saturate at a
nonuniversal value. The spectral correlation length I.
in units of mean level spacing is given by

L,„=2M (d)
Tmin

5.

20

0. 5

1 ~~~ 1 1
(

T

5( 7G BI L

where (d ) is the semiclassical mean level density or re-
ciprocal mean level spacing and T;„ is the period of the
shortest classical closed orbit. Especially for regular sys-
tems, the saturation of b 3(L) has been observed by several
authors. ' ' ' In that case a simple interpretation of
this phenomenon can be given as fo11ows. Each energy
level of an integrable system via semiclassical quantiza-
tion is characterized by quantum numbers n , . i. . , n (ff
degrees of freedom) corresponding to the values of the f
integrals of motion. The whole spectrum can be generat-
ed by superposition of level sequences where only one
quantum number at a time is varied. For a given energy

FIG. 4. (a} E3(L) for k =0. Solid lines are L/15 (diagonal)
and GOE prediction (Ref. 35). Dots give calculated 53(L)
values for energy ranges [0,200], [400,600], [900,1100],
[1900,2100], and [49S0,5050] from bottom to top. Crosses indi-
cate the corresponding values L,„, Eq. (8). L is in units of
mean level spacing. (b) Same as (a) for k=0.6 and energy
ranges [0,150], [150,300], [300,450], and [4S0,600].
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now q, ~
——0.81. Again the observed behavior of b, i(L)

cannot be reproduced assuming only one classical irregu-
lar phase-space region. As already done before in Fig.
3(b), we therefore use the same relative partitioning of the
irregular phase-space fraction as for k=0.2. The dashed
line obtained by this procedure lies fairly close to the actu-
al small-L values of b &(L), deviations of course being due
to the assumption of the partitioning used for its con-
struction.

To finish this section we conclude that the classical
phase-space structure, in particular the partitioning of the
irregular fraction, is quite sensitively reflected by b, &(L).
The observed additivity of bi(L) confirms the conjecture
that the whole spectrum may be seen as generated by su-

perposition of independent spectral sequences deriving
from the separate classical regular and irregular phase-
space regions. The large-L saturation of b, &(L) can be un-
derstood semiclassically as explained above.

V. DISCUSSION

FIG. 5. (a) Same as Fig. 4 for k=0.2 and energy ranges
[0,150], [150,300], [300,450], [450,600], [750,875], and
[950,1050]. Dotted line, semiclassical prediction with one irreg-
ular fraction q,], dashed line, same with three irregular frac-
tions; see text. (b) Same as (a) for k=0.3 and energy ranges

[0,150], [150,300], [300,450], [450,600], and [600,750]; also see
text.

hs(L ) = g Z '
(pq;L ), (10)

where it is assumed that 6 &"(L) for each sequence i is (lo-
cally) independent of energy. The additivity of b, &(L) also
follows approximately from semiclassical theory. ' The
dotted line in Fig. 5(a) gives Eq. (10) with the classical re-
sults p~ ——1 —q,~, p2 ——q, ~

——0.64 and 43",h3 ' given by
Eqs. (7a) and (7b), respectively. The dashed line also in-
cludes the partitioning of the irregular phase space into
three parts, cf. Fig. 3(a). Obviously, for small values of L,
this latter line gives a remarkably good description of
bs(L) as calculated from the spectrum of H, Eq. (1).
Crosses again show the semiclassical values of L,„, Eq.
(8), indicating the region of departure from the universal
behavior.

In Fig. 5(b) the corresponding lines are shown for the
system with the coupling strength k =0.3. The Liouville
measure of the classical irregular phase-space fraction is

behavior, respectively, and for larger L saturation occurs.
The theoretical values L,„ indeed give the transition re-
gion between small-L universal behavior and the large-L
nonuniversal saturation regime.

Figures 5(a) and 5(b) represent the intermediate systems
k=0.2 and 0.3, respectively. The b, i(L) values for small
L lie between the two limiting curves for Poisson and
GOE spectra. Along the same lines of reasoning as for
the nns distribution in Six:. III, as already proposed in
Ref. 23, it is natural to assume that bi(L) can be calculat-
ed via superposition of independent regular and irregular
spectral sequences. The result for superposing n se-
quences with weights p;, g,".

,p; = 1, is given by

The present investigation gives a further confirmation
that the classical transition from regular to irregular
motion is reflected by an analogous transition of statisti-
cal properties of the corresponding quantum energy-level
sequence. In particular, for the system, Eq. (1), we have
found that the nns distribution P(S) and the b, & statistic
both indicate that in the semiclassical limit there is a tran-
sition from an uncorrelated spectrum (Poisson statistic) to
a spectrum described by an ensemble of random matrices,
namely the GOE. In this limit it is assumed that the
whole spectrum is generated by statistically independent
superposition of level sequences deriving from separate
regular, viz. , chaotic, regions of phase space. Systematic
deviations from this picture due to quantum effects are
found especially for P(S) (Sec. III). In particular, we
have found that for small level spacings S &SO-1 the
nns distribution P(S) is better represented by neglecting
the partitioning of the irregular part in phase space. For
larger spacings S g So, however, this partitioning seems to
become important, and in Sec. IV the partitioning was
shown to be reflected quite sensitively by b, &(L). Thus
genuine quantum effects only appear in short-range spec-
tral correlations S ISO, whereas long-range correlations
as measured by P(S), S&SO, and by b, &(L) agree with
semiclassical theory.

These findings can be explained by recognizing that
long- and short-range correlations are connected via the
uncertainty relation EEb,t =Pi with (classical) short- and
long-time behavior, respectively. More rigorously, this
can be shown using the periodic-orbit expansion, which
gives the spectral density as a sum over all classical closed
orbits and thus links different scales of spectral resolution
with different classical time scales. ' ' A given wave
function can semiclassically be associated with a classical
phase-space distribution and this connection remains valid
for small times during quantal and classical time evolu-
tion generated by the Hamilton operator and correspond-
ing Hamilton function, respectively. This association,
however, breaks down for longer time scales. Thus the
quantum system for small times is essentially mimicked
by the classical time evolution and semiclassical con-
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siderations are valid, consequently also applying to long-
range spectral correlations. For longer times the wave

function will spread and thus the system, due to the finite
value of R, will not be sensitive to finer structures of phase
space, leading, e.g., to tunneling through dynamical bar-
riers which classically separate different phase-space re-
gions. As a consequence, there will effectively be only one
(or generally very few) irregular region, with P(S) being
closer to the simple form P(q;S ), Eq. (4). In addition, the
interaction between levels deriving from sequences associ-
ated with different phase-space regions will lead to level

repulsion, i.e., to very small values of P(S) for small
S ~Si, e.g., for Si -0.1, [cf. Fig. 3(b)]. We found this
repulsion to be restricted to increasingly smaller level
spacings for increasing energy. This effmt will particular-
ly influence the regular spectrum, for which, in the semi-
classical limit, the nns distribution P(S) has its maximum
at S=O. It is thus plausible that the irregular spectrum
converges faster to its limiting form, which shows level
repulsion, P(0)=0, as observed in Sec. III. From the
above line of reasoning it becomes clear that in the semi-
classical limit, i.e., as irt~O, the limiting correlation
lengths So,St for validity of semiclassical theory will go
to zero. In other words, the semiclassical limit for spec-
tral fluctuations is attained by restricting nonsemiclassical
quantum effects to increasingly smaller correlation
lengths.

The arguments and results presented here as well as the
already-mentioned numerical and theoretical studies
strongly suggest that the kind of behavior of spectral fluc-
tuations reported here is typical for a wide class of Hamil-
tonian systems. In order to obtain a better understanding
of this question, we have compared nns distribution prop-
erties of several different Hamiltonian systems. In Fig. 6
we compare the convergence to the semiclassical (Poisson)
limit for two integrable systems, measured by the fitted
parameter qq of P(q;S), Eq. (4). Circles represent the
Hamiltonian, Eq. (1), with k=O [cf. Fig. 1(b)], and
crosses the incommensurable rectangular billard, with en-
ergy levels E;„=ant +n, a =m /3. The latter system
recently has been studied by Casati and Chirikov. Since
for scaling systems the limit E~oo for fixe g is
equivalent to Pi~0 for fixed energy E, the abscissa is
given in units of R. For both systems the value of fi corre-

n(E) =Ni(E) ~Pi (12)

The Poisson limit is attained as the number of sequences
n (E) becomes infinitely large and the sequences effective-
ly become mutually uncorrelated. The slow convergence
to this limit may be due to the fact that the individual lev-
el sequences to be superposed are not truly independent.
In addition, the weights of the contributing sequences
differ considerably since their level density decreases with
increasing energy. Thus many more individual sequences
are required to generate Poisson-like spectra as when, e.g. ,
superposing sequences with equal weights.

To complete the discussion, Fig. 7 compares the fitted
values qq with the corresponding classical irregular frac-
tions q, i for three systems showing a transition from reg-
ular to irregular behavior as a parameter is varied. Circles

sponding to the 100th energy level E&oo was fixed to l.
The effective A' for energy E is then

g( E) (EyE )
—( 1/2+ 1/s )

s being the degree of homogeneity of the potential-energy
function, cf. Eq. (2). For the billard system, s is set to in-
finit. For the calculation of the nns histograms, inter-
vals of length 0.2iii centered around fi were taken. In this
representation both systems show a very similar behavior
of the fitted values qqm with respect to R (Fig. 6). In par-
ticular, in both cases there is very slow convergence to the
Poisson limit. Even in the energy range above the
50000th energy level, which corresponds to values of
lniri& —3.11 (cf. figure caption), the nns distribution still
shows significant deviations from the expected Poisson
distribution.

A hint in order to understand this similar behavior may
be given by the following consideration. As already ex-
plained in Sec. IV the spectrum of a classically integrable
system can be generated by superposition of level se-
quences where only one quantum number at a time is
varied. The number of sequences n(E) contributing to a
given spectral range around energy E for a system with
two degrees of freedom is approximately given by the
number of levels Nt(E) of the one-dimensional system
and thus we have [cf. Eq. (2)]
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FIG. 6. Fitted values qq with respect to A'. Circles refer to
the Hamiltonian, Eq. (1), with k =0; crosses refer to rectangular
billard; see text. The number of levels below energy E(A') is ap-
proximately given by N = 1006

FIG. 7. Comparison of quantal values qq and correspond-
ing classical irregular fractions q,~. The line q„=q,~ is indicat-
ed. Circles, crosses, and stars represent different systems; see
text.
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derive from the system, Eq. (1) (cf. Fig. 2), crosses are
adapted from an investigation of a (scaling) billard system
with irregularly curved boundaries, and stars are taken
from Ref. 21, where two coupled harmonic oscillators
have been studied. The latter system has no scaling prop-
erty with respect to energy. All three systems show simi-
lar deviations from the line qq

——q,i. In particular, for
small q, ~

the quantal values qq lie above that line, which
can be explained by the slow convergence to the semiclas-
sical limit for nearly regular sequences. For intermediate
irregular phase-space fractions q, i this trend reverses and
the values qq become smaller than q, i. As already dis-
cussed, this is due to the partitioning of the irregular frac-
tion, which leads to more Poisson-like spectra. A plot like
Fig. 7 will of course depend on how good the semiclassi-
cal regime is attained, but due to similar computational
restrictions all three systems will approximately have
reached a similar degree of convergence.

There is thus strong evidence that spectral fluctuations
for a probably wide class of Hamiltonian systems show a

universal behavior that is connected with the classical
phase-space structure. Semiclassical theories for P($) in
the regular case' and for the b3 statistic for both regular
and irregular systems are an important step towards an
understanding of this universality. The present work
shows that the nns distribution and the h3 statistic in ac-
tual computations, where the semiclassical limit is not ful-
ly reached, respond differently to the underlying classical
motion. The deviations from the expected limit, however,
are systematic and can be understood by a simple picture
for the quantum effects. An interesting question for fu-
ture investigations will be the extension to three degrees of
freedom, in particular how Arnold diffusion is reflected in
quantum spectra by P(S) and b,s(L).
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