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Relationship of fluctuations and transport for nonlinear Markov processes

James W. Dufty
Department ofPhysics, Uni uersity of Florida, Gainesuille, Florida 32611

J. Javier Brey
Departarnento de Fisica Teorica, Universidad de Seuilla, Apartado Correos 1065, 41080 Seoilla, Spain

M. Cristina Marchetti
Department ofPhysics, City College of the City Uniuersity ofNew York, New York, New York 10031

(Received 2 December 1985)

An exact relationship between the equations for the dynamics of average variables and those for
their fluctuations is established for Markov processes. The result includes the general case of non-
linear and nonstationary dynamics and provides an extension of Onsager's regression hypothesis to a
broad class of systems far from equilibrium.

I. INTRODUCTION

There is a growing literature on fluctuations in non-
equilibrium systems that indicates a close relationship of
the dynamics of fluctuations to the transport equations. '

For states near equilibrium such a relationship is well es-
tablished and is summarized by Onsager's regression hy-
pothesis: spontaneous fluctuations in equilibrium dcx:ay
according to the macroscopic transport equations linear-
ized around the equilibrium state. This relationship not
only simplifies calculations, but it also provides an impor-
tant link between transport properties and experimental
techniques that detect fluctuations. For states far from
equilibrium Onsager's hypothesis does not apply as stated
above, but it may be expected that a suitable generaliza-
tion would maintain the close relationship of fluctuations
and transport equations. Indeed, during the last several
years many different problems have been described using
a variety of models and techniques that lead to a common
feature for the dynamics of fluctuations: time correlation
functions obey bilinear equations equivalent in form to
the transport equations linearized around the nonequilibri-
um state. Furthermore, the initial conditions for these
equations (equal time correlation functions, or nonequili-
brium susceptibilities) are related to the microscopic de-
grees of freedom by a linear dynamical "fluctuation-
dissipation" equation. Once this coupling to the micro-
scopic components is specified (e.g., a "noise" amplitude)
a structurally simple closed set of equations for the mac-
roscopic variables and their fluctuations is obtained, with
the same appeal and utility as Onsager's hypothesis near
equilibrium. Unfortunately, the generality of this result
does not seem to be fully appreciated due to the disperse
topics, methods, and approximations that have been used.
The objective here is to provide an example which is both
specific enough for the above structure to be derived as an
exact consequence of the model, and general enough to en-
compass a broad class of nonequilibrium phenomena.
The system considered is a set of stochastic variables
governed by a Markov process. The description is based

A(t)+N—[A;t] =0,c)
(1.2)

Bt
C tt(t, t')+—L [A;t]C tt(t, t') =0, (1.3)

C tt(t, t)+—L [A;t]C tt(t, t)
t

+ Lit [A;t]C (t, t) =I &(t) . (1.4)

Here N [A;t] is a function (or functional) of A that de-
fines the average transport equations. The correlation
functions obey bilinear equations parametrized by A(t),
where the matrix, LNtt[A;t], is obtained from the trans-
port equation according to

(or a suitable generalization to functional differentiation).
The source term, I tt(t), in the equation for the equal time
correlation function is given by the second moment of the
transition rate for the Markov process [Eq. (3.12), below].

on the introduction of a generating functional from which
both average variables and their correlation functions can
be obtained, and the proof is simplified by a lemma due
to I.ax.'

Before discussing the details, the primary results can be
stated easily. Let a= fa (t) j denote a set of stochastic
variables whose time dependence is governed by a Markov
process. The mean values, A= [Aa(t) j, and the correla-
tion functions C tt(t, t') are defined by

A, (t}=—(a,(t) &,

C tt(t, t')= ([a (t) —A (t)][ay(t') —Att(t')]),

where the brackets denote an average over the stochastic
process and over a prescribed distribution of initial values,
{a (0}j. The times are assumed to be ordered according
to t & t'&0. Then, it is shown below that these quantities
obey the set of closed first-order equations,
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II. GENERATING FUNCTIONAL

A Markov process can be conveniently described by the
conditional probability P(a, t

~

a', t') for finding the values
a= [aN J of the stochastic variables at time t, given the
values a'=Ia' I at time t'&t. It obeys the Chapman-
Kolmogorov or Master equation

—L P(a, tea', —t')=0, (2.1)

where L is the linear operator

LP(a t(a t ) Jds', "['w=(a",a)P(a",t)a t )', '

—W(a, a")P(a, t
~

a', t')] . (2.2)

Here W(a, a'} denotes the transition rate for changes from
the state a to the state a'. This transition rate completely
specifies the Markov process. For a given initial condi-
tion, the knowledge of P(a, t

~

a', t') is enough to construct
all the multitime probability distributions.

The averages at a single time can be represented in
terms of the one-time distribution P(a, t), defined by

For example, in a Fokker-Planck process I tt(t} is equal
to twice the average diffusion matrix. Several observa-
tions may be useful to put these results in context. (a)
Equations (1.2)—(1.5) are exact. In particular, the bi-

linearity of the correlation function equation does not re-

quire that the fluctuations be small as in some previous
discussions. (b) The correlation function equation, (1.3), is
the same as that for the linear stability analysis of the
transport equation, suggesting that the detection of corre-
lation functions would provide a useful passive probe of
systems near macroscopic instabilities. (c) The functional
form of N~[A;t], and hence L~tt[A, t], is that for the
true macroscopic equations and not the deterministic limit
of the Markov process; i.e., fluctuation-renormalization
effects are already accounted for in these results. (d) For
stationary states Eq. (1.4) is formally quite similar to an
equilibrium fluctuation-dissipation relation (or Einstein
relation). More generally, the equal time correlation func-
tions are dynamical variables whose time evolution is
governed by the same bilinear operator, Lett[A]. Equa-
tion (1.5) therefore provides the key link of the correlation
functions to the transport equations; the only additional
information not contained in the latter is given by I tt(t).
Further comments on these results are given in the discus-
sion section.

These functions can be represented in a manner similar to
(2.5) by the introduction of a joint probability function for
values of the stochastic variables at n different times.
However, from a formal point of view, it is more econom-
ical to obtain all of the correlation functions from gen-
erating functionals, A[t;X] that are closely related to the
variables, A(t). They are defined in terms of some arbi-
trary test functions, A, = I))i, ], by'

A[t;A]= {a—(t)U[t;k] ) /( U[t;A] )

with

(2.7)

U[t;A, ]—=exp I d~A(r) a(v)
L

(2.8)

(The dot between the two vectors, X and a, implies a sum-
mation over indices. ) The functional derivatives of
A, [ti ,A]w'ith, respect to A, (tz), . . . , A, (t„) are denoted

by

5" 'A, [ti,A]

(2.9)

The right side vanishes if any of the times of the function-
al derivatives are greater than ti, as follows from Eq.
(2.8}. It will be assumed from here on that the time, t i, in
(2.9) is greater than or equal to all other times, t The.
quantities A [t;)I,] and C, [ti, . . . , t„;)(] have the

obvious limits,

A [t;A, =O]=A (t), (2.10)

C, , [t, , . . . , t„;A=0]=C, .. .(t„.. . , t„) .

(2.11}

Thus, the macroscopic variables and all of the correlation
functions can be determined from the generators, A[t;A, ].

The averages appearing in Eq. (2.7) cannot be expressed
in terms of the one-time distribution, as they are function-
als of a(r) for t &r&0. Nevertheless, A[t;)I,] can be cal-
culated from a generalization of Eq. (2.5) as

A[t;)1.]= I daaP[a, t;A] (2.12)

C, (ti, . . . , t„)

—= ([a,(tl) —&,(ti)] [a (t„)—A {t„)]).

(2.6)

P(a, t)=(&(a—a(t))) . (2.3)

It is related to the conditional probability through

P(a, t) = J da'P(a, t
(
a', 0)P(a', 0), (2.4)

where the initial value, P(a, O), is assumed to be given at
some time (arbitrarily chosen to be t =0) and is normal-
ized to 1. Then, for example, the average variables, A(t),
are given by

A(t)= J daaP(a, t) . {2.5)

An nth-order correlation function is defined by

L —A(t). (a—A[t;A—,]} P[a, t;A, ]=0.
Bt

(2.14)

This result is due to Lax, and an abbreviated proof is
given in the Appendix. The operator I. is the same as

P[a, t;A]=(5(a—a(t))U[t;A])/(U[t;A]) . (2.13)

The interesting feature of this representation is that
P[a, t;A, ] obeys a linear equation that is closely related to
that for the conditional probability, Eq. (2.1),
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—A[t;A]+ (D"'(a);t)„=C[t,t;A].X(t), (2.15)

that of Eq. (2.2), so the transition rates, 8'(a, a'}, are un-

changed by the additional fields, A,(t). The equations for
A[t;A, ] follows immixhately from (2.12) and (2.14),

g 5A [t;A]
Bt 5ip(.t') 5l p(t') Bt

(3.2}

Application of (2.21) on the right side and (3.1) on the left
gives the equations for the correlation functions at two
different times, t & t'&0,

where

D'"(a)= f da'(a —a')W(a, a')

and

C[t, t;A, ]= ((a—A[t;A, ])(a—A[t;A, ]);t )» .

(2.16)

(2.17)

5N [A[t;A,];t]C—p[t,t';A]+, =C p[t, t, t';A)A, (t) .
Bt t'

(3.3)

Since N[A[t;A];t] depends on A. only through A[t;A]
the functional derivative in (3.3) may be evaluated as

The brackets, (;t )», are defined for an arbitrary func-
tion, X(a), by

(X(a);t )»= f daX( a)P[ at;A, ] . (2.18}

If D"'(a) is not a linear function of a, then its average
will be different from D"'(A[t;A]) due to fiuctuations.
This is the fiuctuation-renormalization problem that is at
the heart of most difficulties in a given application.
Schematically, the renormalization can be implemented
using the auxiliary variables, A,(t). The average of D"' is
some specific functional of these variables,

5N. [A[t;Z]] aN. [A[t;Z];t] 5A. [t;A, ]
5&p(t') BA [t;A, ] 5A p(t')

BN [A[t;A,];t]
aA. t;A,

C p[t, t', A, ]

and Eq. (3.3}becomes

Bf
Cp[t,—t', A, ]+L [A[t;A, ];t]C p[t, t', A, ]

( D' "(a);t)„=—F[A.;t] . (2.19)
with

= C, p[t, t, t', A, ]A, (t) (3.4)

In addition, A[t;A, ] is also a functional of A„defined by
Eq. (2.12). Assuming this latter relationship is invertible,
Eq. (2.19) can be expressed in terms of the A[t;A, ],

BN [A[t;A,];t]
L p[A[t;A, j;t)=

Apt;
(3.5)

( D' "(a);t )»=F[A [t;A];t]—=N[A[t;A];t] . (2.20)

—A[t;A, ]+N[A[t;A, );t]=C[t, t;A, ] A(t) (2.21)

and the macroscopic transport equations are obtained sim-
ply by setting A, =O,

A(t)+N—[A;t]=0 . (2.22)

In this form the functional dependence on A. occurs only
through A[t;A, ]. This has the important consequence
that the average of D"' for A, =O is the same function of
A(t) More spe.cifically, Eq. (2.15) is written

Setting A, =O in these last two equations gives the desired
results for the correlation functions at two different
times, Eqs. (1.3) and (1.5).

To obtain the equation for correlations at the same
time, i.e., C p(t, t), a somewhat different method is re-
quired since the commutation relation (3.2) does not hold
for t'=t. Instead, a direct calculation from (2.14) is pos-
sible,

—C p[t, t;A, ]=—((a, —A [t;A])(ap —Ap[t;A));t)»

=(LtI(a —A [t;A])(ap —Ap[t;A])];t)»

III. DYNAMICS OF CORRELATIONS

To simplify the discussion, attention will be limited
here to correlations of only two variables. Using Eq. (2.9),
the A, -dependent correlation function is obtained from the
generating functional by

5A [t;A,]C p[t, t', X]= ', —, t&t'&0.
5A, t') (3.1)

This structural similarity of the equations for the generat-
ing functional and the macroscopic variables can be ex-
ploited now to relate the equations for the correlation
functions to the transport equations, (2.22).

+C p„[t,t, t;A]A,„(t),

where L is the adjoint of L,

L F(a)= f da'W(a, a'}[F(a'}—F(a)] .

Carrying out the operation of L in (3.6) leads to

C~ [tp, t;A, j= —(—D~"(a)(ap —A p[t;A, J);t )»

—((a —A [t;A,])Dp"(a);t)»

+2(D "p(a);t )»+C p„[t,t, t;A]A,„(t) .

(3.6)

(3.7)

Also for t&t' the functional differentiation at t' and time
differentiation at t commute,

(3.8)

Here D' '(a) is defined in terms of the transition rate by
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D' '(a) —= —,
' f da'(a —a')(a —a')W'(a, a') . (3.9)

=L [A[t;A];t]C p[t, t;A], (3.10}

where the definition (3.5) has been used. Equation (3.8}
can then be written

C—p[t, t, ;A]+L, [A[t;A];t)C pft, t;A]i

+Lp [A[t;A];t]C [t,t;A]

=I p[t;A, ]+C»[t,t, t;X]A,„(t) (3.11)

with

I~p[t;A, ]=2(D~p(a);t )g . (3.12)

Now, setting A, =O, Eqs. (1.4) and (1.5) for the equal time
correlation functions are obtained. This completes the
verification of Eqs. (1.2)—(1.5).

IV. DISCUSSION

For states near equilibrium the results (1.2) and (1.3)
confirm Onsager's regression hypothesis since in that case
the nonlinear transport equations can be linearized and
the resulting equations for fluctuations and transport are
the same. More generally, these two sets of equations
differ but the dynamics of fluctuations can always be ob-
tained from the general form of the transport equations
through Eq. (1.5). This latter observation and its generali-
ty is the primary result of this paper. It extends to a wide
class of nonequilibrium states the intuitive notion that the
dynamics of low-order correlation functions is essentially
macroscopic. The statistical features appear in Eq. (1.4),
which expresses the relationship of the macroscopic trans-
port matrix, L p, to the "noise amplitude, " I p. This in-
terpretation of I p follows from its definition, (3.12), and
also from the fact that I p is the average covariance of
the noise in an equivalent I.angevin formulation. Some
further comments regarding these results may be useful to
clarify their general context.

(1) Although the stochastic process considered here is
Markovian, the contracted description for the average
value A(t} will generally be nonlocal in time ("memory
effects"). The differential operator in Eq. (1.5) relating
L~p and N~ then must be replaced by a functional deriva-
tive, so that Eq. (1.3) becomes

clt
Cp(t, t')+ d—s L [A;t,s]C p(s, t') =0,

The first two terms on the right side of Eq. (3.8) can be
put in a more useful form as

(D'"(a)(ap —A p[t;A, ]);t)„
= lim (D'"(a);t)i,

p+ 5A, t r—

5E [A[t;A, ];t]
5A.p(t)

5E [A;t]
L p[A;t, s]=

5Ap s

with similar changes in Eq. (1.4) for the equal time corre-
lation functions. Also, it is possible to generalize the
equations to the case of variables IA I with a being a
continuous rather than a discrete label.

(2) The method used here to obtain Eqs. (1.2)—(1.5)
makes explicit use of the renormalization of the deter-
ministic equations. This renormalization has two dif-
ferent origins. The first one is associated with the fact
that the dynamics of the set of variables IA~I is not self-
deterministic, and reflects the fundamental statistics of
the stochastic process considered. The second origin is a
quite different statistics associated with specification of
the initial probability distribution, P(a;0). If the latter is
a stationary state these two sources of statistics are closely
related. In general, however, P(a;0) can be specified in-
dependently of the master equation. Consequently, one
could take the point of view that the "true" transport
equations should have a form that is independent of initial
data and that only the first source of renormalization
should be considered here. The results (1.2)—(1.5) are still
obtained in this case, with only a change in the definition
of the averages, (2.12), to conditional averages. Of course,
ultimately an average over the initial distribution must be
performed in a given application.

(3) The linear form of the correlation function equation
is the same as that for the linear stability analysis of the
transport equations, (1.2). In stability analysis these equa-
tions are obtained by a linearization of the transport equa-
tions, neglecting quadratic and higher-order nonlineari-
ties. Here, however, these linear equations for the correla-
tion functions are exact and do not imply an approximate
linearization. It is expected, therefore, that they would
apply even near an instability. Asymptotically close to an
instability the decay of fluctuations slows to zero. At this
point, the inversion of Eq. (2.12) to obtain (2.20) is
presumably singular. For example, at a simple bifurca-
tion, a specific one of the multiple solutions above the in-
stability would have to be chosen to implement the renor-
malization. In this way, the dynamics of correlation func-
tions would be well-defined on both sides of the instabili-
ty, and would be characteristic of the particular solutions
to the transport equations on each side.

(4) The general structure of the relationship between
transport equations and the dynamics of correlation func-
tions discussed here is also expected to apply approxi-
mately for non-Markovian processes with two well-
separated time scales. Generally, Eqs. (1.2) and (1.3)
would have sources representing initial short-time tran-
sients. The decay time for such transients sets the time
scale on which the macroscopic transport equations apply
(for example, the Boltzmann equation applies for times
long compared to a collision time, hydrodynamics applies
for times long compared to a mean free time). On the
long time scale for which the transport equations (1.2) are
a good approximation, it is possible to show that Eqs.
(1.3)—(1.5} for the correlation functions apply to the same
degree of approximation. In practice, the determination
of I p(t) can be quite difficult in this more general con-
text.
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f[a, t;A, ]= 5(a —a(t))exp f dry(r) a(r) (A2)

The time integral in (A2) may be represented as a series by
dividing the interval 0 to t into X equal parts:

f[a, t;))(,]= 5(a—a(t)) pe

APPENDIX: PROOF OF EQUATION (2.14)

The function P [a;t; J(,] is defined by Eq. (2.13):

with ht=t/N and r; =inst. This expression can be
evaluated in terms of the 5-time joint probability func-
tion P(a,t;a, t~ )', . . . ',a, t)),

Et', (t,. ) a'"
f[a t.J)] f daii). . . d ()v —lip( t. . ()) t ) g

~ ~ ~ ~ ~
ht A.(t. ).I'"()). . . da(.v —()p(a t a()v —i) t ). . . P(a(2) t a(l ) t ) p(a( 1) t ) g

The second equality holds only for a Markov process. The conditional probabilities obey Eq. (2.1), that is to be solved
with a 5-function initial condition, i.e.,

P(a' ', tz
~

a"', ti)=e ' ' 5(a'"—a' ')

Substitution of (A5) into (A4) and integration over the a yields

at z(().() (t t)(( )
)L a—t A(t~)) (( ((p, )

—tv —2)L ()'( x(($ —) ) () (lt' ~

)J"[a,t;Aj=e . e e e ' e ' . . e P(a, O

(A5)

=e' T g exp[At A(t;) a(t;)]P(a,O) . (A6)

Here a(t) is an operator

a(t)=e ' ae' (A7)
I. f=k—,(t) —af .

dt (A9)

and T is the time-ordering operator with latest times to
the left. Taking the limit X—+Oo (b, t —+0), Eq. (A6) goes
to

Finally, the desired result is obtained by combining (A9)
and (A 1),

f[a,t;A] =e' T exp dr 1((r) a(r) P(a, O) .
J

Differentiation of this result with respect to time gives
I.—A(t) (a—A—[f;J(.]) P[a, t;A]=0 .

r)t
(A10)
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