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Shear-flow-induced distortion of the structure of a fluid:
Application of a simple kinetic equation
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The structure of a fluid subjected to a plane Couette flow is calculated starting from a simple
model kinetic equation. After the presentation of the general formal solution of this kinetic equa-

tion, an expansion in powers of the shear rate is investigated in detail; terms up to order 6 are taken
into account. As a specific example, the shear-flow-induced distortion of the structure is analyzed
and displayed graphically in the vicinity of its first peak. The pertinent equilibrium structure was

chosen to correspond to a soft-sphere fluid where computer simulation data are available for the ra-
dial distribution function. Two distinct scattering geometries are considered.

INTRODUCTION

The structure of a "simple" fluid subjected to a shear
fiow is not simple. In the nonequilibrium situation, the
pair-correlation function g(r) and the pertaining structure
function S(k) become anisotropic, i.e., they depend not
only on the magnitudes of the position vector r joining a
pair of particles or the scattering wave vector k but also
on the directions of these vectors relative to the flow
geometry. The distortion of the pair-correlation function
linear in the applied shear rate plays a crucial role in the
kinetic theory for the viscosity of liquids. ' Nonequili-
brium molecular dynamics simulations also show the im-
portance of effects nonlinear in the shear rate. ' Simi-
lar remarks apply to model liquids of strongly interacting
spherical colloidal particles where the shear-flow-induced
distortion of the structure has been measured by light
scattering techniques. "'

In this paper, the structure of a fiuid subjected to a
plane Couette flow is calculated starting from a simple ki-
netic model equation for the pair-correlation function.
This equation has recently been tested in nonequilibrium
molecular dynamics simulations. ' ' Previous theoretical
work concerned with the same problem was based on an
approximate solution' of the Kirkwood-Smolochowski
equation; an alternative approach has been put forward
more recently. ' The close similarity between data in-
ferred from computer simulations for soft spheres of Ref.
8 and the light scattering experiments with colloidal solu-
tions' deserves particular mentioning.

This paper proceeds as follows. In Sec. I, some general
properties of a kinetic equation for the pair-correlation
function are discussed and the model assumptions are in-
troduced. A spatial Fourier transformation leads to the
corresponding equation for the structure factor. The for-
mal solution of the kinetic equation is presented in Sec. II.
For a given equilibrium structure, the shear-flow-induced
distortion can be calculated from a power-series expansion
in the distortion parameter yr where y is the (constant)
shear rate and ~ is a configurational relaxation time. Sec-
tion III is devoted to the choice of a particular equilibri-

um structure which is inferred from radial distribution of
a soft-sphere fluid. Results for the distortion of the struc-
ture are then presented in Sec. IV. After some general re-
marks, the first-order effect (linear in yr) is discussed.
Then the consequences of the higher-order terms are stud-
ied for two special scattering geometries, viz. , the incident
beam parallel to the z and the y directions, respectively,
where the flow velocity is in the x direction and its gra-
dient in the y direction. In lowest nonvanishing order in
the shear rate y, the Debye-Scherrer rings experience an
elliptical distortion and higher-order terms lead to an in-
tensity modulation around the deformed rings. In the
analysis performed, terms up to sixth order in yr are in-
cluded. This approximation seems to be sufficient for
yr(0. 15 where nonlinear effects can already be noticed
clearly. Several graphs are presented which show the dis-
tortion of the structure in the vicinity of the first peak for
various directions of the scattering wave vector.

I. THE KINETIC MODEL EQUATION

The pair-correlation function g=g(t, r) of a fluid in
nonequilibrium subjected to a viscous flow is assumed to
obey a kinetic equation of the form'

8—g+(V&u„)r& g+D(g) =0 .

Here r=r"' —r' ' is the difference between the position
vectors of two particles 1 and 2 whose relative average
velocity v'" —v' ' is approximately by r (Vv), where Vv
is the (constant) gradient of the average-flow velocity field
v. In (1), Greek subscripts refer to Cartesian components.
For a plane Couette flow in the x direction with the con-
stant velocity gradient (shear rate) y in the y direction, the
flow term of (1) reduces to

The damping term D (g) guarantees that g approaches its
equilibrium value g,q

(radial distribution function) in the
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absence of any external disturbance. It has the general
properties

tion of a similar kinetic equation but with a diffusionlike
damping term to the viscosity problem, see Ref. 18.

D(g~) =0

f D(g)d r =0

(2)

(3)

II. FORMAL SOLUTION

For a constant shear rate y and with 5g given at t =0,
the solution of the model kinetic equation (6) can be writ-
ten as

D(g)=~ '(g —g„), (4)

where ry0 is a relaxation time. The single relaxation-
time approximation (4) can be extended to an ansatz in-
volving a discrete set of relaxation times, '0' this exten-
sion, however, is not discussed here for the sake of simpli-
city. %ith g decomposed as

g =geq+5g ~ (5)

associated with the existence of a thermal equilibrium
state and the conservation of the normalization of g(r),
respectively. Even the linearized damping term derived
from the hierarchy equations with the Kirkwood closure
condition for the three-particle correlation is far more
complicated '7 than the Smoluchowski-type damping
term originally proposed by Kirkwood. '

Thus, in order to emphasize the effects caused by the
flow term of Eq. (1), the damping term is approximated
by the simplest ansatz which fulfills conditions (2) and (3),
viz. ,

g (r»r„,r»t ) =e ' 'Sg(r„yr„—tpry erg, 0)

e —{t—t')/v
0

XF(r, yr„(t—t'), r—„,r, )dt' . (10)

gag((rg ry rg ) da e ggq(rg ayrry ry rg ) (12)
0

Provided that the integrand of (12) can be expanded in
powers of the shear rate y, one obtains the series expan-
sion

The stationary solution g„„ofg is obtained for t ~&r
(t~ oo},

gsoa(rg ry~ "z =geq "gry "z)

dt e '~'F(r, yet, ry—,r, ) .
0

Use of the explicit meaning of the quantity F [see (6)] and
an integration by parts leads to

where 5g is the deviation of g from its equilibrium value,
the kinetic model equation (1), for the special geometry
and the approximation (4), reduces to

5g+y—r 5g+r '5g= F, —
Bt ' Br„

where

ggtat =geq y'rg +(y'r) g (y~) g

with

This expansion is formally equivalent to

(13)

(14)

F=yPy geq e

Br
(15)

This is an inhomogeneous equation for 5g which can be
solved for a given equilibrium radial distribution function

geq.
The structure factor S(k), defined by

S(k)=l+n f d r(g —1)e'"', (7)

can be decomposed in a way analogous to (5), viz. ,

S=S,q+5S,

Similarly, the kinetic equation (9) leads to a stationary
solution analogous to (12), viz. ,

S,~,(k„k„,kz) = f da e S~(k„k„+ay«„,k, ) .

(16)

The expressions analogous to (13)—(15) are

S„., =S +yrS"'+(y~)'S"'+(y~)'S"'+
where S~ is the equilibrium structure factor and 5S de-
scribes the deviation from equihbrium. In (7}, n is the
number density. Since 5S is essentially the spatial Fourier
transform of 5g, Eq. (6} leads to a corresponding equation
for 5$, viz. ,

Bt "Bky
$S yI $S+~—1$S F

S„.

with

and

S =k„)S,q,(j) j
Bkyj

Sg~~= 1 y«g 5k—

(18)

(19)

This inhomogeneous equation for 5S can be solved for a
given equilibrium structure factor S~. For the applica-

Since for a fluid of spherical particles S~ depends on k
only via k, the quantities S'1' defined by (18) can be writ-
ten as
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S'"=k,
krak 2F, ,

S"'=k'k'k -'F, +k„'k -'r, ,

S"'=k'k'k-'F +3k'k k-'F
S' '=k, krak F4+6k„krak F3+3k„k F2 .

(20)

(21)

where it is understood that the operation k 'd/dk is per-
formed j times. The expansion (17) with (20) and (21) is
used next to evaluate the shear-flow-induced distortion of
the structure factor for a special equilibrium structure
based on a specifically chosen radial distribution function.

Incidentally, the "Stokes-Maxwell relation" as dis-
cussed by Ashurst and Hoover for g(r) and by Clark and
Ackerson for S(k) corresponds to the expressions (12) and
(16}, respectively, if the integrals are replaced by the in-
tegrand with a= l. The terms linear in y~ resulting from
this approximation coincide with the linear terms of (13)
and (17).

III. RADIAL DISTRIBUTION
AND EQUILIBRIUM STRUCTURE

In view of the wealth of data available for the "soft-
sphere computer fluid" and its relevance for colloidal
model fluids, ' ' it was decided to use, as a specific exam-
ple, an analytic expression for the radial distribution func-
tion which matches g,q(r) of the soft-sphere fiuid with a
r ' potential at a temperature T=0.25 and the density
n =0.7. The quantities T and n are in reduced units,
and the density where the fluid coexists with the solid
phase is n =0.82. On the other hand, it is desirable to
represent g~(r) in a functional form where the Fourier
transformation (7) required to obtain the equilibrium
structure function S,q(k) can be performed analytically.

The ansatz chosen was

The quantities FJ depending on the magnitude k of k
only are given by

P

F.—k&J . k
—~

dk dk dk

width of the peak or of the dip. These values are related
to each other by

g;=NX;, b; =M;(e'~~X; ') (25)

4mn r g~q
—1 r = —1 (27)

is imposed for simplicity rather than the "grand-
canonical" normalization which links the integral on the
left-hand side of Eq. (27) with the compressibility. Since
the compressibility is small, the relation (27) is a good ap-
proximation for the present system. ' The actual choice
of the parameters occurring in (22)—(25) can be inferred
from Table I; here it suffices to mention that just seven
terms (I=6) are included in the sum (22). In Fig. 1, the
comparison of the analytic approximation for g,q

with the
computer data is displayed; Fig. 2 shows g,q

and
r (g,q

—1}over a somewhat larger range of r values.
The Fourier transformation of (22), according to (7),

yields the equilibrium structure function

I
S,q ——1+ QS;,

i=0

with

SO ——4mn Or —1 r r,00
2 sin(kr)

0 r

and

S;=4nn f f;(r)r dr, i )1.2 sin(kr)
r

(28)

(29)

(30)

The parameters occurring in (23) and (24) are chosen such
that (22) is a reasonable approximation for the function

g~ of a fluid of particles interacting with the potential
4=r ' at the state point mentioned above over the
range r =0.8—2.5 where data are available from a molec-
ular dynamics calculation. As restrictions on the param-
eters, it is required that (22) yields the correct potential
contribution to the pressure

P~'=8mn r '
g~ r dr, (26)

where Pr ' is known from the simulation. Furthermore,
the "canonical" normalization

g,q(r) = g f; (r),
i =0

with

(22)
Here k is the magnitude of the wave vector k. Use has
been made of the fact that g,q is an isotropic function.
The expression (23) for fo leads to

fo(r) =1—exp[ —(gor) '], (23) So ——4mngo g BI(krio ') ',
1=0

(31)

2%; 2f;(r)=b;r 'exp( ri;r ), i )—1 . (24)

In this representation, g~ is an even function of r which
vanishes for r =0 and approaches the value 1 for r~co.
The term fo is a nearly steplike function which increases
from 0 to 1 at about r= 1/go. This increases is steeper
the larger the parameter No is. The terms (24) should
mimic the maxima and minima of g,q. In particular, f;,
i ) 1, possesses an extremum at r =X;, with its extrema1
value M~ f;(X; ). The parameter N; is——a measure for the

I=6
Ml ——1.48
M2 ——0.35
M3 ———0.3S
M4 ——0.31
Mg ———0. 12
M6 ——0.020 19

gp ——0.981
Xl ——1.145
X2 ——1.3
X3 ——1.69
X4 ——2.2
X5 ——2.7
X6 ——3.2

Xp ——30
Xl ——82
X2 ——60
%3 ——30
X4 ——80
Xg ——60
X6 ——60

TABLE I. Parameters occurring in Eqs. (22)—(25) used for
the approximation to the radial distribution function.
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FIG. 1. Analytical approximation for the radial distribution
function g~; comparison with the computer data.

FIG. 3. Equilibrium structure factors S~ as function of the
magnitude of the scattering wave vector k.

with the coefficients 8( given by

8 =(—1) +'(2l+3) 'I 1+ 2!+3
2&o

I'(21 +2) . (32)

ir'~4 e ', , (2&;+ 1)l
' 1/2

S;=nR;k; 'exp( —k; )H2~. +i(k;), (33)

The series (31) converges fast for all krIp '. Similarly, (30)
with (24) yields

(35)

The function H( occurring in (33) is a normalized Her-
mite polynomial with the property

with

(34)

f exp( x')H((x—)HJ(x)dx =5(, . (36)

The equilibrium structure S~ resulting from the above
given expressions with the same parameters as those
underlying the function g~ of Figs. 1 and 2 is displayed
in Fig. 3. The oscillations of S~ for k & 5 are unphysical
and result from the fact that g,q is only well determined
over a rather small range of r values.

The first peak of S~ occurs at k=k,„=6.3. The
first maximum of g& is at r =r,„=1.14; thus one has
km, „rm,„=7.2. In the following, the main attention is
focussed on the distortion of the structure factor in the vi-
cinity of the first peak which is responsible for the most
intensive Debye-Scherrer ring in a light scattering experi-
ment 11,12, 16

IV. DISTORTION OF THE STRUCTURE FACTOR

[g — ~. l

3 4 A. General remarks

The structure factor in the presence of a viscous fiow
can now be computed from Eqs. (17) and (18) and (20)
and (21} for S~ given by (28)—(34). In particular, the
functions FJ of (20) can be written as

I
FJ(k)=Tpj+ g T J, (37)

where the first index T; 1 refers to the labeling of the vari-
ous terms in (28) and j indicates the order of the operation
k ' d/dk as in (21), e.g.,

FIG. 2. Radial distribution function (upper picture) and the
integrand of the normalization condition [Eq. (27}] (lower pic-
ture) as functions of R. The series expansion (31}leads to
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—k;2
T; i ———S; 2nR—; Q(N;+ 1 }e '

HiN, +z(k; ); (39)

The property

(d ldz)[e ' Hi(z)] = —2&(l + 1)/2e ' Hi+ i(z)

of the Hermite polynomials allows the iterative calcula-
tion of T; i, T; i, . . . from (33), e.g.,

(40) yields the strongest distortion of the structure in the
shear plane in the directions which form the angles 45'
and 135' with the flow direction. From Fig. 4 one infers
that in the 45' direction, the peak of S(k) at k =6 is shift-
ed towards smaller k values, and at 135' it is shifted to
larger k values. The resulting (firs-order) elliptical dis-
tortion of the Debye-Scherrer rings is the most prominent
feature observed in the light scattering experiments. "'z'
However, at shear rates y with yr ) 10 ' nonlinear effects
also can be noticed.

for k; and R; see (34) and (35). Some remarks on the dis-
tortion of S(It) linear in the shear rate y are made next.

8. First-order effect

In first order in yr, the angle dependence of the
distorted-structure factor is determined by k zk, k„, cf.
Eq. (20). It is recalled that k =It, —Iro is the difference be-
tween the wave vectors Q and Iti of the incident and the
scat tered radiation. For elastic scattering one has

( Q ~

=ko ——
~
ki (, and ko —2n/A, where A, is wavelength.

The simplest scattering geometry which allows the detec-
tion of the first-order effect is with ko parallel to the z
direction; for small-angle scattering, It is then in the shear
plane determined by the flow velocity (x direction} and its
gradient (y direction). More generally, one has
k=2kosin( —,'8i) where 8i is the angle between Ito and k„
and

k 2k„k„=sinz8sinpcoap= —,
' cos (-, 8i)sin(24p) . (40)

Here 8 and (p are the polar angles of k; 8 is related to 8i
by 8=m/2+ —,8i. With 8 eliminated in favor of ko, the
full first-order distortion is given by

'2

yrS' "=yr , 1—— (41)
2kp

sin(2q)F i(k) .

Clearly, in contradistinction to the equilibrium structure
S~, S =S~+y~S'" not only depends on k but also on
the angle p and on klko. The latter dependence can be
ignored for small-angle scattering where k &&2ko.

In Fig. 4, the quantity Fi(k) occurring in (41) is
displayed together with S& for the special radial distribu-
tion discussed above. The angle dependence as given by

k-4k2ky2= 4i cos4( 281)slnz(2q)

= —,
' [1—(k/2ko) ]sin (2p) . (43)

The same scattering geometry as in the preceding subsec-
tion is considered. The first term (42), which has to be
multiplied by F„has its largest effect for p=0 and
y=180'. Since cos y= —,

' [1+cos(2p)], this term implies
a rotation of the principal axes of the first-order Debye-
Scherrer ellipses away from the 45', 135' directions by the
angle X determined by

tan(2X )=ye .

The term (43) which is multiplied by Fz has a fourfold
symmetry; notice that sin (2y) = —,

' ——,
' cos(4p). Since F&

is negative in the vicinity of the first peak of S,q (cf. Fig.
4), this term leads to an intensity modulation around the
elliptical Debye-Scherrer ring with extra intensities at
q =0', 90', 180', and 270'. This feature, again, is observed
in the light scattering experiments. 12 16 The angle depen-
dence of the higher-order terms as given by (20) can be

C. Nonlinear distortion in the shear plane

According to (20), the second-order distortion of S(k)
proportional to (yr} contains two terms with their angle
dependence determined by

k k, cosz( —,
' 8i)cos p=[1—(k/2ko) ]cos p,

0

I I I I I I I | I t I ' I I I I I I f r i t I I t i»I, »iit!»(jiiiI ii
k

1

FIG. 4. Graphs of the equilibrium structure S~ and of the
first three functions I'J/10I as used in (20}.

FIG. 5. Structure factor in the vicinity of its maximum for a
shear flow with yv. =0.1. Curves are displaced where terms up
to the first, second, and sixth orders are taken into account,
respectively. Notice that there is little difference between the
second- and sixth-order approximations. The equilibrium struc-
ture is also shown for comparison.
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analyzed in a similar way. Third-order terms, e.g., lead to
rotation of the four-fold pattern away from the 0', 90'
directions and to an extra six-fold intensity modulation.

The functions I'J defined by (21) are of crucial impor-
tance for the quality of a finite-sum approximation for
S(k) as given by (17); here terms up to order 6 are includ-
ed. In Fig. 5, the undisturbed structure factor 1 in the vi-

cinity of the first peak and for q =45' is compared with
the various approximations. The wavelength k=1, i.e.,
k/2ko ——1/4n, has been chosen. The "distortion parame-
ter" yr has the value 0.1. Clearly, the first-order pertur-
bation describes the shift of the peak but overestimates its
height. The second-order approximation is already very
close to the higher-order approximations. For y~=0. 15,
a similar analysis still shows a reasonable convergence of
the successive approximations; for y~=0.2, however, even
the sixth-order perturbation is not small compared with
the lower-order distortions.

Thus for the specific equilibrium structure considered
here, the present model calculations yield meaningful re-
sults for ye &0.15; second-order effects already show up
for ye~0. 05. Figure 6 shows the structure factor in the
vicinity of the first peak for p=45' and 135', A, = l, as
evaluated by the series (17) and (20) where terms up to the
sixth order are taken into account. The distortion param-
eter yv has the values 0, 0.01, 0.03, 0.05, 0.07, and 0.09.
Notice the increasing shift and the broadening of the
curves. More specifically, the shift of the first peak in the
45' and 135' directions is linear in yv up to y~=0. 12 and
approximately given by +0.4k y~, respectively. Here,
k is the magnitude of the wave vector at the first max-
imurn of the undistorted structure. The above-mentioned
results obtained from the numerical analysis is close to the
corresponding expression +0.5k y~ which has previously

FIG. 7. Distorted structure factor in the vicinity of the first
peak for @~=0.1 and y=n/4 as in Fig. 6. The various dashed
curves are for three different values of the wavelength of the in-
cident beam. Again, the equilibrium structure is shown for
comparison.

been inferred from simpler theoretical considera-
tiOnS 1 1i 12' 14

In Fig. 7, the equilibrium structure is compared with
the distorted structure for y=45' and ye=0 Iwith v. ari-
ous values chosen for the wavelength A, , in particular
A, =0.7, 1.0, 1.4. Clearly, the distortion is larger for the
smaller A, values, i.e., it can be observed more easily in
small-angle scattering.

D. Distortion for the incident beam
along the gradient direction

An experimental setup where the wave vector ko of the
incident beam is parallel to the gradient of the velocity
field (y direction) is particularly convenient for neutron
scattering; ' light scattering experiments have also been
performed for this geometry. ' For the case of extreme
small-angle scattering, k «ko, the scattering vector k is
then in the x-z plane, i.e., kz

——0. As a consequence, the
series (17) with (20) reduces to

S=S +(yr) k'k-'F +(7r)4k4k 'r +. -

(45)

'i"!
O'JL

FIG. 6. Structure factors for various values of the distortion

parameter yv. The projection of the scattering wave vector onto
the shear plane encloses the angles y=m/4 (upper picture} and
y =3m/4 Oower picture) with the flow direction.

Clearly, this is an even function of y. Notice that the
second- and fourth-order terms involve the functions Fi
and Fz which occur in connection with the first- and
second-order terms for the geometry treated in the preced-
ing subsection.

The scattering pattern in the x-z plane resulting from
(45) is dominated by the elliptical distortion of the
Debye-Scherrer rings; now their principal directions are
parallel to the x direction (flow velocity) and the z direc-
tion. The fourth-order term of (45) also leads to a four-
fold intensity modulation around the distorted ring.
Again, these features are observed experimentally.

If the condition k « ko is not fulfilled, all terms of (17)
and (20) contribute to the scattering intensity. For the
first few terms this is inferred from



33 SHEAR-FLO%-INDUCED DISTORTION OF THE STRUCTURE. . .

sions can be obtained for the higher-order terms. In Fig.
8, S and the distorted structure for tp& ——0 and q&, =180'
with l(, =1 (i.e., k/2ko ——1/4rr) are plotted for the same
values of the distortion parameter yr as used for Fig. 6.
Again, a shear-induced shift of the first maximum and a
decrease of its height and a broadening of the curve are
found. Notice that in this geometry the effect is practi-
cally as strong as for the previously considered case. The
case y&

——90' corresponds to k, =0. Equations (19) and
(20) imply that the structure factor is not affected by the
shear flow (in all orders in yr) for this specific direction.

CONCLUDING REMARKS

07

I I 1 I i I I I 1 I I I l I I ! & .' l t I t I I i I I I I t I I I t I I
I t

kzkyk (k/2ko)[1 (k/2ko) ] cosy}

k„k =[1—(k/2ko) ]cos qr&,

sky =(k/2ko) [1 (k/2ko) ]cos y&,

(46)

where y& is the angle which the projection of k onto the
x-z plane encloses with the x direction. Similar expres-

FIG. 8. Distorted structure factor as function of k for the in-
cident beam parallel to the direction of the gradient of the flow
velocity. The various curves are for several values of the distor-
tion parameter yw; the projection of the scattering wave vector
onto the plane normal to the incident beam is parallel (upper
picture, q =0) and antiparallel (lower picture, q =m) to the flow
direction.

In this paper, the consequences of a simple model kinet-
ic equation for the shear-flow-induced distortion of the
structure have been presented. After the derivation of a
general expression for this distortion, it has been analyzed
in detail for a fiuid with a special equilibrium structure.
Two types of scattering geometries were considered expli-
citly. The importance of terms nonlinear in the shear rate
was stressed. The model yields good qualitative agree-
ment with the experimentally observed structure. For a
quantitative comparison, however, it would be desirable
not only to have contour maps of the scattered intensity
but good structure factors for specific directions of the
scattering vector —as considered here=or an analysis of
the intensity maps which projects out certain angle-
dependent parts intimately linked with the expansion of
the pair-correlation function used in theoretical work'
and in computer simulation 7-10

Of course, fiuids with other equilibrium structures also
can be studied by the present approach. An extension of
the method to oriented ferrofluids is of interest and
seems to be feasible.
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