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Nose has developed many-body equations of motion designed to reproduce Gibbs s canonical
phase-space distribution. These equations of motion have a Hamiltonian basis and are accordingly
time reversible and deterministic. They include thermodynamic temperature control through a sin-

gle deterministic friction coefficient, which can be thought of as a control variable or as a memory
function. %e apply Nose s ideas to a single classical one-dimensional harmonic oscillator. This rel-

atively simple system exhibits both regular and chaotic dynamical trajectories, depending on the ini-

tial conditions. %e explore here the nature of these solutions by estimating their fractal dimen-

sionality and Lyapunov instability. The Nose oscillator is a borderline case, not sufficiently chaotic
for a fully statistical description. %e suggest that the behavior of only slightly more complicated
systems is considerably simpler and in accord with statistical mechanics.

I. INTRODUCTION AND MOTIVATION

During the past ten years an intensive effort has been
made to use computers in the simulation of many-body
systems in nonequilibrium states. ' A major difficulty in
achieving this goal had been the lack of useful controls
over the thermodynamic independent variables. It is
necessary to control temperature or pressure or energy in
order to simulate nonequilibrium steady states far from
equilibrium. The techniques of control theory can be ap-
plied to this problem, adding arbitrary "control forces" or
"constraint forces" designed to maintain thermodynamic
variables fixed. Some of these same constraint forces are
suggested by classical inechanics. Gauss, for instance,
made the reasonable suggestion that constraint forces
should be made as small as is possible, in a least-squares
sense. The resulting principle of least constraint2 is the
most general formulation of classical mechanics. This
principle leads to frictional forces, linear in the momen-
tum, of the same form familiar from control theory.
Much more recently, Nose has suggested a frictional force
designed to reproduce the canonical (constant thermo-
dynamic temperature} and isobaric (constant thermo-
dynamic pressure) phase-space distributions in equilibri-
um systems. ' Nose's equations of motion incorporate
"integral control" in which the friction coefficient, or
"control variable, " depends linearly on the integrated his-
tory of the system's kinetic energy.

Unlike hydrodynamic frictional forces, Gauss's and
Nose's forces are time reversible. In fact, even far from
equilibrium, the new equations, like Newton's, are purely
deterministic and reversible.

Canonical ensemble equilibrium properties are not at all
mysterious or hard to compute. There already exist many
practical schemes for determining the thermodynamic and
structural properties of many-body systems with good ac-
curacy. Thus the new schemes have little to offer in the
way of improving equilibrium simulations. Instead,
Gauss's and Nose's ideas are particularly promising be-
cause they suggest approaches to classes of problems in

nonequilibrium and quantum-mechanical simulation for
which no useful theories exist. They also suggest ways of
simplifying and unifying deterministic and stochastic
dynamics through the use of deterministic driving forces.

These ideas have already proved their usefulness in the
study of nonequilibrium systems. The new equations
make it possible to simulate, and to analyze theoretically,
systems connected to thermal or mechanical reservoirs
without the need for stochastic or irreversible forces. It is
remarkable that this has been achieved with time-
reversible equations. Thus a movie of a physically irrever-
sible process described with a Gaussian or Nose thermo-
stat represents accurately the mathematical formal solu-
tion of the equations of motion only in the forward direc-
tion. Because the backward direction corresponds to an
entropy decrease, it cannot be observed in any finite-
precision computation and the reversed movie represents a
fictional trajectory.

Gauss's and Nose's equations of motion have been ap-
plied to the study of fiuid and solid diffusion, 2 7 viscosi-
ty, ' and heat conduction' '" with computer simulation
and to the nonlinear generalization of linear response
theory' " required to describe systems far from equilibri-
um.

In order to characterize these new dynamical ap-
proaches and to assist the development of the theory, it is
essential to study their application to the simplest possible
prototypical systems. In this way the advantages of the
new methods can be exploited and the disadvantages sur-
mounted. Thus two-body and three-body' nonequi-
librium systems have been simulated using Gaussian and
Nose dynamics.

To help assess these new developments in nonequilibri-
um molecular dynamics we study here the one-
dimensional harmonic oscillator using Nose's canonical
equations of motion. ' This is a problem with three
time-dependent variables, the coordinate q, the momen-
tum p, and the friction coefficient g. Each of these obeys
a first-order differential equation of motion. The oscilla-
tor exhibits many of the familiar features found earlier in
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the studies of the Lorenz, ' Henon-Heiles, ' and double-
pendulum' systems. The last two of these problems are
mathematically reversible, like the Nose oscillator, and re-
stricted to a three-dimensional subspace of a four-
dimensional phase space by an energy integral of the
equations of motion.

In the limiting cases of very weak and very strong ther-
mostats, the motion of the Nose oscillator can be under-
stood analytically. In the intermediate, chaotic region,
Poincare maps cutting the thrm-dimensional phase space
(q,p, g) are useful tools. The accessible part of this phase
space is unbounded in extent as a consequence of the loga-
rithmic form of the thermostat potential. For experimen-
tally accessible times, however, the trajectory is always
confined to a rather small phase-space volume around the
origin regardless of the initial conditions. The solution of
the Nose oscillator problem thus behaves like a strange at-
tractor familiar from the study of dissipative systems.
We have characterized the chaotic regime in terms of the
Lyapunov exponent and fractal dimensionality of this
"strange attractor. " The motion of the phase point in

[q,p, (I space provides many attractive pictures.
The oscillator calculations suggest the need for some

caution in applying Nose's dynamics to the simulation of
statistical-mechanical systems. Just as in the case of
Newtonian mechanics, it appears that Nose and Gaussian
mechanical systems, if they are simple enough, are incon-
sistent with the usual statistical description. On the other
hand, it is possible, and may be even likely, that the com-
plexity associated wtth fractals and strange attractors is
not generally important. Very simple systems with addi-
tional topological complexity produce behavior we have
been unable to distinguish from truly (quasi-)ergodic tra-
jectories. This includes a problem which requires only a
three-variable phase space for its description, namely a
particle moving in a two-dimensional potential at constant
kinetic energy. Of course, a foolproof test for ergodicity
is still lacking. Perhaps such a test will emerge from the
computational analysis of simple systems like the Nose
oscillator.

In Sec. II we describe three equivalent forms of Nose's
equations of motion. We apply them there to the only
case for which an exact solution is known, a classical ideal
gas.

In Sec. IIt we consider a classical one-dimensional har-
monic oscillator, as described by Nose*s equations of
motion. We concentrate there on analyzing simple limit-

ing cases, the recurrent and nearly recurrent orbits which
occur in the weak- and strong-coupling limits.

In Sec. IV we present a numerical study of the chaotic
regime which lies between the limiting cases discussed in
Sec. III. The behavior found is discussed using standard
techniques —Lyapunov exponents and Poincare phase-
space sections. Many of the phase portraits of the simple
oscillator are surprisingly pretty.

In Sec. V we consider two s1ightly more complicated
systems, using the same equations of motion, a two-body
problem with Nose dynamics and a two-body problem us-
ing Gaussian dynamics. These problems involve, respec-
tively, five and three phase-space variables. In both cases
it appears that the behavior is different from that of the

Nose oscillator, so that statistical mechanics can probably
be applied to most systems of interest.

Section VI is a short summary of the work presented
here together with speculations on extensions of Nose's
work to treat more complicated kinds of physical prob-
lems.

II. ISOTHERMAL EQUATIONS OP MOTION:
NOSE'S DYNAMICS

Nose succeeded in reproducing Gibbs s canonical distri-
bution from isoenergetic dynamics. To do this, he con-
sidered an augmented system with an explicit one-
parameter heat bath. The equivalence of the dynamical
phase-space distribution with Gibbs s canonical distribu-
tion has been established in two somewhat different ways:
by integrating the microcanonical distribution over the
heat-bath variable and its conjugate momentum ' or by
direct calculation of the extended phase-space flow gen-
erated by the dynamics. ' For either proof it is necessary
to assume that the augmented system behaves in a
quasiergodic way, approaching closely all accessible points
in phase space during the course of a long-time trajectory.

Nose's approach can be generalized in many ways. For
instance, equations of motion which control moments of
the velocity distribution beyond the second can be con-
sidered. These can be applied to the study of energy-
sensitive processes, such as shock-wave-induced chemical
reactions, but we will not consider them here. Likewise,
by developing equations of motion designed to reproduce
known quantum expectation values, classical mechanics
could be generalized to estimate unknown quantum prop-
erties. We developed neither of these straightforward gen-
eralizations of Nose's ideas here.

Nose's many-body Hamiltonian,

P2 p2

2 +@+& +&Dks Tins,
27?f I$ 2

can be made the basis for many different forms of iso-
thermal canonical equations of motion. In (1), D is the
dimensionality of the N-particle system. The momentum
P„ithwan effective mass 1/a, is conjugate to the dimen-
sionless "time-scale" variable s. We discuss the meaning
of scaled time below. The thermodynamic temperature T
is coupled to the time development of the trajectories
through the kinetic energy. The potential energy
which depends upon coordinates Q;, represents the in-
teractions of all particles making up the system. The
time-scale or "effective-mass" variable s, and its conjugate
momentum P„interact collectively with all of the degrees
of freedom [Q;,P; ) of the particles. To make the present
work self-contained, we will first describe the series of
transformations linking the three forms of Nose's equa-
tions of motion together. We include the solution for the
ideal-gas case. The reader wanting more details should
consult Nose's original work as well as Ref. 14.

The equations of inotion from the Hamiltonian (1) are
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Q;=P;/m s, P;=F;
p2

1
s =aP„P,=—g 2

D—kti'rS; 72k S

(2) s =exp Hiv —ip —(2/2a —g p2/2m, . NDkti T

For any solution of these equations the Hamiltonian (1) is
the corresponding constant of the motion. Other forms of
the equations of motion can be obtained from (2) by time
scaling. Nose suggested scaling the time in such a way
that all the time derivatives in (2), expressed in terms of
"scaled-time" derivatives, are made larger by a factor of s.
The time scale varies such that (d/dt)„,„=s(d/dt),i' or,
equivalently, so that dt„,„=dt,~z/s. Expressed in terms
of derivatives with respect to the scaled time t„„andstill
using the dot notation for these new time derivatives, the
equations (2) become

Q; =P;/m;s, P; =sF;,

from which the momenta in the Nose description can be
calculated.

The dynamical equations are relatively complicated for
most systems, yielding a chaotic motion even for the pro-
totypical stable system, a harmonic oscillator. The D-
dimensional N-particle ideal gas can be worked out in de-
tail, as Nose emphasized. In that case all of the forces F;
are zero and it is convenient to introduce the variable
X =ln[ g (p;/m;)/D&kti'r]. Equations (5) reduce to a
simple second-order differential equation for X:

X= —2aDNkti T[exp(X) —1] .

p2
s=saP„P,= g Dktr T—

tPEI S

(3) Thus the kinetic energy behaves like a particle oscillating
in a nonlinear Toda potential

ff=2aDXkti T[exp(X) 1 —X—]
where F;=—V;4 is the force acting on particle i It.
needs to be emphasized that the trajectories in QpsP,
space from (2) and (3) are identical, but they are traced
out at different rates. The time-scale variable s (which
could also be thought of as an effective mass ms ) just
plays the role of a clock. Any other clock could be used
with any dependence whatsoever on Q;, P;, s, and P, or
even on variables outside that set. Still the trajectories
would trace out the same curve in QPsP, space. Both sets
of equations (2) and (3) clearly have the same constant of
the motion, H~.

An even simpler description of the motion is obtained
by transforming to new variables q;, p;, and g according
to

qi=Qii pi ™iqi= pi d lils =aP, .s' dt

In this representation the equations of motion assume the
orm

4

qi =pi/mi ~

(=a g (p;/m; Dkti T), —

which simplifies the dynamical description by reducing
the phase-space dimensionality by one. The friction coef-
ficient g couples the E-particle system to a heat bath
maintaining a constant temperature T. Equation (1) is
still a constant of the motion and may be expressed in
terms of our new variables according to

H = g p;/2m;+4+NDkrr T J g(t')dt'+g /2a . (6)

Using the equations of motion (5), only q;, p;, and g (or
P, =g/a) are given by the solution, where p; in (5) is the
original Nose P; divided by s. This solution is indepen-
dent of H. But, from the initial value of the Hamiltonian
(1), in which the integral over time does not occur, s may
be obtained,

with a definite frequency and amplitude. For small a the
variable X oscillates with a frequency of order Wa. The
momentum of each particle oscillates in magnitude but
remains fixed in direction. Thus the Nose thermostat is
not sufficiently powerful to force a gas into the canonical
distribution in velocity space. The lack of a closed-form
integral for motion in the ideal-gas case (8) suggests that
only perturbation or numerical approaches will be useful
for more comphcated (i.e., nonzero) potentials.

III. HARMONIC-OSCILLATOR NOSE MECHANICS:
REGULAR TRAJECTORIES

The one-dimensional classical harmonic oscillator is
qualitatively a much more complex problem than is the
ideal gas. The interaction between the fundamental oscil-
lator frequency and the frequency associated with the
heat-bath variable s leads to a wide variety of regular and
not-so-regular trajectories. For simplicity we introduce
reduced variables by choosing m, &m/k, and Qkti T/k
as units for the mass, time, and length scales, respectively,
where m is the mass and k the spring constant of the os-
cillator. If the same symbols are used for the original and
reduced quantities, the Hamiltonian (1) for the one-
dimensional Nose oscillator can be written as

Q =P/s, P = —Qs,

s=saP„P,=P /s —1 .

Transformation to new variables as in (4),

q =Q, p =P/s, g= =aP, ,
d lns

dt
(12)

leads to the alternative q,p, g representation of the Nose

Q2 P2 aPs
H~ —— + +lns+

2 2$ 2

After time scaling by the scale variable s, the equations of
motion follow from (3):
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oscillator, for which the Hamiltonian (6) may be tran-
scribed:

2 2 2 EH= q + p + ~ + I g(r')Ch'.
2 2 2a

(13)

The equations of motion (5) assume the particularly sim-
ple form

(14)

The oscillator coordinate and momentum are q and p.
The friction coefficient maintaining the reduced tempera-
ture equal to 1 is g. It is obvious from (13) and (14) that
the physics of the Nose oscillator depends on a single pa-
rameter, the coupling parameter a.

There is an extensive literature recommending methods
for finding the solution of such equations as asymptotic
series in a=@a, valid for times small with respect to
1/e. 's' But it is actually considerably simpler, given the
simple structure of the equations, to guess the form of the
solution from numerical solutions. In the analysis it is
convenient to use an energy E'=(q +p~+g /a)/2 so
that E'= —g. As an example we consider the case H =1
with the initial conditions qc ——0, pz

——v 2, gz ——0. The
Fourier-series solution has the form

(e)

E' = 1 ——,
' (e aint)~+ —', [esin(er/2)]

,
', e~r sin(—2t—)+0(a ) (15)

for times less than 2rrle The err.or includes terms of or-
der ear . For solving the equations of motion (14) we used

Hamming's predictor-corrector method of order 4.2c

With a time step of 0.001 and double-precision arithmetic
on an Hp-A600 + computer, we had no difficulty in gen-
erating solutions with the constant of the motion (13)
fixed to eight figures up to 2X 10 time steps (a = 1).

A Newtonian oscillator traces out an ellipse with two
turning points for q and for p at which p and q vanish.

(c)
FIG. 2. Periodic orbit of the Nose oscillator for a=1 and

n =1, where n is the number of maxima of p. (a) sho~s a per-
spective view of the trajectory in the phase space of the modi-
fied q,p, g representation, whereas (d) depicts the same trajectory
in the original Nose variables Q, P,s,P, . The coordinate axes are
only drawn outside the cube with the origin at its center. Initial
condition: (a)—{c), qo ——0 p0=1.55 gp=0' (d)—{f) Q0=0,
Pp= 1.55, $0= 1, P p=0. The indicated range of scales corre-
sponds to the edges of the cube for (a) and (d) and to the lengths
of the axes for the projections: (a)—(c), —2(q(2, —2(p &2,
—2((&2; {d)—{f), —2&Q &2, —2&P &2, —2&aP, &2.

FIG. 1. Regular trajectory of the Nose oscillator for a=1.
The q,p, g axes are only drawn outside the cube with the origin
at the center. Initial condition: qo ——0, po ——2, go

——0. The range
of scales is indicated by the edges of the cube: —1&q &1,
—3&p &3 —8&/&8.

This Newtonian ellipse is transformed into a KAM
(Kolmogorov-Arnold-Moser) torus for small values of the
perturbation a. As the trajectory spirals around this
torus, g oscillates at twice the fundamental oscillator fre-
quency. This follows from the quadratic driving terms in
the equation of motion for g, which changes sign four
times per cycle as p passes through the values 1 and —1.

For larger values of the perturbation parameter a both
regular and chaotic solutions can be generated. The latter
will be discussed in the following section. The regular
solutions are generally quasiperiodic and trace out KAM
tori in phase space. An example is shown in Fig. 1 for
a= l. For particular sets of initial conditions the tori de-
generate into periodic orbits. In the following a classifica-
tion of the possible reentrant orbits is given. Without loss
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(e)
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FIG. 3. As in Fig. 2 for a=10 and n =1. Initial condition:
(a)—(c)» qo=O» po=2 25» go=0» (d)—(f) Qo=O Po=2 25
sp= 1, P p=O. Scales: {a)—(c), —0.8 &q &0,8, —2.S &p &2.S,
—6&/&6; (d)—(f), —0.8&Q&0.8, —2.5&P(2.5, —6&
aP, &6.

FIG. 4. As in Fig. 2 for a=10 and n =S. Initial condition:
(a)—(c), qo=O po=1 036» go=0» (d)—(f) Qo=O» Po=1 036»

sp= 1, P p=O. Scales: {a)—(c)„—S &q & S, —3 &p & 3,
—6&/&6; (d)—(f), —5(Q &5, —2.5&P (2.5, —6&aP, &6.

of generality we restrict ourselves to the symmetrical ini-
tial conditions qo ——0, po&0, go ——0.

In Fig. 2 a perspective view of the simplest possible
reentrant orbit for a= 1 is shown both in the modified
variables q,p, g of (14) and in the original Nose variables

Q, P,P, of (11). Projections onto the q-p
coordinate —momentum plane and the g-p friction
variable —momentum plane are also drawn. The full qpg
trajectory is a simple twisted loop characterized by a sin-
gle maximum of p. A moderate variation of the initial
conditions results in a torus such as that depicted in Fig.
1.

If the perturbation a is increased to a = 10, the simplest
possible reentrant mode again shows one maximum in p
as is reproduced in Fig. 3. By decreasing pz, however, it
is possible to generate modes with up to n =6 maxima of
p. The case n =5 is plotted in Fig. 4.

If a is increased further, the situation does not change
qualitatively except that orbits with a much larger n be-

come possible. This is demonstrated in Figs. 5—7 for
a=100 and n =1, 9, and 19, respectively. The different
appearance of the trajectories in the q,p and Q,p, s,P, rep-
resentations is striking. The initial conditions for reen-
trant orbits and the times ~0 required by the oscillator to
complete a full cycle using (14) are listed in Table I.

Our results show that reentrant trajectories with wind-
ing ratio zero inay be classified in terms of the number of
turning points of p and q or, alternatively, by the number
n of maxima of p. These orbits are stable in the sense
that the numbers of oscillations or of turning points are
not changed by small variations in the starting conditions
or in the friction strength a.

In the limit of large perturbation a the periodic orbits
have a particularly simple appearance and are partially
amenable to an analytic solution. We consider two limit-
ing cases.

Case 1. a &&l, p close to 2. These conditions are met
by the high-frequency limit illustrated in Fig. 7. Putting
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(c)

FIG. 5. As in Fil;. 2 for a =100 and n = .n =1. Initial condition:
(a)—(c), qp ——0, pp ——3.16, gp ——0; (d)—(fl, Qp ——, p

——.Os PC=3. 16
=1 P =0. Scales: (a)—(c), —0.5&q &0.5, —3.5&p&3.5,0 7 $0 ' ' 7

—30&/&30; (d)—{fl, —0.5&Q &0.5,
—30&aP, &30.

. 6. A
' F' 2 for a=100 and n =9. Initial condition:

(a)—(c) qo = po = . 0—=0 =1.43 g =0; {d)—(f), Qp ——0, Pp
=1 P =0. Scales: (a)—(c), —4.5&I&4.5, —3. &p&so =, gp= . . —, . 3.

—20(g(20; {d)—(f), —4. 5 &Q&4.5,
—20&aP, &20.

(=2a5, q =t+g/2a .

Furthermore,

5+2a5+1=0 .

(17)

The solution to these equations to ordeorder 5 and 1/2a is
given by

5o
q =t+ sin(v 2at),~2a

p =1+5pcos(~2at),

t +5ov 2asin(v —2at),

This represents an orbit spiralling around the axis

p =1+5, 5((1,
and using the initial conditions qp ——0, pp= + p p ——,=1 5 =0,
the equations of motion (14) yield

P = 1, g = —q, as is easily verified also from Figs.
7 a —7(c). As we change to the original Nose variables ac-
cording to (12), we find (to the same order of 1/2a and )

6p
Q =t+ sin(v 2at),~2a
P = ( 1+5p)exp( t /2), —
s =exp( —t /2) I 1+5p[ 1 —cos(v 2at)] ),
aP, = —t+5pV2asin(v 2at) .

Except for modulations of order p, pa lot of P versus Q
1 G ian exp( —Q /2) which is verified also by

n in Fi . 7(e).the numerical solution of (11)as shown in Fig. e .
Case 2. a&&1 and p &&1. This case is met by Fig. 5.

Neglecting 1 as compared to p in, ein (14), the energy
/2+ /2+/ /2a is a constant of the motion.

The trajectory moves on the surface o an e ip

E'=q +p

the main axes of lengths &2E', v'2E', &2aE' along the
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TABLE I. Initial condition for reentrant Nose harrnonic-
oscillator orbits, qo

——0, po, go ——0, for three perturbations a.
The integer n measures the number of p maxima, and rp is the
time required for the oscillator to complete a full cycle using

(14).

Pp

1.55

Tp

5.58

10 2.25
1.44
1.036
0.925
0.72
0.27

3.25
8.66

14.10
17.92
11.31
6.06

(e)
'P

1

3

5

7
9

11
13
15
17
19

3.16
2.51
2.04
1.69
1.43
1.25
1.135
1.068
1.028
1.0085

1.36
3.58
5.38
7.02
8.62

10.25
11.92
13.63
15.36
17.11

IV. HARMONIC-OSCILLATOR NOSE MECHANICS:
CHAOTIC TRAJECTORIES

FIG. 7. As in Fig. 2 for a=100 and n =19. Initial condi-
tion: (a)—(c), qo

——0, pa=1.0085, gp=0; (d)—(f), Q0=0,
P =1.0085, so ——1, P,o ——0. Scales: (a)—(c), —4.5&q &4.5,
—3.5&p&3.5, —20&/&20; (d)—(f), —4.5&Q&4.5,
—1.5 &P &1.5, —20&aP, &20.

q,p, g frame of reference, respectively. For this case, (14)
can be simplified, and the resulting equations

(21)

have the solution

p/po ——sech(gt),

g/rt =tanh(qt ),
tan(v aq) =sinh(gt),

(22)

where the relaxation rate g is v apo, and po is the initial
momentum. These equations describe the motion in parts
(b) and (c) of Fig. 5, replacing the figure-eight in part (c)
by its limiting large a form, an ellipse. These "large a"
relations describe only the "large p" portion of parts (c)
and (f) of Fig. 5.

For sufficiently large a the regions of phase space in
which regular orbits are possible are surrounded by re-
gions in which the oscillator generates chaotic trajectories.
In Fig. 8(a) a perspective view of such a trajectory in the
first octant is shown. The complexity of this structure
changes as a is increased. It can be studied by construc-
ting Poincare maps of sections for the plane q =0. In
such a map, regular trajectories produce either a finite
string of dots along the surface of a KAM torus, if the
winding ratio is a rational number, or. a closed loop for ir-
rational winding ratios. Chaotic trajectories generate in-
stead a filled or at least fractal region with dimensionality
greater than two and dimensionality greater than one in
the Poincare map.

In Fig. 9 a series of such Poincare sections for increas-
ing a in the qpg representation of (14) is shown. It should
be stressed that these maps are independent of the value of
the Hamiltonian and, consequently, of the initial condi-
tions as long as the latter are in the big stochastic domain
of the phase space. In principle, the Poincare sections of
Fig. 9 cover an infmite range rather than finite range of
the pg plane. This can be traced to the presence of the
logarithmic term in the Nose Hamiltonian (10). In this
respect there is a difference between the Nose oscillator
and the Henon-Heiles and the double-pendulum cases
mentioned before. In practice, however, the oscillator's

qpg trajectory reinains in the vicinity of the origin for
times accessible to numerical simulations. This is demon-
strated in Fig. 8(b), where a chaotic trajectory with wild
initial conditions is followed for a long time and on a
large scale. It behaves like a strange attractor familiar
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FIG. 8. (a} Perspective view of a chaotic trajectory of the
Nose oscillator in the first octant of phase space for a=1.5. In-
itial condition: q0=0, po ——5, (0=0. The range of scales
marked by the cube is 0 & q & 3, 0 &p & 5, 0 & g & 5. {b) Perspec-
tive view of a chaotic trajectory in phase space for a = 10. Ini-
tial condition: q0=150, p0=200, go= —200. The range of
scales marked by the cube is —200&q &200, —200&p &200,
—500 & g & 500. The trajectory is followed for times
t &3000(=3X10' time steps). The constant of the motion (6),
H =33250, varies along the trajectory by less than 0.02.

from the study of dissipative systems. Since the Nose-
oscillator problem basically derives from the Hamiltonian
(10) we use the term "strange attractor" merely to charac-
terize our experimental findings. If any of the variables
involved can be practically infinite on the energy shell the
system cannot possibly be ergodic within finite time.

In Fig. 9 there are large enclosed islands of stability ac-
cessed by regular orbits (periodic and quasiperiodic).
Each big island is possibly subdivided further by thin
chaotic sheets ' which separate different regular KAM
solutions. Since these chaotic sheets —if they exist—are
disconnected from the big chaotic sea, they would not
show up in the Poincare maps of Fig. 9. In this paper we
restrict ourselves to the study of the chaotic sea. Particu-
larly for small values of a, the big islands of stability are
separated by rather thin walls of the chaotic domain.
This can also be visualized froin the plot of Fig. 8(a).

FIG. 9. Poincare map of sections p vs g at q =0 for the Nose
oscillator. The pictures are obtained for the same constant of
the motion, but for different values of the perturbation a. Ini-
tial condition: qo

——0, po ——5, go
——0. Parameters and range of

scales: {a) a=0.66; —5&/&5, —4&p &4; (b) a=1;
—5&/&5, —5&p&5; (c) a=1.5; —5&(&5, —5&p &5; (d)
a=3; —5&(&5, —5&p &5; (e) a=10; —10&/&10,
—5&p &5; (f) a=100; —30&(&30, —4&p &4.

These walls move with changing a, which may lead to
rather dramatic changes in the appearance of the Poincare
map. With increasing a the number of stability islands
increases. Each such island may be indexed by the num-
ber n of maxima of p of the corresponding regular orbits.

Let us turn briefiy to the question of how chaotic
motion is generated. In Fig. 10(a) a projection of a sto-
chastic trajectory (a=10) onto the pq plane is shown.
For short-time intervals the trajectory follows the "dog-
bone" pattern similar to that of regular trajectories fami-
liar from Figs. 2(b)—7(b). For large enough a, switching
between different patterns may occur. In this case the
chaotic motion may be viewed as a bifurcation
phenomenon mixing almost reentrant modes. The same
situation in terms of the original Nose variables is shown
in Fig. 10(b).

We may construct Poincare maps of sections (Q =0)
also in the QPsP, representation of (11). For Q equal to
zero, the condition for the Poincare section, and P, fixed,
the maximum value of I' can be achieved by maximizing
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Bj Bp Bg d InV

Bq Bp Bg dt

This measure of the changing phase-space volume seems
not to be related to the Lyapunov instability or fractal
dimensionality. Fundamentally, our system is described
by Hamiltonian mechanics. Thus the expansion and con-
traction of the phase volume, described in terms of scaled
variables, is only a result of the changed time scale and
has no fundamental physical significance.

The stochasticity present in a strange attractor can be
described in terms of its Hausdorff dimension and the
Lyapunov exponents. In the following we outline the es-
timation of these or related quantities for the Nose oscilla-
tor.

A. The fractal dimension

A quantity closely related to the fractal dimension is
the correlation exponent introduced by Grassberger and
Procaccia. z ' 3 It is defined by the power-law dependence
of the correlation integral

Q

FIG. 10. Projection of a short part of a chaotic trajectory of
the Nose oscillator onto the {a) q,p plane (scale: —3.5 & q & 3.5,
—5 &p & 5) and (b) Q, P plane {scale: —3.5 & Q & 3.5,
—3 &P & 3) for a = 10 and the initial condition qp =0,
po=1.75 go=0.

2~&' Ili,

,
$R-

)N}IFPgg

~) ll

the Hamiltonian (10). From BHN/t)s =0 at constant Q
and I', we obtain

P =s =exp(H& aP, /2 —,
'

) .— — (23)

Thus a Poincare map for Q =0 in the original Nose repre-
sentation is bounded in the I' direction by a Gaussian in
contrast to the unbounded qpg case of Fig. 9. In Fig.
11(a) a Poincare section ( Q =0) for a=10 is reproduced,
where we have plotted sgn( ~P

~

—s) ~P
~

instead of P.
This helps to distinguish between the cases

~

P
~

&s
(dots in the upper half of the Poincare plane) and

~

P
~

&s
(lower half). In order to establish a correspondence be-
tween these different representations, it is convenient to
modify Fig. 9 by plotting sgn(

~ p ~

—1)
Xmin(

~ p ~, 1/
~ p ~

)exp( —g /2a) —instead of p—versus

g for q =0. A comparison of such a plot in Fig. 11(b)
with Fig. 11(a) shows a close correspondence between
these two different representations.

It is useful to notice that, for fixed g, the equations of
motion (14) are those of a damped oscillator (g & 0) or an
exponentially unstable oscillator (/&0). Motion in the g
direction produces trajectories with (g) equal to zero
composed of expanding parts and contracting parts. g is a
direct measure of the (comoving, or "Lagrangian" ) rate of
contraction of the phase-space volume, the Lie derivative:

~ ~
t

t': Q~'.tf+
ggl w ' ~

:a

. ~ 'i a(, .
LJ

FIG. 11. Poincare map of sections for the Nose oscillator for
a=10. (a) In the original Nose variables: Any cut of the trajec-
tory through the Q =0 plane generates a point {ap„

t
P

~
}, if

~

P
(

&s, and a point {aP„—
~

P
~

}, if
(
P

~

&s. Scales:
—6&aP, &6, —2X10'&ordinate&2&10'. (b} In the modified

qpg variables: Any cut through the q =0 plane generates a
point (g, ~p ~

'exp{ —g'/2a}}, if
~ p ~

& 1 {upper half of the
plane) and a point {g,—~p ~

exp{ —g /2a}}, if
~ p ( & 1 (lower

halfl. Scales: —6 & g & 6, —l & ordinate & l.



POSCH, HOOVER, AND VESELY 33

C(R)= f dXg(X)-R", (25)

where the pair-distribution function g (X) is the probabili-
ty density of finding two randomly chosen points on an
attractor with a phase-space separation X. It may be ap-
proximately calculated froin

Fig. 12 for a larger than O. l fit the experimental data well

in the distance range in which scaling is expected to hold.
Their slopes are consistent with a fractal dimension d
equal to 3 in view of the fact that v is a lower bound of d.
This indicates that the trajectories of the Nose oscillator
are phase-space filling and —at least from the standpoint
of fractal dimensionality —could be canonical.

The curve for a=0. 1 in Fig. 12 corresponds to a regu-
lar trajectory. It scales according to a dimensionality
v=2 for small values of R (dashed line in Fig. 12} and
v= 1 for large R reflecting the properties of a torus.

g(X)= g g S(X+X,—X,),N N —1
(26)

where the X; denote a series of N phase-space points on
the trajectory separated in time by equal time intervals r.
Using the algorithm of Ref. 22 we have evaluated C(R)
for the Nose oscillator in the qpg representation for
selected values of a. The results are given in Fig. 12. The
scaling relation (25} is well obeyed over a large range of
distances R for intermediate a values around 3. This con-
dition corresponds also to large values of the Lyapunov
exponent A, . If the phase space accessible to the chaotic
trajectory has a sheetlike structure such as for a=1 [Fig.
9(b}], this distance range R, for which the scaling relation
(25} holds, is drastically reduced. The straight lines in

B. The Lyapunov instabiiity

The exponential divergence of two nearby trajectories in
three-dimensional phase space can be described by the
three Lyapunov exponents. We have evaluated the largest
exponent, henceforth denoted by A, , for a whole range of a
values (see Fig. 13). In the original method by Benettin
et al. of calculating, 24' ' two trajectories separated by dz
at r =0 are followed in phase space. The second trajecto-
ry is kept close to the "reference trajectory" by periodical-
ly rescaling its phase-space coordinates to reduce the
offset length to do (method A). Another procedure by
Contopoulos et al. avoids rescaling by solving simul-

taneously the equations of motion and the corresponding
variational system for a single trajectory (method B).
However, for large time t the variables of the variational
system assume extremely large values which again neces-
sitates periodic rescaling. We have used still another
method described in more detail in Ref. 26, which solves
the equations of motion for two neighboring trajectories,
where the phase-space offset of trajectory 2 is kept con-
stant in absolute value by adding a constraint force to its
equation of motion (method C). If X2 ——(q2,p2, (2)
denotes a phase point on trajectory 2, this gives

0
I a-0.1I ~

''

0
lX

CO
0

=4

~ ~ ~

X2=X2(Xi}—p(X2 —Xi), (27}10

~ ~

where
=30 0

(X2—X)) [Xi(X2)—Xi]
(X2—X)) (X2—Xi)

(28}
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FIG. 13. Lyapunov exponents A, as a function of the pertur-
bation parameter a for given constant of the motion {H=12.5;
qo ——0, po ——5, (O=O) of the Nose oscillator. The time step ht
used for the simulation varied from 0.05 for a & 10 to 0.001 for
a =100. At least 10 time steps are calculated for each point.

FIG. 12. Dependence of the correlation integral C{R)on the
upper integration limit R of Eq. (23) for various perturbations a
of chaotic Nose-oscillator trajectories with initial condition

qo ——0, po ——5, go
——0. Parameters of the simulations: a=0.6;

N =20000 v =1000ht =5; a=1.0; N =25000, ~=1000ht =5;
a=3.0; N =20000, s=1000ht =5; a=4.0; N =15000,
r=1000ht =5' a=10.0; N =20000, ~=2000ht=6; a=30.0;
N =20000, ~= 10005t =2.
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The unconstrained equations of motion follow from
(14)

V. T%'0-DIMENSIONAL CHAOTIC PROBLEMS
%'ITH FIVE- AND THREE-DIMENSIONAL

PHASE SPACES

X,(X2)= —qi (2—.pz

a(p2 —1) .
(29)

If the trajectories are followed for a time T, the Lyapunov
exponent may be calculated from the average

1 1 T
X=(ln =(pl= —J pdt .

1 —P T
(30)

This average is most conveniently evaluated by augment-
ing the equations of motion for the two trajectories with
an additional equation integrating P with respect to time.
Using a fourth-order Runge-Kutta algorithm z the con-
vergence of this method is demonstrated in Fig. 14. The
integration steps may be chosen much larger for this
method than for the original algorithm employing period-
ic rescaling. In all simulations an offset distance
do&0.001 is used. The estimated accuracy is 2% for
large values of A, and 6% otherwise. If the Lyapunov ex-
ponents are plotted as a function of the coupling strength
a (Fig. 13), a rather complicated picture emerges. The
magnitude of A, is related to the width of the chaotic re-
gime in the Poincare maps of Fig. 9, a voluminous sto-
chastic sea corresponding to a large I.yapunov instability.
The deep minima in Fig. 13 are possibly due to tiny is-
lands of stability which make themselves felt by a lower-
ing of A, for trajectories passing near the boundary be-
tween chaotic and regular regimes. Probably many more
minima exist than are discovered and depicted in Fig. 13.
How the breakdown of the scaling relation (25) for large
values of R is affected by the appearance of these islands
of stability remains to be examined.

The lack of chaotic behavior in some regions of the
single-oscillator phase space shows that Nose's equations
of inotion need not produce a canonical phase-space dis-
tribution. Various few-particle modifications of the
single-oscillator calculation using nonlinear forces failed
to pass simple moment tests for Gaussian distributions in
the friction variable or the kinetic energy E. Thus several
distinct kinds of one-dimensional systems are not suffi-
ciently chaotic to distribute a typical initial state over the
entire phase space.

On the other hand, the oscillation of the ideal-gas kinet-
ic energy according to Eqs. (8) and (9) suggests that an in-
teraction with a mechanism for shifting the phase and
amplitude of the kinetic-energy oscillation could link to-
gether all energy shells, resulting in a canonical distribu-
tion. We therefore studied in some detail a system with
two particles in a plane with periodic boundary condi-
tions. The dynamics of such a system in relative coordi-
nates r=qz —qi is the same as the dynamics of the cell
model, in which a particle with a reduced mass
p= mim/z(m +im) zinteracts with a fixed lattice of
neighbors. The particle diameter is denoted by a.

It is convenient to introduce reduced units with p, o.,
and DkiiT acting as units of mass, length, and energy,
respectively. The specific model studied is a square cell of
area 4 with one particle fixed at the cell corners and the
other being free to move throughout the cell. The poten-
tial energy is taken as

3(1 r), r (—1
(31)0, r & 1.

The equations of motion, with a = 1, follow from (5):

p=F —0p (32)

0.08

~ O ~ q y ~ ~ Oy
O P8

' ~ gag 44448
~ yaO 4 4 P 40
4 ~ 44

0.04—

O. Q 2
)o3

FIG. 14. Convergence of time averages of the Lyapunov ex-
ponents of the Nose oscillator for a=3 (qo ——0, po ——5, go ——0).
Open squares: method employing periodic rescaling of the tra-
jectory offset d of trajectory 2 to do ——0.003 every 50th time
step ht =0.001. Closed circles: constraint force method Eqs.
{25)—(28) for do ——0.003 and a time step ht =0.01.

with the provision that the force F is periodic in both the
x and y directions with periodicity equal to two, the cell
length. The numerical integration was carried out with an
accuracy such that the constant of the motion [as derived
from (6)j

0 =4+pz/2+('/2+2 f g(r')d&' (33)

drifted by about one part in 10 per complete collision
(free streaming followed by interparticle interaction). Fig-
ure 15 shows the geometry of the problem and a short
stretch of a trajectory. If this system had a canonical dis-
tribution proportional to exp( —4—p /2 —g /z) then the
moments of the kinetic energy E =(p„+p)/2 and of the
friction g would be (K)=1, (K ) =2, (g )=1, and
(P) =3. The numerical results for these quantities after
10 collisions were 1.00, 2.01, 1.01, and 3.18, respectively.
The relatively large fluctuations found in these two-
particle calculations suggest that these values are con-
sistent with the canonical distribution. In Fig. 16 the nor-
malized distribution of g is shown. It is in good agree-
ment with the Gaussian distribution.

We conclude that in a system with a mechanism for
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G. 6

G. 4

G 3

G. 2

G. 1

Q. 0

FIG. 15. Geometry —in relative coordinates

r=q2 —qi ——(x,y)—of the "two-particle" Nose dynamics in a
square cell of side length 2 with periodic boundary conditions.
The quarter circles of radius 1 centered at the corners indicate
the boundaries for interparticle interaction, particle 1 being

fixed to the corners. A short portion of a trajectory beginning at
point A and ending at point 8 is also shown (a=1, xo ——0. 1,

go =0.2, p 0= 1, pyp= —1, gp=0).

FIG. 16. Distribution of g in the two-particle Nose system.
Solid line, simulation result; dashed line, theoretical (Gaussian}
distribution.

Gaussian system is probably consistent with a canonical
distribution in configuration space.

enhancing instability by velocity scattering off a convex
surface and with a phase-shifting free-flight region (the
region outside the quarter-circle sections of Fig. 15 in the
one-particle case moving in a periodic lattice) the canoni-
cal distribution will be achieved. Thus almost any in-
teresting system should follow the canonical distribution.

It is difficult to make extremely long runs of high accu-
racy in two or three dimensions, but we take the near con-
stancy of the constant of the motion H as an indication
that our results are typical of the actual behavior of Nose
dynamics. Our failure to detect any noncanonical
behavior of the Nose two-dimensional problem led to the
study of an even simpler system with a three-dimensional
phase space, the Gaussian-dynamics limit of the Nose
problem. Gauss's principle of least constraint leads to the
same equations of motion for r and p as Nose's,

r=p p=F —0p. (34a)

But g, according to Gauss, is an explicit function of the
coordinates and momenta, '

g=(p F)/(p. p) . (34b)

With this choice the kinetic energy is a constant of the
motion, and the velocity space in two dimensions is con-
tracted to the perimeter of a circle. We may ask whether
or not the distribution in configuration subspace is canon-
ical, i.e., whether it has the form -exp( —4/p ). With
the potential of Eq. (31) the various moments of the po-
tential energy 4 and of the friction g should then be
(4) =0.14, (4 )=0.11, (4 ) =0.22, (( )=0.78, and
(P)=10.0. A long simulation of the isokinetic motion
involving 9000 collisions yielded the respective values
0.16, 0.12, 0.24, 0.88, and 10.9. Keeping the statistical
uncertainties in mind, we have to conclude that the

VI. SUMMARY AND CONCLUSIONS

The Nose oscillator falls in a broad category of prob-
lems which are not sufficiently chaotic to fill their avail-
able phase spaces. It has relatively many interesting limit-
ing cases and relatively complicated Poincare sections, but
otherwise mostly reinforces the idea that small systems do
not follow a statistical-mechanical average over accessible
states.

On the other hand, the two-dimensional calculations in-
dicate that only slightly more complicated systems prob-
ably do fill their phase spaces in a quasiergodic way. A
careful study of the two-soft-disk system, using Nose
dynamics in a phase space with five variables, led to no
evidence for the failure of statistical mechanics. This sug-
gested an even simpler system, in principle not more com-
plicated than the Nose oscillator. This two-soft-disk sys-
tem, using Gaussian dynamics in a three-dimensional
phase space, still revealed no evidence whatsoever for the
strange-attractor behavior associated with the oscillator.

Based on this evidence we would expect that even very
simple nonequilibrium systems, or quantum systems, with
even more capability for mixing phase space, do indeed
fill their phase spaces in an ergodic way.
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