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Transition-state theory for tunneling in dissipative media
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The recently developed theory for tunneling in dissipative systems is rederived using quantal
transition-state theory. As predicted by Caldeira and Leggett, we find an exponential damping of
the tunneling rate at 0 K. The exponential rate enhancement at low temperatures as well as the

crossover temperature are also obtained with this approach. Moreover, the rate enhancement is

given explicitly in terms of energy transfer from the bath to the dissociative mode. The present
derivation includes memory effects.

I. INTRODUCTION

One of the most useful approximations for obtaining
the rate of bimolecular reactions is transition-state
theory. ' The elements of this theory in its classical
mechanical version are well known. One finds the lowest
saddle point on the potential energy surface which con-
nects reactants to products. At this point —the transition
state —one evaluates the total (canonical or microcanoni-
cal) flux in products' direction, divides by the density of
reactants, and obtains the rate. All the necessary informa-
tion is given via the partition function of the "internal"
degrees of freedom at the transition state and the partition
function of reactants.

The theory, which is well defined classical
mechanically —it provides a variational upper bound for
the classical rate —has also a quantal version. Instead of
classical partition functions one evaluates quantal parti-
tion functions. However, one must also account for quan-
tal tunneling. The best available prescription is to assume
that the motion along the reaction coordinate is separable
from the internal degrees of freedom. It is then very easy
to incorporate a one-dimensional tunneling probability.
In the simplest form, the barrier is taken to be an inverse
harmonic oscillator or an Eckart barrier for which the
tunneling probability is known analytically. Surprisingly,
quantal transition-state theory works remarkably well
even in a harmonic version for the tunneling correction.
In the limit that the frequency of the internal degrees of
freedom is larger than the imaginary frequency of the bar-
rier one expects an adiabatic approximation to be valid.
The fast internal degrees of freedom provide an effective
potential for the reaction coordinate motion. This assures
the separability needed for quantal transition-state theory.
It is well known that quantal transition-state theory is ex-
act in the adiabatic limit. '

In recent years there has been much interest in deter-
mining the effect of dissipation on tunneling. Caldeira
and Leggett have provided a thorough analysis using a
theoretical machinery which is based on the instanton
technique. By integrating out the bath variables they
represent the rate in the form of a functional path integral
which is then evaluated semiclassically along the instan-
ton trajectory. The main result of their analysis is that at

zero temperature, the bath will exponentially dampen the
tunneling rate. Caldeira and Leggett obtain explicit for-
mulas for the tunnehng rate in the low- and high-friction
limits. Chang and Chakravarty evaluated the rate nu-

merically for the entire range of friction coefficient for
the case of Ohmic dissipation. Barone and Ovchinnikov
estimated an interpolation formula. Grabert, Weiss, and
Hanggi have essentially extended the Caldeira-Leggett
methodology to estimate the effect of temperature on the
tunneling rate. Their main result is that for Ohmic dissi-
pation, increasing the temperature of the bath will (in the
low-temperature limit) increase the tunneling rate by a
factor of exp(AT ). Similar conclusions have been ob-
tained by Larkin and Ovchinnikov and Zwerger. These
predictions have been subsequently verified experimental-
ly by Washburn et al. in their measurement of the tun-
neling rate in an isolated Josephson junction.

The quantal theory used to evaluate the tunneling rate
is based on modeling the phenomenological Langevin
equation that governs the tunneling by an infinite set of
harmonic oscillators coupled linearly to the tunneling de-
gree of freedom. It would seem that one should be able to
analyze the tunneling rate of such a system by using quan-
tal transition-state theory (TST) instead of the instanton
technique. This is the main purpose of this paper. In Sec.
II we use the adiabatic formulation of quantal TST to ob-
tain an analytic estimate of the decay rate at zero tem-
perature. We find good agreement with the numerical es-
timate of Chang and Chakravarty. Moreover, the result
is easily generalized to non-Ohmic dissipation. The
theory proposed is based on a renormalization of the
imaginary frequency of the barrier as a result of the cou-
pling to the bath. ' The renormalization factor is provid-
ed by the "reactive frequency" defined by Grote and
Hynes" in their classical mechanical study of barrier
crossing in dissipative systems.

In Sec. III we proceed to estimate the effect of tempera-
ture. The coupling causes a modification of the bath fre-
quencies. If one treats the bath modes adiabatically one
finds that temperature will cause a decrease in the rate of
the order of exp( —AT"). However, if one uses a sudden
approximation one finds that temperature enhances the
rate. At low temperatures one predominantly populates
the low-frequency modes. This justifies the sudden ap-
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proach and disqualifies the adiabatic result. In agreement
with Grabert, Weiss, and Hanggi we find that the power
of the exponential temperature dependence is determined
by the frequency dependence of the spectral density of the
bath. We also find the crossover temperature from tun-
neling to thermal activation as well as the decay rate at
high temperatures. Our analysis leads to the same con-
clusion reached by Hanggi et al. ' based on the instanton
analysis. Finally, in Sec. IV we discuss the implications
of our analysis on future work.

Ii. THE TUNNBI. ING RATE AT 0 K

A. Preliminaries

rl( t) =p(F,„,(0)F,„,(t) ) . (3)

If rt(t)=r15(t) then the GLE [Eq. (1)] reduces to the
simpler Langevin equation (LE). The average in Eqs. (2)
and (3) is over the thermal bath at temperature T
(P= 1/ktt T). The potential V(q) is assumed to have the
general form shown in Fig. 1. At q=0 we assume a

As discussed in detail by Caldeira and Leggett, we as-
sume that the dissipative system is described phenomeno-
logically by a generalized Langevin equation (GLE) of the
orm

Mq+ f drat(r)q(t r)+ — =F,„,(t) . (1)
a V(q)

0 Bq

Here rt(t) is the time-dependent friction coefficient, V(q)
the potential for the particle of mass M and F,„,(t) is the
external Gaussian random force. The random force is as-
sumed to be zero centered,

(F,„,(t)) =0,
and is related to the time-dependent friction via the fluc-
tuation dissipation theorem

where we have assumed that the "ground state" of the os-
cillator at q=0 is well approximated as harmonic. 8o in
the exponent is the tunneling-action integral and is de-
fined as

&0——2 q2M ~q — a2 (5)

Note that the expression used in Eqs. (4) and (5) differs
slightly from the one used by Caldeira and Leggett and
derived by Callan and Coleman. ' Equations (4) and (5)
are derived by the standard %KB method using the well-
known connection formulas. As shown by Miller, ' the
Callan and Coleman result is the R~O limit of Eq. (4). In
any case, since we are dealing mainly with a large barrier,
we will assume that fuuo&& V . This implies that 80 is
for all practical purposes the instanton action.

To evaluate the decay rate in the presence of friction
one models the GI E via a harmonic bath. The total
Hamiltonian is of the form

p2
H = pq+ V(q)+ g + tojxj+ q

1 2mJ 2 ''
mJNJ

Here (pj,x~) are the momenta and coordinates of the jth
bath oscillator whose mass and frequency are mj, toj,
respectively. CJ couples the system to the bath. It is well
known' that the equations of motion for the system
(p~, q) may be written in the form of a GLE where the
time-dependent friction is identified as

C2
rt(t) = g cos(cojt) .

J 7?lJCOJ

The external force is given in terms of the initial condi-
tions of the bath variables (xj,pj ) as

P

F,„,(t) = g CJ xj + q(0) cos(cojt)
J. mJCOj

0

+ Sin(Cdj t )
Ji

7?lJCOJ

The Hamiltonian 0 may be decomposed as

1H =H,„,+Hb„h, H,„,= p +V(q) .
2m '

minimum in V such that the harmonic frequency around
the minimum coo is simply [ V"(0)/M]' . At q', V has a
maximum V', the imaginary frequency at the barrier oi"
is defined as [—V"(q)/M]' . Note that for a cubic po-
tential coo ——co'. The length of the tunneling path qo is de-
fined by the condition V(qo) =0.

If there is no friction then Eq. (1) reduces trivially to a
one-dimensional conservative equation of motion. The
tunneling rate at 0 K is given within the %KB approxi-
mation as'

Ct)0
I o= exp( Bo—/'A)

2m'

FKJ. 1. Schematic diagram of the potential-energy surface of
the metastable system.

If we assume that at time t=O the bath is in thermal (or
microcanonical) equilibrium such that the distribution of
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P(xP,p„)=e
then one can easily show that

initial states is given as

bath jar(e t bath
) (10) r=2

MCOP J l PlJ.QPJ.

(20)

( F,„t(t)) =Tr[P (x p p )F,„t(t)]=0,
and that

(+,„,(t)+,„f(0))=—g(t)
1

(12)

The trace operation is over the bath phase-space variables
(x,p E).

The spectral density of the bath J(co) is

2

J(co)=—g 5(co—coj) .
m

2 ~ 77lJ CtPJ.

(13)

The time-dependent friction [Eq. (7)] may be expressed in
terms of the spectral density

rj( t) =—I dco cos(cot) .2 ~ J(co)
(14)

J(co)=gcoe(co) (16)

implies that for positive time rj(t) =g5(t)—that is, we re-
gain the LE. In Eq. (15), e(co) is the Heaviside unit step
function.

For future use we also define the Laplace transform of
rj(t),

t)(a)= f e "q(t)dt =—f da2 ~ J(co) e
(15)—00 Q) g2+ ~2

Finally the condition

Obviously, the coupling of the system to the bath modifies
both the system and the bath frequencies. We will assume
that the coupling to each of the bath modes is weak. This
is justified since implicitly we are assuming that the main
effect of the bath is changing the system and not vice ver-
sa. Thus, using first-order perturbation theory we find
that the new bath frequencies Aj may be written as

C2
Aj=coj 1+,j=1,2, . . . , N . (21)

J J J2m Mco (co —cop)

Note that for bath frequencies less than the system fre-
quencies, the coupling causes a decrease in frequency.

To find the new system frequency A,p we first note that
Eq. (19) may be rewritten as

2
2 COp

Ap—

'+
M i=i rrtt'cot cot ~p

(22)

Use of Eq. (13) gives the desired result

2
COp

2
y d

J(co)
(

i +2—m

(23)

and it is understood that Q2 must be real and positive. In
Sec. IIC we will provide some explicit solutions for Eq.
(23).

One can repeat the same type of analysis also in the
vicinity of the barrier. Here, we assume that

B. A normal mode analysis V(q)=Vp ——,'M(co') (q —q') (24)

To obtain the tunneling rate we study the properties of
the Hamiltonian in the vicinity of the well and barrier of
V(q). For small q the system Hamiltonian is approxi-
mately harmonic,

V(q) =—,Mcopq (17)

g (co; —A, )[co (I +1)—A, ]

N

i=1 i j (~i)

This implies that by an orthogonal transformation the
Hamiltonian may be written in separable form as the sum
of N+ 1 harmonic oscillators. This is achieved in stan-
dard fashion' by first transforming to mass weighted
coordinates

=~Mq, xj =')) mjxj

and then diagonalizing the (N+1)X(N+1) force con-
stant matrix E defined by the second derivatives of the to-
tal potential energy surface evaluated at q'=xJ'=0;
j =1,%. Let k denote the eigenvalues; then the solution
of the secular equation det(E —)t, I ) =0 may be written as

N
(I-a)z

M(co ) j i mjcoj
(25)

Using first-order perturbation theory we find that the new
bath frequencies are

C2

2Mtrtj coj coj + (co )
(26)

Similarly the new imaginary barrier frequency A,p is given
by the analog of Eq. (23)

2

(Q) =
1+— I dco [co +()(.p) ]

(27)

Here it is understood that (j(,p) is real and positive.
Equation (27) may be recast into an illuminating form by
use of the Laplace transform of the time-dependent fric-
tion [cf. Eqs. (14) and (15)]. One may write

The only change in the secular equation [Eq. (19)] is that
the expression cop(I + I ) on the left-hand side must be re-
placed by (co') [(I ") —1) where
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(~')'

k() + i)(A,o )

Equation (28) is identical to Eq. (4.28) derived by Grote
and Hynes, " with the identification that their reactive
frequency A,, is identical to Ao. As discussed elsewhere, '

this implies that the reactive frequency of Grote and
Hynes may be interpreted as an effective barrier frequen-
cy. Instead of considering the motion in the q direction
subject to friction and a random force we may think of
the bath as providing a renormalized barrier whose height
has not changed but whose direction in configuration
space and whose imaginary frequency is determined by
the coupling to the bath.

C. Dissipative tunneling at 0 K

To obtain the tunneling rate we must know the imagi-
nary action B. In the spirit of transition-state theory we
will use a harmonic approximation around the barrier to
evaluate 8. First, though, one must evaluate the effective
barrier height Ep. As done in quantal transition-state
theory one makes an adiabatic approximation for the bath
modes. Since we are dealing with tunneling from the
ground state of the bath, the adiabatic barrier height will

be the sum of the static barrier height Vp and the differ-
ence in zero-point energies of all modes at the barrier and
at the well. Explicitly,

N

Eo= Vo ——,'iii'Ae+ g —(A,;—X, )
i=1

Ap ——co'[(1+a )'~ —a]=, a= . (33)
b (a) '

2Mcoo

(34)

Equation (34) may be recast into a more illuminating
form by use of the following notation. The barrier height

Vo may be expressed in terms of a harmonic tunneling
length hq as

'2

Vo
—= —,'M(co')

2
(35)

such that hq is the length of the tunneling path through
the harmonic barrier. If we assume that Vp ~p ,

'
Sicko the—n

Eq. (34) may be written as

pip ir Mcop(b, q)
I (a) = exp —— b(a) (36)

The effect of the dissipation on the decay rate may be ex-
pressed in terms of a correction to the undamped decay
rate,

I (a) = I (0)exp
LB

(37)

and

The remaining parameter to be evaluated is Q [Eq. (23)].
For pure Ohmic dissipation it is easy to see that k0 ——~0,
the bath does not affect the well frequency. The decay
rate for the cubic potential is then simply

T

1

V0 ——,Aco0
I = exp —2m b(a)

2m' 0

=Vo —i&~o+ J d~J(pi}I[pi'+(~')'] '
2aM

—(co —oio)
2 2 —1

b8—:—,'Ma)p(bq) [hb(a)],

hb(a)= [b(a) b(0—)] . —
2

(38)

(29)

where to obtain the second line we have made use of Eqs.
(13), (21), and (26). 8 is well known for tunneling through
a harmonic barrier so that our final expression for the
tunneling rate is the simple analog of Eq. (4)

It is of interest to compare the dimensionless damping
constant b,b(a) found from the present TST approach
and the corresponding b,b;„,(a) found via instanton
methods. First we note that

—a+O(a ) as a~O
2

~0
exp

zm

2mE0

fiA, 0
(30)

b b(a)-
m 1 l

m.a ——+——+0
2 4 a as a~oo .

(39)

To assess the accuracy of this approximation we shall

consider first Ohmic dissipation [Eq. (16)] and a cubic po-
tential for the tunneling mode

V{q)=—,'A&02 q' —~ (31}
q0

1.86a+O(a ) as a~O
~& s{a~-. 8ma 16 2m. 1 1+ —+O

Using instanton methods one finds

as a~~

For this potential ~'=~0 and q'= —', q0. The height of
the barrier V0 ———

27 Mco0q0. %ith this choice it is easy to
see [cf. Eq. (29)] that

EP ——V0 ——,
'

AA, 0 .

Also il(Ao ) =rl so that from Eq. (28) we find that

In Fig. 2 we compare our estimate for b,b (a} as given in
Eqs. (33} and (38} with the nuinerical results of Chang
and Chakravarty, an interpolation formula of Barone and
Ovchinnikov, and the result of Riseborough et al. ' It is
reassuring to see that tmo very different approximations
for the decay rate agree so mell.
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l2

IO—

'9

N 2MN

It is easy to see that for small values of 8

5'(8)=5'(0) 1+ . 8 (47)
2[5*(0)+a]

where 5'(0) is the value of the reduced reactive frequency
for Ohmic dissipation. Equation (47) implies that short
memory will increase the reactive frequency and so will
cause an increase of the decay rate. For long memory
(8~00) one finds

5'(8}=1——, (48)
0

FIG. 2. Effect of dissipation on tunneling at 0 K. Ab(a) is
defined in Eq. {38). The solid line is the TST result based on
Eqs. (33) and (38). The dashed line is the interpolation formula
of Ref. 5. The crosses are the exact numerical results of Ref. 4.
The result of Ref. 18 is identical to the corresponding result of
Ref. 4.

D. Memory effects

Having shown that the TST approach provides a
reasonable picture, one can proceed to use this simplified
approximation to analyze memory effects in dissipative
tunneling. ' From Eq. (30) one sees that the main effect
of the bath is the change caused to the imaginary-barrier
frequency. It is easy to show that any dissipation will al-
ways decrease Q relative to the bare-barrier frequency
pi . Since J(co) is by definition a positive quantity, it fol-
lows that for any positive e, rl(e) is also positive. Equa-
tion (28) may be rewritten as

so that one returns (as expected) to the bare-barrier decay
rate. It is easy to see that

d5" 5'[1—(5')i]
&0,3(5' } 8+25'+2a —8

(49)

AQ(rp)
Ep(rp) = Vp—

2

In[(pi') rp] ln(piprp)

4mM (~'} re —1

2
z r) pip 1

Ap(rp) = +2~rp 2 p

(50)

since the denominator must be positive and 0 & 5' & 1. In
other words, memory effects can only increase the tunnel-
ing rate relative to an Ohmic bath.

To complete the analysis for the Drude form of the
spectral density one must evaluate the effective barrier
height Ep [cf. Eq. (29)] and the well frequency A,p [cf. Eq.
(23)]. One finds

(Ap) =(pi') — j(Ap),M
(41)

2M D

' 2 2 1/2
1 Np

+
2rp rp

(51)

which proves the claim.
A more interesting aspect is a comparison of Ohmic

dissipation to dissipation of a frequency-dependent bath.
As an example we will consider the Drude form for the
spectral density

From Eq. (51) it is evident that

cop( 1 —2a lp pp)ras rp ~03

Ag(rp ) —~

p~p(l+alcoprp) as rp~ao . (52)

J(co)= e(co) .
1+co rp

It follows that [cf. Eq. (15)]

rl(e) =rI(harp+ 1)

(42)
In other words, memory only weakly affects the effective
well frequency. Similarly, it is easy to see that for short
and long memory the third term on the right-hand side of
Eq. (50) vanishes. To first order, the main effect of any
memory in the system is the alteration of the reactive fre-
quency A,p.

The time-dependent friction may be obtained by taking
the inverse Laplace transform of Eq. (43). One finds

III. TEMPERATURE EFFECTS
r)(t)= e

7D
(44)

A. Introduction

(5') 8+(5') +(2a —8)5' —1=0,
where we used the reduced notation

(45)

Insertion of Eq. (43) into Eq. (28) and rearrangement gives
a cubic equation for the reactive frequency

It has been predicted by several researchers, ' most
notably by Grabert, gneiss, and Hanggi, that thermal
heating of the bath will enhance the tunneling rate. The
enhancement is dependent on the spectral density of the
bath but generally has the form of a power law in the ex-
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ponent. It is a triumph of the theory that the exp(ATi)
dependence predicted for Ohmic dissipation has been veri-
fied experimentally. The "physical" origin of the rate
enhancement may be understood in terms of the instanton
approach. At finite temperature, the imaginary time tra-
jectory is no longer an infinite time trajectory; rather, it is
periodic with period i)'iP. As a result, its action becomes
smaller and so one has exponential enhancement of the
rate. As temperature is further increased the period be-
comes shorter, till there are no imaginary time trajectories
(except the trivial one that sits on top of the barrier forev-
er). This temperature is then defined as the crossover
temperature from quantum tunneling to thermal activa-
tion. ' At higher temperatures the system behaves essen-
tially classically, the rate-determining step is thermal ac-
tivation to energies above the barrier height.

In this section we will analyze the temperature effect
using the methodology of transition-state theory. At first
glance we find a surprising result. Instead of an exponen-
tial increase we find an exponential decrease of the rate.
The reason for this decrease may be understood in terms
of adiabatic transition-state thixiry. Here one assumes
that the time scales of all the bath modes are faster than
those of the reactive mode. This assumption breaks down
though for the low-frequency modes. This in turn leads
us to consideration of a sudden transition-state theory'
where one assumes that the time scale of the reactive
mode is much faster than that of the bath. As might be
expected, the sudden theory predicts the same exponential
power-law increase of the rate in agreement with the in-
stanton analysis.

XQ
I o(n) = exp-

2m

2m E
Eo+h $ n, (X;—X, )

AA, Q i=1

(53)

Here Ep is the ground-state barrier height, as defined in
Eq. (29).

The thermal rate averaged over the bath is defined as

B. Adiabatic transition-state theory

The adiabatic assumption for the bath modes implies
that if initially the jth bath oscillator is in its njth vibra-
tional state, it will stay in this state forever. If at the well
its frequency is AJ and at the barrier AJ' then as the system
moves from the well to the barrier it will have to over-
come (or gain) the energy difference ( n + 1/2)iri(A&' —lJ ).
In the adiabatic approximation, the bath modes provide
an effective potential for the tunneling mode. ' Within
the adiabatic approximation, if the system is in the
ground state and the bath is in state n, that is n1 quanta
in mode 1, n2 in mode 2, etc., then the tunneling rate
from this state will be

from n; =0, ao and the zero-point energy contribution ap-
pears in both numerator and denominator and so is al-
ready canceled. With a bit of manipulation, Eq. (54) may
be brought to the form

Ap
I o(P) = exp

2m

27T

Akp

—/HER. ,
1 —e

&&~ p,~'=& 1 —e 'exp[(2ir/Ao )(A,; —A,;)]
Denoting

I o(P)
—= I'o( ao )exp[6 S(P)],

(55)

(56)

&S(P)=, 1 dc' J(cu)e ~I (ra coio)—
0

[~2+(~4 )2]—i
I

For Ohmic dissipation [Eq. (16)] and large P one finds
T '2

1

fiP
&S(f3)=— ", , +

Mao ~o'

(58)

(59)

As mentioned, within the adiabatic approximation,
thermal excitation of the bath leads to an exponential de-
crease of the rate.

The reason for the decrease is easily understood. The
coupling of the bath modes to the system causes a shift of
frequencies. At the well, one will always find that the
coupling will lower the bath frequencies that are less than
cop and increase those that are above. The same holds true
at the barrier, except that here the lowest eigenvalue is
( —co') so that all the bath frequencies are increased.
The net result is that the adiabatic barrier height becomes
larger for the low-frequency modes. However, at low
enough temperature, one predominantly excites the low-
frequency modes and the net result is an exponential de-
crease of the rate.

The only fallacy in the adiabatic theory is the adiabatic
assumption. We just saw that the main effect at low tem-
peratures comes from the bath modes for which co~ &coo.
These modes are moving slowly relative to the system so
that the adiabatic assumption fails ' and one must
resort to a sudden approximation.

we find that for low temperatures (large P)

b, S(P)= g exp, (A,; —A,;) —1 e ' . (57)
i=1 AQ

The frequency difference (A,; —A, ,') is small so that the ex-
ponent in Eq. (57) may be expanded. Using Eqs. (13),
(21), and (26) we find

r,(p) =
ge --I o{n)

C. Sudden transition-state theory

Here P= 1/k&T, the summation for the ith oscillator is

In Sec. IIIB we assumed that the dissociative motion
was slow. Here we assume that it is practically instan-
taneous. This implies that the initial bath coordinate xj
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Cj q,
yJ xJ

( M)1/2 2
COj

(61)

does not have time to change. As a result, at the transi-
tion state the bath will not be in an eigenstate of the
normal-mode Hamiltonian of the barrier. Instead, it will
be a superposition of barrier normal-mode states. In other
words, if at the well, the ith oscillator is in the n;th state,
there will be a finite transition probability from this state
to the n;+1, n;+2, etc., corresponding normal-mode state
of the barrier. Such transitions can effectively rixluce the
tunneling barrier and so increase the decay rate.

To estimate the increase one must know the transition
probability. First we note that the "true" eigenstates of
the Hamiltonian at the well are not eigenstates of the bath
Hamiltonian as defined in Eq. (9). However, to obtain the
GLE we have assumed that the bath eigenstates are in
thermal equilibrium. This means that an initial state
described by n; quanta in the ith bath mode, etc., has the
following wave function:

N

g„= ff P„J(x',co ) . (60)
j=1

Here (('1„. are the harmonic oscillator wave functions of an
1

oscillator whose frequency is the unperturbed bath fre-
quency HAJJ,

and whose coordinate is that of the bath mode
in the prescence of the system. xJ and q' are the mass-
weighted coordinates [cf. Eq. (18)].

To obtain the transition probability one must project
this wave function onto the eigenfunctions of the normal-
mode Hamiltonian at the barrier. Denote the (mass-
weighted) coordinate of the jth normal mode at the bar-
rier by yj'. At the barrier

S„~= I dyJ' $~ yJ'—

XP„.(yJ', XJ')

Cj

( M)1/2 2 J
J j

1/2
4

(62)

Since we are assuming that the coupling of the bath
modes to the system is weak, we may evaluate SJ by per-
turbation theory. To first order in CJ2 one finds

~SJ
~

2 1+ J
[ 2+( 4)2]—1

C

4 Mme

C2
(q', ) (2n+1),

MmJ coJ

C2

2A' MmJ~J3

C2

2& MmJcoJ.

(63)

All other overlaps are of the order of CJ and higher. Ac-
cordingly, the decay rate from the ground state of the sys-
tem and the nth state of the bath will be

where q', is the (mass-weighted) location of the barrier
[cf. Eq. (24)]. The oscillator wave functions at the barrier
are p„(yJ', AJ'). The overlap of the mth bath-mode wave

J
function with the nth barrier wave function is then simply

2% 2%
I'11(n ) = exp — ( Vo ——,fiAO) exp — g (n;+ —, )fi(A, ,' eJ;)—

2m' 1riA,O

r

~

S„' „+, ~

2+exp, 11ii,; ~

S„' „ (64)

To obtain the thermal rate at low temperatures one only needs the rate from the ground-bath state (n =0) and the first
excited state, in which one bath state is excited (nJ ——1) and all others are in the ground state. From Eqs. (63) and (64)
one infers that

C2(q ~ )2
I 0(n'=O, nJ

——1)= I 0(0)exp[ (2m/Ao )(A,
* —eJ )] 1+ —

I cosh[2n. (A,"/Ao )]—1 I
Pl~ COJ

Following the same considerations as in Eqs. (54)—(57) one finds

(65)

(q'„) C; —%Pcs,ES(p)= g exp[(2ir/Ao)(co; —J(,,')] 1+ [cosh(2m. i,,'/Ao) —1] —1 e
i=1 m;co,' (66)

Again, the frequency difference (co; —A,,*) is small. Expanding to first order in the C; terms and using Eqs. (13) and (26)
we find

b, S(p)= — J deJ J(eJ) 2, +— I den 2 Icosh[2m. (co/J(,o)]—1] .
00 e +2 -(q')' - Z(~)e

QM F2+ (eJ' )
2 ir 111M CO

(67)
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The first term on the right-hand side (rhs) provides a neg-

ative contribution which has the same origin as the nega-
tive term in the adiabatic case. However, the second term
on the rhs which includes the nonadiabatic terms gives a
positive contribution that overwhelms the negative contri-
bution. Specifically using the harmonic approximation

Vo ———,
' (co') (q'„), and for an Ohmic bath, one finds that

for low temperatures

VpES(P)=, (fiPro') 4n, —1

MQ
(68)

Z' = g [2sinh(%PA. ,*/2)]

For the cubic oscillator potential, Vp ~~@op, so that the
rhs of Eq. (68) is positive —the nonadiabatic contribution
is, as expected, the dominant factor. Moreover, by noting
that for the cubic oscillator q = —,

'
qp and by assuming that

ir/3=1 one can easily show that Eq. (68) is just a constant
factor of 2m /27=0. 73 smaller than the analogous expres-
sion [Eqs. (4.28) and (4.29) of Ref. 6(b)] obtained by Gra-
bert and Weiss. It is also clear from Eq. (67) that if
J(co)-oi" for low frequencies then M-T" +', also in
agreement with the predictions of Ref. 6.

To complete the analysis one should also consider
thermal excitation of the system at the well. However, at
low enough temperatures, the probability of excitation of
even one quantum of i)irpo will be exponentially small and
so would not effect the decay rate to any appreciable ex-
tent.

D. High temperatures

Thus far we have only considered the decay rate in the
tunneling region. As one raises the temperature, the prob-
ability that the system will have energy greater than the
barrier height becomes larger than the tunneling rate. As
a result there is a crossover from tunneling to thermal ac-
tivation. If the barrier height is Eo then theprobabihty
of activation to the barrier height goes as e ' while the
tunneling rate goes as exp[ —(2irliriko)Ep]. We immedi-
ately find that the crossover temperature To is given as

5kp

2mkii

This result has been derived previously, ' ' the only addi-
tion being that by using the transition-state theory ap-
proach we retrieve the simple derivation and have no
need to use functional integration.

For temperatures greater than To (Ref. 25) we use the
well-known transition-state-theory expression. That is,
the rate is the ratio of partition functions at the transition
state and at reactants. At the transition state we have E
oscillators with frequencies A,;; i =1,2, . . . , X and one
imaginary frequency oscillator with imaginary frequency
A,p. The quantal partition function for the N real oscilla-
tors and the one imaginary oscillator at the transition
state is

The quantal partition function at the well is given similar-
ly as

Z = g [2sinh(iriPA, ;/2)] ' [2sinh(fiPA, /2)] ' . (71)

The thermal decay rate is

kr Z' p~, A,p sinh(iiiPA, p/2)
I (P)= =e

sin(A'PA, o /2)

sinh(APE, ; /2)
x

i sinh(iilPA, ,"/2)
(72)

In the limit of high teinperatures this expression reduces
to

Xo -pz, ~
1(P)= e 'g, as P~oo .

21T
(73)

N N

detK
~ „,ii ——Q g A,,'=coo P co,' . (74)

Similarly at the barrier

N

det$'~b ' = —(&p) g(~ )

N

=( N) Q—CO; (75)

and we therefore regain the classical limit

COp A,p —PEoI (P)= „e ' as P~ao .
2K Q)

(76)

The derivation of Eq. (76) from Eq. (73) has been dis-
cussed in detail elsewhere here we just stress that Eq.
(76) is identical to the well-known high-viscosity
Kramers-Grote-Hynes expression" for the decay rate.

If one expands Eq. (72) in powers of fi to lowest order,
one finds the following result:

COp A,p pE1(P)=,e
2V Q)

X 1+ A.,'+(A,o")'+ g [A,
'

(A, ,
'. )']

i=1

However, the trace of the K matrix is invariant to an
orthogonal transformation so that at the well one finds

Tl(E )
~ ~co—Ap+ g Af

Note, however, as shown in Ref. 10, that at the well the
determinant of the force-constant matrix E is

&p~o, , —pE,
[sin(RPAo'/2)] 'e

2=coo+ g &
+co;

m;Mco;
(70)

Similarly, at the barrier

(78)
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Tr(K)
~
„„„=—(A,,*)'+ g (A,,')'

=(—co*) + g &+co; . (79)
m;Mao;

Combining these results and inserting into Eq. (77) leads
to

which is exactly the %igner-type correction term derived

by Hanggi et al. in Ref. 12.
Equations (76) and (80) are actually not too surprising.

In Refs. 12 and 23 they are derived from Wolynes's ex-
pression for tunneling at high temperatures. Wolynes
uses a path-integral evaluation of the reactive fiux-
correlation function. Elsewherei we show, using proper-
ties of the E matrices at the well and barrier, that Eq. (72)
is identical to Wolynes's expression [Eq. (7) of Ref. 25].
Thus the high-temperature results derived here are neces-
sarily identical to the high-temperature limit of the
Wolynes expression.

IV. DISCUSSION

where a harmonic approximation for the barrier is not
very good. However, we showed that it does account for
the inain qualitative effect—the exponential damping at 0
K and the exp(A'r ) enhancement at low temperature.
Moreover, we have given a clear physical picture for the
source of the enhancement. It is simple energy transfer
from the bath to the dissociative mode.

The present study raises several interesting questions.
For a discrete system one can, using numerical methods,
find the "exact" decay rate. Basically, this involves find-
ing a complex eigenvalue of a matrix. With present-day
computing techniques it is possible to find eigenvalues of
very large matrices. Presumably one should be able to
make the matrix large enough so that it will approximate
the continuum reasonably well. In fact, this is a crucial
question with application even to gas-phase reactions-
how many states does one need to effectively approximate
the continuum?

Another related question has to do with the sudden and
adiabatic approximations. As stressed in Sec. III, one
should treat the low-frequency modes using a sudden ap-
proximation while the high-frequency modes should be
treated adiabatically. For an accurate theory, though, one
must know more about the transition from sudden to adi-
abatic dynamics. This problem is today still un-
resolved 21j22/27

The main message of this paper is that one can evaluate
quantal rates of reaction in dissipative media by first solv-

ing for the dynamics of the discrete case and then taking
the continuum limit. In the present paper we used an ap-
proximate solution for the discrete dynamics —the quantal
transition-state theory. Undoubtedly, this approximation
is somewhat simplistic especially at very low temperatures
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