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Hypernetted-chain approximation for three- and four-body correlations in simple fluids
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New approximate integral equations for the three- and four-body correlation functions and struc-

ture functions are derived. These approximations are based on the hypernetted-chain resummation.

The equation for the three-body correlation function satisfies a self-consistency condition, the Born-

Green-Yvon equation, and has the Kirkwood superposition approximation as the leading or nonho-

mogeneous term. Similarly, the new approximation for the third-order structure function has the

convolution approximation as its leading term. In addition to the formalism, numeric solutions are

presented for a Lennard-Jones system corresponding to argon at its triple point and at room tem-

perature (with its triple-point density). At this high density, the integral equations give results signi-

ficantly different from their leading terms.

I. INTRODUCTION

The static properties of a fluid are generally expressed
in terms of few-body reduced distribution functions

g„(ri,rz, . . . , r„) or the closely related few-body static
correlation functions. The theory of the two-body distri-
bution gz(ri, rz) [or radial distribution function g(riz)] is
well developed. In the present work we focus on a theory
of the next two higher-order correlation functions, the
triplet correlation function and the pair-pair correlation
function, both defined below. Aside from providing some
additional insights into the structure of fluids, the pair-
pair correlation function can be used to calculate the in-

tensity of depolarized light scattered from the fiuid'
and in the analysis of the equation of state of a quantum
fiuid, 3 while the triplet correlation function is useful in
the theory of the ultraviolet absorption line-shape
analysis ' and in the calculation of the kinetic energy of a
quantum fluid. 4's

The triplet correlation function contains the same infor-
mation as the three-body distribution function g3(ri, rz, r3}
in an isotropic, homogeneous system. This latter function
has been the subject of much attention during the past
two decades. Molecular dynamics and Monte Carlo simu-
lations have produced "exact" information about g3 at
special choices of the arguments (e.g., isosceles triangles)
in simple fiuids such as the Lennard-Jones fiuid or hard
spheres. 9

Analytic approaches to the theory of the three-body
distribution function often begin with the Kirkwood su-
perposition approximation' (KSA}

g3( 1 2 r3} g( 12}g( 23)g( 31}

although the convolution approximation, given most sim-

ply in momentum space as an approximation for the
third-order structure function

S3(kl~kz~k3) =S(k12)S(k23)S(k31)

where S(k) is the liquid structure function, is useful when

dealing with long-wavelength properties. ' While each of
these has been found to share some qualitative features of
the simulations of the same quantities, the corrections are
significant for many purposes.

A systematic procedure for improving the KSA was
given by Abe in the form of an exponentiated linked clus-
ter expansion for the correction factor to the KSA in
terms of Mayer cluster integrals. ' Stell resummed this
expansion in terms of diagrams which are functions only
of the dressed bond k =g —1.' Rice, Lekner, and Young
demonstrated that the first few Abe corrections produce
significant improvement in the evaluation of the higher-
order virial coefficients. ' Lee and Lee examined the ef-
fect of the first few terms of the Stell expansion upon the
sequential relation, whereby the dimensionless integral
over one coordinate in g3 is given by (N —2}g for an E-
particle system.

More recently, Haymet, Rice, and Madden have
developed a self-consistent approach to the determination
of g and g3 by making use of truncations of the Stell ex-
pansion to provide closure of the Born-Green- Yvon
(BGY) equation relating g (r) to g3.

ka TVlg (r12)= g(r12)V—1 V(riz)

p fd rig3(—ri, rz, r3)V1V(r13),

where U is the two-body potential. ' This produces signi-
ficant improvements over the use of the KSA closure of
the BGY equation.

In this paper we take a somewhat different approach to
the theory of the triplet correlation function which is a
straightforward extension of our earlier theory of the
pair-pair correlation function. ' In that work the fact
that the pair-pair correlation function is given by the
functional derivative of the radial distribution function
with respect to the pair potential was used in conjunction
with the hypernetted-chain (HNC) resummation of g(r)
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to produce an exact linear integral equation for the pair-

pair correlation function in terms of g. Elementary dia-

grams in the HNC equation were omitted to simplify the
integral equation. This result was employed in a calcula-
tion of depolarized light scattering from argon and heli-

um, ' and to produce the equation of state for liquid
He. In the present work we review this theory and

display the results for the pair-pair correlation function as
calculated for argon. Perhaps more importantly, we make
use of the multicomponent version of the equations to ex-
tract a similar linear integral equation for the triplet
correlation function for the single component system.
Numerical results for various Legendre components of
this function are displayed and compared to the KSA. It
is also shown that using the HNC approximation for this
equation as the closure in the BOY equation produces
self-consistency with the HNC approximation for g(r).

Section II contains definitions of the functions of im-
mediate interest and an analysis of this general structure
and physical applications. In particular, we make use of
expansions in Legendre projections to reduce the variables
in the system to a manageable number. In Sec. III we re-
view our derivation of the linear integral equation for the
pair-pair correlation function, which explicitly has the
familiar property that it is a functional only of the radial
distribution function in the case when only two-body
forces are present.

The results of Sec. III are used in Sec. IV and in Ap-
pendix C to produce a related integral equation for the
triplet correlation function. It is shown there that the
most compact expression of this equation has as its inho-
mogeneous term the Kirkwood superposition approxima-
tion. We also demonstrate the self-consistency of our
HNC approximation for the triplet function with the
HNC approximation for g(r)

Section V has a similar analysis for the Fourier
transforms of the correlation functions, which are most
conveniently reexpressed as the structure functions of the
system. As in coordinate space, the inhomogeneous term
in the linear equation for the third-order structure func-
tion is shown to be the simplest approximation for this
function, namely, the convolution approximation.

Numerical results for the example of argon are present-
ed in Sec. VI both at its triplet point and at the triple-
point density at room temperature. At this high density
we find significantly different results from the simpler ap-
proximations referred to above. We also show that there
are signs of close-packed solidlike correlations appearing
in the 1=6 Legendre component of the triplet correlation
function.

In Appendix A we describe Monte Carlo and
molecular-dynamics procedures which are relatively
straightforward methods for simulating the triplet and
pair-pair correlation functions. The molecular-dynamics
method has the added advantage that it can be used to
simulate the time dependence of the pair-pair correlation
function in classical fluids.

II. CORRELATION FUNCTIONS

In this section not only the usual distribution functions
are defined, but the new functions —the triplet and pair-

~here the angle brackets denote the usual thermal aver-
age. For a uniform system, n i(r) =N/Q=p and

n2(ri, r2)=p g(ri —ri) where g is the radial distribution
function. In this definition of g we are implicitly making
use of the translational invariance of the fluid, which also
requires that the thermodynamic limit be taken, N~oo,
Q~ 00, while p is held constant. Care must be exercised
in taking this limit when the quantities of interest include
explicit cancellation of the leading order in N, as is the
case, for example, with the pair-pair correlation function
defined below. The dimensionless functions g, are con-
veniently defined as

g, (ri, r2, . . . , r, )=p ',n(r ir ,q. . . , r, ) . (2.2}

A convenient notation exists when the average of an n

body operator is needed. For example, if A, and A2 are
one- and two-body operators defined by

Ai ——ga~(r;) (2.3)

and

A2 ——g a2(r; —rj ), (2.4)

then the thermal averages are given by

& A, ) = g (a, (r;)) =p fdra, (r)gi(r),
l

( A2) = —,
'
p fdri fdr2a2(ri —r2)g2(ri, ri) .

(2.5)

(2.6)

For a uniform system the radial distribution function g is
then given by

g ( rl —r2) =g2(rl~r2)

= (Np) ' g (5(r; —r, —r'i+ r2) ) . (2.7)

The average of A2 can now be written in terms of g, sim-

ply as

& Ai) =(Np/2) fdrai(r)g(r) . (2.8)

While these are the most commonly used functions, we
now wish to define a new set of functions. These new
functions show how the positions of particles are correlat-
ed. A useful description of g2 is the pair distribution
function. If the members of the pair are uncorrelated,
then gq would reduce to a product of g~'s. Thus the pair
correlation function P& i is defined as

P, , (r, r')=p g[(5(r r;}5(r'—r ))—

—(5(r—r;) ) (5(r' —rj ) )], (2.9)

pair correlation functions —are also defined and discussed.
For a system of N particles in a volume 0, the s-body dis-

tribution function is defined by

n, (r&, rz, . . . , r,')=[X!/(N —s)!]
X (5(r& —ri)5(r2 —ri) 5(r, —r,') ),

(2.1)
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or equivalently as

P& i(r, r') =gz(r, r') —g, (r)gi(r')

+(Np) '5(r —r')gi(r) . (2.10)

If the pair is uncorrelated, only the last term survives,
which corresponds to the term where the indices i and j
refer to the same particle.

The pair correlation function will also give the explicit
correlation between two one-body operators. Recalling
the definition of Ai in Eq. (2.3),

with 8& being simply some other one-body operator.
In a similar manner the correlation between two pairs

can be defined. The pair-pair correlation function Pz z is
defined by

Pzz(r, r')=(Np) g g [(5(r—rj)5(r' —rkI)) —(5(r—rz))(5(r' —re))],
ij kl
i+j k~1

(2.12)

with r~p
——r~ —rp. If no correlations exist, Pz z becomes a Dirac 5 function, coming from the terms when ij and k, l

designate the same pair. Notice that Pz z contains two-, three-, and four-body distribution functions and can be written
in terms of g, 's by

Pz z(r, r')=N 'p JdR[g4(R, R+r, r', 0)—g(r)g(r')]

+N '[gz(r, r', 0)+g&( —r, r', 0)+g&(r, —r', 0)+g3( —r, —r', 0)]+(Np} '[5(r r'}+5—(r+r')]g(r) . (2.13)

The correlation between two pair operators A2 and 8~ is
then given by

I

ence, the fourth-order correlations Q4 can be separated
out of Pz and are defined as

& a,a, ) —(w, )(a, )

=(Np/2) J dr J dr'az(r)bz(r')Pz z(r, r') . (2.14)

Since Pz z is not of order unity but in fact is O(N ), the
new pair-pair correlation function Pz is conveniently de-
fined as

Q4(r, r'}=(Np )
' g' [(5(r—r 1 )5(r' —re�) )

i,j,k, l

—(5(r—r;J ) ) (5( ' —
J,i) )],

(2.19)

P~(r, r') =NPz z(r, r') . (2.15)

It is also convenient to define a function Q& which van-
ishes when the correlations vanish, i.e.,

where the prime on the sum denotes that i, j, k, and l are
all different.

The KSA for gz is given by

Qz(r, r') =Pz(r, r'} p'[5(r r—')+5(r+r—')]g(r) . (2.16) g3 "(r,r', 0)=gz(r, 0)gz(r', 0)gz(r, r') (2.20)

A contribution to P~ comes from the three-body distri-
bution function due to terms in Eq. (2.12) where the pairs
share a particle. Keeping this in mind, the triplet correla-
tion function T is defined by

T(r, r') =(Np )
' g' [(5(r—r; )5(r' rk ) )—

i,j,k

—(5(r—r~ ) ) (5(r' rkj ) )], —

(2.17)

where the prime on the sum means that i, j, and k are
never equal. In terms of the g„'s, T is given by

T( r, r') =gz(r, r', 0)

—[(N —2)/(N —1)lgz(r o)gz(r (2.18)

For a uniform system, T has all the information con-
tained in gz. The function P~, however, does not possess
all the information contained in g4, note that Eq. (2.13)
for P& contains an integral over g4. As a further conveni-

which leads to a similar approximation for T [ignoring
terms of O(N ')] and can be written in terms of g as

T s~(r, r')=g(r)g(r')[g(r —r') —1] . (2.21)

F(r, r')=(4m) 'g(2I+1)F'(r, r')&~I(cos8) .
l

(2.22)

For all such expansions, I' depends only on scalar vari-
ables. Thus it will be possible to make contour plots of I' '

This last expression has been written explicitly for two
reasons. The first is to see the reason for the unusual sub-
traction in the definition of T. If r is fixed and r' be-
comes large, T will vanish. The second reason will be-
come self-evident in Sec. IV where the integral equation
for T is discussed. The KSA term will then be seen to be
the inhomogeneous term of the HNC integral equation for
T.

In a uniform fluid, Q&(r, r') and T(r, r') will depend
only on

~

r ~, ~

r' ~, and cos8=r.r'/rr'. These functions
can then be expansed in terms of Legendre polynomials,
Hi(cos8). Any such function can be written as
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for display purposes. These expansion coefficients will be
called Legendre projections in the remainder of this paper.

Since Qz(r, r') depends upon only two "scalar" vari-

ables, relatively simple numerical procedures can be dev-

ised to calculate this quantity via Monte Carlo or
molecular-dynamics simulations, the latter being easily
extended to finite time differences between the coordi-
nates. A brief discussion of this is given in Appendix A.

S(k)=1+pfdre'"'[g(r) —1] (3.7)

sisting of the sum of bridge diagrams. The original HNC
approximation, HNC/0, discards the bridge function.
For other calculations a nonzero expression for E is used,
but in this paper only E(r)=0 will be considered. The
functions S(k) and c(r) are defined by

III. INTEGRAL EQUATION FOR Q~ ( ) =N ' g e '"'[1—S '(k)]
k

(3.8)

In this section we derive a linear integral equation for

Q~ by combining the method of functional differentiation
with the HNC series resummation method. First, note
that the partition function can be used as a generating
function for these correlation functions. Defining
u (r) = —U (r)/2k' T for a classical fiuid interacting
through a pair potential U(r), the partition function at a
temperature T has the form

Z= rexp u r,J. (3.1)

g(r)=(Np) '
5u r (3.2)

while the second derivative of lnZ gives the pair-pair
correlation function,

5 lnZ
P~(r, r') =(Np )

5u r 5u(r')
' (3.3)

Combining these two equations, the pair-pair correlation
function can be expressed as a functional derivative of g:

P~(r, r') =p i 5g(r)
5u (r') (3.4)

The last result permits immediate use of the integral equa-
tion for g (r) as a functional of u (r) (i.e., series resumma-
tions) to obtain similar approximations for P~. One such
widely used resummation for g(r) is the HNC equation
which can be written as

lng(r) =u (r)+ u ( —r)+ W(r)+E(r),
where the nodal function

W(r) =g (r) —1 —c (r)

=N ' g e '"'[S(k)—1] /S(k},
k

(3.5)

(3.6)

using the direct correlation function c(r) and the liquid
structure function S(k). E(r) is the bridge function con-

(This is also the form of the normalization integral for a
Jastrow trial function for a boson liquid ground state, e.g.,
liquid He. ) A common procedure is to use the partition
function as a generating function for the n-body distribu-
tion functions defined in Eq. (2.1).~i The method is to in-

troduce an external one-body potential into Z and then
take functional derivatives with respect to this external
potential. Moreover, the functional derivatives of the par-
tition function with respect to the pair potential are also
related to distribution functions. The first derivative
gives g (r),

Recognizing the relationship between P& and g, we
proceed by simply taking the functional derivative of Eq.
(3.5). The resulting integral equation for P& can be writ-
ten as

pP~(r, r')/g(r) =5(r—r')+5(r+r')

+p fdRM(r, R)P~(R, r'),

where the kernal M is given by

(3.9)

5W(r) 5E(r)
5g(R) 5g(R)

Notice that when the 5 functions are incorporated into P~
in Eq. (3.9) the result is the integral equation for Q~
which explicitly written is

(3.10)

Q~(r, r') =g (r)g (r')[M(r, r')+M (r, —r'}]

+g (r)p fd R M (r, R)Q~(R, r') . (3.11)

This equation is linear in Q&. Moreover, Q& depends ex-

plicitly only on g and p', the pair potential has disappeared
from the equation. In the use of this equation the method
of generating g is irrelevant; it need not be an HNC ap-
proximation but might be molecular dynamics or some
experiment.

In an isotropic fluid the functions Q& and M depend
only on r, r', and cos8, and thus can be expanded in
Legendre polynomials as in Eq. (2.22). Since Eq. (3.11) is
a linear integral equation, the expansion in Legendre poly-
nomials separates this equation into a set of decoupled
equations (for even I):

Q &(r,r') =2g (r)g (r')M '(r, r')

+g(r)p f dR R M'(r, R)Q&(R, r') . (3.12)

HNC/0: E(r)=0. (3.14)

The inhomogeneous term in the odd-I equations van-

ishes. In this case since g(r)=g( —r), Q~=0 is a solu-
tion to the odd- I equations which is equivalent to

Qz(r, r') =Q~( —r, r') =Qr(r, —r') =Q~( —r, —r') . (3.13)

This follows from the definition of Pz and the assumption
that the fluid is isotropic. %'e have not investigated the
existence of nontrivial solutions to the odd-I equations
which would be symmetry breaking in nature.

The HNC/0 approximation (also known as the HNC
approximation) for g(r) is obtained by setting the bridge
function to zero,
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To obtain the HNC/0 approximation for Qr, we use this
approximation for E before the functional differentiation
in Eq. (3.10}. Then M takes the simple form
M(r, r') =Mv(r —r') which is given by

Mv(x) =2c(x) p—fdy c(y)c (y —x) . (3.15)

In momentum space one obtains the simpler expression

Multiplying by F(s,r } and integrating over r, the new
equation becomes

p drg r —1F sr Trr'

5(s —r} T(s, r')

p g(r')

Mv(k)=1 —5 (k) . (3.16) which leads to the remarkable result

The results of this integral equation using the HNC/0 ap-
proximation were implicitly used in the "paired phonon"
analysis of He (Ref. 22) and explicitly in the calculation
of depolarized light scattering from "He (Ref. 2) and from
room-temperature argon. ' In Sec. VI there is further
discussion of the resulting functions from these equations.
The method of solving the integral equation is given in
Appendix B.

IV. TRIPLET AND QUARTIC
CORRELATION FUNCTIONS

P, , (r, r') =N [g (r —r') —1+5(r—r') /p] . (4.2)

Defining F(r, r')=N Pi i(r, r') the inverse of F is de-
fined by

p fdRF(r, R)F '(R, r') =5(r r')/p— (4.3)

and is given by

F '(R, r') = —c (r —r')+5(r —r')/p .

The integral equation for T [Eq. (4.1)) can then be made
to be

p[g (r) 1]T(r,r')—
g(r)g(r')

=F '(r, r')+p fdRF '(r, R)T(R,r') . (4.5)

The integral equation of Sec. III made possible calcula-
tions of the pair-pair correlation function which include
both the triplet, T, and quartic, Q4, correlation functions.
In this section an integral equation for T is discussed.
(The details of the derivation are in Appendix C.) In par-
ticular, consider a two-component system, N and N~, in
a volume Q. These particles interact via pair potentials
v~, v, , and v . An integral equation for T appears in
the limit when the v's become equal. The result of Ap-
pendix C shows how, within the HNC/0 approximation,
an integral equation for T is derived, and it is simply
written as

T( r, r') =g(r)g (r')c (r—r')

+g(r)p fdRc(r —R)T(R,r') . (4.1)

Thus, using only the results of the HNC/0 equations for a
two-component system and functional derivatives, a sim-
ple, linear integral equation for T can be found. As the
rest of this section shows, it has several interesting
features.

The first fact is that this equation can be made even
more revealing by a transformation. Consider the func-
tion Pi i defined in Eq. (2.10) which can be rewritten for
an isotropic system as

T(s, r') =g (s—r') —1
g (s)g (r')

+pfdr[g(s —r) —1][g(r)—1]

X
T(r, r')

g (r)g (r') (4.7)

Vg (r) = —g (r)Vv (r)/ks T

+p fdr'V[v (r')/ks T]T(r,r') . (4.8)

Note that only the three-body part of T contributes to the
integral. Using the expressions in Eq. (4.1) and making
use of Eq. (4.7) the result is

Vg (r) =g (r)V[g (r) —1 —c (r) —v (r)/kz T], (4.9)

which is the gradient of the HNC/0 approximation. This
further justifies the identification of Eq. (4.7) [or its
equivalent, Eq. (4.1)] as the HNC/0 approximation for
the three-body distribution function.

This self-consistency has further significance in the Jas-
trow theory of boson quantum fluids since it is this self-
consistent approximation for T(r, r') and g(r) which es-
tablishes the formal identity of the Jackson-Feenberg and
Clark-Westhauss expressions for the kinetic energy. This
exact identity is violated when the usual procedure of cal-
culating the Clark-%esthaus kinetic energy is used, i.e.,
when the KSA is employed together with the HNC/0 ap-
proximations for g (r)

V. MOMENTUM SPACE FORMULATION

The Fourier transforms of the correlation functions are
useful in describing the elementary excitations of a fluid.
These functions are more directly determined by experi-
ment since experimental conditions usually include con-
servation of momentum. The liquid structure function is
measured in x-ray and neutron scattering experiments, is
related to the pair distribution, and can be written in
terms of the density fluctuation operator pq which is de-
fined as

Notice that the inhomogeneous term is the KSA for T.
[See Sec. II, Eq. (2.21).] Notice also that T is given expli-
citly by knowledge of g and p and independent of the po-
tential. This approximation is also linear; each Legendre
projection can be obtained independently.

Another property of this approximation for T is its
self-consistency. The BGY hierarchy connects gz and g3
through an exact integral equation. Our approximation,
when used for gi in the BGY equation, leads to the
HNC/0 equation for gq. To see this we write the second
equation in the BGY hierarchy in terms of T:
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—iq.r.
pq= ge

J

(5.1)

The liquid structure function S (q) is then expressed as

S(q)=N '&p p (5.2)

The higher-order structure functions can now be calculat-
ed using the momentum space integral equations
equivalent to those presented in Sec. IV. First, the
fourth-order function will be considered. The derivation
is similar to the above work; only the equations will be in-
cluded for completeness.

In a uniform fiuid a product of four pq's which depends
only on two momenta and whose expectation value does
not vanish is & pi, p i,pip I &. This is simply the Fourier
transform of the pair-pair correlation function. It can be
broken into a conne:ted piece S4(k, l) and disconne:ted
pieces. The convention is to define S4 to be of 0(1), and
therefore it is definai

»«k, l}=&pkl klieg I& ~ '&~-k~ -. &&~i~ I&

((~t, I +~t, —I )&PkP k&— (5.3)

The HNC/0 ap roximation for S4 is given by a linear in-

tegral equation. The equation expresses S4 completely in
terms of S and p and is

S4(k, l )

S(k)
=S(k+ l ) —1+8(k —l ) —1

+(2ir) p

—1 S ' —1
S4(h, l )

S(h)

This linear equation can be broken up into decoupled
equations for each Legendre projection as has been dis-
cussed previously.

The derivation of the equation for the third-order struc-
ture function evolves from the equation for T, Eq. (4.1).
To facilitate the algebra, a third-order modified Ursell
function is defined as

F&(x,y) =5(x—y)g (x)/p+ T(x,y) (5.5)

and is equivalent to eliminating the prime on the sum in
the definition of T [see Eq. (2.1}]. The equation for Fi
can be seen to be simply

Fi(x, y) =5(x—y)g(x)/p

+g(x)p JdRc(x —R)Fi(R,y) . (5.6)

—&~,i&}o~s -~& . (5.8)

The significance of F, is that its Fourier transfer is easily
related to S3 by

S3(k, l)=p Jdx J dye'"*e' "Fi(x,y) 5~ iS(k), —(5.7}

where the definition of 53 can be viewed as the connected
piece of the product of three p& s and is explicitly given by

», (k, l)= &P.P i&i .& ~ '&l .S .&&liS —i&-

The integral equation for Si is linear and expresses S~ in
terms of only S(k) and p. The HNC/0 approximation
for Si can be found by taking the Fourier transform of
Eq. (5.6) and is

Si(k, /)

S(k)S(l )
=S(k—I)—1

S&(q, l )
+N ' g [S(k—q) —1][S(q)—1]S(q)S(l )

(5.9)

Notice that the inhomogeneous term is the convolution
approximation for S3.

VI. NUMERICAL RESULTS

As examples of the possible numerical calculations that
can be achieved from this formalism, we have looked at a
system which only has a two-body, Lennard-Jones poten-
tial. The potential parameters were taken to be o =3.41 A
and @=122 K, corresponding to argon. The reduced den-
sity was p'=per =0.80; two different temperatures were
examined —T i =kz Ti /e =0.73 (the triplet point) and
Tz ——2.44 (room temperature). The 6-12 Lennard-Jones
potential can be written as

U(r) = U(r)/ks—T = 4[(r' )
' —(r—') ]/T'

with r ' = r/rT The n.ew equations for the higher correla-
tions depend only on g(r) and S(q) and therefore these
could have been obtained from experiment or computer
simulation. The approximation for the three-body corre-
lation function may be more accurate if the input function
g(r) were exact. In this paper we have chosen the
HNC/0 approximation because we could do the calcula-
tions quickly. This is in keeping with the spirit of this
section to show examples of these functions and the infor-
mation they contain. Comparison with previous calcula-
tions is difficult because to our knowledge no one has pre-
viously displayed results in terms of Legendre projections.
Typically the triplet correlation function has been calcu-
lated for particles whose positions determine equilateral or
isosceles triangles. The regeneration of these functions
from our results would take a prohibitively large number
of terms in their Legendre expansions. In the future we

hope that these projections will be calculated exactly and
have presented an appendix showing how this can be ac-
complished (Appendix A).

In Fig. 1 we display the input functions g(r) and S(q)
used in our calculation, which are solutions to the HNC/0
approximation [Eqs. (3.5) and (3.14)]. At the higher tem-
perature, g (r) shows that more of the core region is acces-
sible to a neighboring particle, i.e., the nearest-neighbor
(nn) peak, including the sharp rise, is shifted to smaller
distances. At the lower temperature, the nn peak is 50 jo
larger. Similar differences exist in S(q). At the lower
temperature, the first peak in S(q) is 30% larger and
shifter to a slightly smaller momentuin when compared to
the higher-temperature result.

In the next two figures (Figs. 2 and 3},Legendre projec-
tions 1=0 and 6 of the triplet correlation function are
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FIG. 1. Liquid structure function [S(q)] and radial distribu-

tion function [g(r)] at the triple-point density p =0.80 at two

temperatures: triplet point (T =0.73) and room temperature

( T =2.44).
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FIG. 2. Contours of the HNC approximation for the 1=0
Legendre triplet correlation function, T'o'(r, s), at the tempera-
tures and densities of Fig. 1.

given. It should be recalled the Legendre projections of
T(r, s) are defined by

T'(r, s) =2m. I d(cos8)[gi(r, s,
~

r —s
~

)

—g (r)g(s)]&i(cos8)

and that since these projections only depend on the scalar
variables r =

~

r
~

and s = ~s
~

they can be presented as
contour plots. Furthermore, this function, as well as all
the projections, are symmetric in r and s, i.e.,
T'(r, s)=T'(s, r); therefore, only one-half of the contour
plots are shown. The contour plots in this paper use the
following convention: The upper half contains results at
the higher temperature, and below the diagonal the
lower-temperature regions are plotted.

Consider the 1=0 projection of T which is displayed is
Fig. 2. The major feature is the large negative peak when
r and s correspond to the nearest neighbor, R, peak in

l

5.5
3.0

3.0 4 5

r(A)
FIG. 3. Contours of the HNC approximation for the 1=6

Legendre triplet correlation function, T"){r,s), at the tempera-

tures and densities of Fig. 1.

3.5 4.0 5.0 6.0

g(r). This is an excluded volume effect. There exists a
hole in gi(r, r, r&2(1 cos8))—g(r)g(—r), near 8=0, due
to the core, which gives a large negative contribution to
the l=0 projection. This hole is also described by the
KSA, because for small 8, g & (r, r, r /2(1 —cos8) )
=6(r) g (r8). The difference between the HNC approxi-
mation for T and the KSA for l=0 is given in Fig. 4. At
the large negative peak, the percent difference at low tem-
perature is 32% and at high temperature is 29%.

The other interesting feature in the 1=0 projection of T
is the enhancement over the KSA at r R=s=, RMiN
where RMiN is the position of the first valley of g(r)
beyond the nearest-neighbor peak R . In Fig. 3 these
positive peaks are in the vicinity of r =3.4—3.6 A and
s =3.0—5.5 A. At both temperatures, this corresponds to
a ratio of s/r =1.5 (which is larger than ~2). However,
this enhanceinent does not show up as a peak in T'= (see
Fig. 2). In the 1=8 projection (not shown), for both the
KSA and the HNC approximation for T, apositive peak
exists when r =3.7 A (3.6 A) and s =5.3 A (4.9 A) for
low (high} temperature. At low temperature this ratio
sir =1.43, while at high temperature the peak is much
less defined and this ratio is 1.36. The !=8 projection
emphasizes integer multiples of 45'. For a simple cubic
crystal structure of the same density, the nearest-neighbor
distance would be 3.6 A and the second-nearest-neighbor
distance would be S.1 A. The angle between the ray
drawn from an atom to its nearest neighbor and the ray to
its second nearest neighbor is 45. The structure in the
1=8 projection at the lower temperature is sensitive to the
tendency to form the simple cubic structure.

The 1=6 projection (Fig. 3} shows the tendency for the
atoms to be close packed, i.e., triangular coordination. In
particular, the major feature in these projections is a large
positive peak, when r =s =R . This is also true for the
KSA, but the peak for the HNC approximation for T is
enhanced by 9% at high temperature and by 13% at low
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FIG. 4. Contours of the difference between the HNC approx-
imation and the KSA for the 1=0 Legendre component of the

triplet correlation function, as in Figs. 2 and 3.
FIG. 5. Contours of the HNC approximation for the 1=0

fourth-order correlation function, Q 4 '(r, s), as in Fig. 2.

temperatures. This triangular coordination is not found
in a simple cubic structure but is in a face-centered-cubic
(fcc) crystal. However, the peak in the 1=6 projection
occurs at r =s =R, a distance which is too small for an
fcc, since for an fcc crystal with the same density the first
neighbor would be at 4.0 A. However, a density change to
p'=1.17 would give the correct spacing to the 1=6 peak
with the v 2 ratio of the second-neighbor distance and nn
distance being preserved. These correlations therefore are
suggestive of a closed-packed structure such as an fcc or
hcp crystal at a density larger than that of the fluid.
These correlations can be considered as a response func-
tion exhibiting the tendency to solidify in a particular
crystal structure. The overly large density change may
come from the breakdown of the HNC/0 equation, which
is known to move the nn peak in g (r) to smaller distances
than exact calculations. We have performed the calcula-
tions for 1&12 projections of T using Eq. (4.7). Space
limitations prohibit more plots, and the physical interpre-
tations of the other projections are not clear.

We now consider the fourth-order correlation function
Q4(r, s). This function describes the correlation between
two distinct pairs, one pair separated by r, the other pair
separated by s, but only after integrating over the center-
of-mass coordinates of each pair. This function can also
be expanded in I.egendre projections. In Fig. 5 the l=0
projection is plotted. The major feature is a large positive
peak where the triplet correlation function had a negative
peak at r =s =8„„.At low temperature this peak is 1.3
times larger than at the higher temperature. The other
even projections of Q4 are very similar; the peak at
r =s =8 is the dominant structure. The odd projec-
tions of Q4 vanish in an isotropic fluid, unless the sym-
rnetry is broken.

The momentum space equations can also be solved.
The next two graphs (see Figs. 6 and 7) show projections

of Ss. The structure function S&(k, l) is related both to
the Fourier transform of T and to (pi, p lpt i, ) (see Sec.
V). The 1=0 projection (not shown) has one major
feature: a large negative peak at k =1=2 A ' for either
temperature. As can be seen in Fig. l, the first peak in

S(q) is at nearly the same value of q for either tempera-
ture. This fact is reflected in the position of the peaks in
S3 (and S4). The peak for the 1=0 projection of Ss (not
shown) at the low temperature is —5.2 ( —4.0 at the high
temperature). The 1=6 projections of S& are shown in
Fig. 6. The positive peak is again located at k=1=2
A '. For both temperatures there is a substantial differ-

4.0

3.0—

2.5

1.0'|.0 2.0 2.5

q(A )

3.0 3.5 4.0

FIG. 6. Contours of the HNC approximation for the 1=6
Legendre component of S3(k, l) at the triplet-point density

p =0.80 at two temperatures: triplet point (T =0.73) and
room temperature ( T =2.44).
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APPENDIX A

In this appendix the Monte Carlo method of evaluating
the functions Q~ and Pz is explained. This approach has
the advantage of being exact within the statistical errors.
The usual Monte Carlo procedure is a biased random
walk. The biasing is done by the Boltzmann factor,
exp( —V/kz T), of the particular configuration where

1.0
1.0 2.0 2.5

q(A )

3.0
I

3.5 4.0 V = g U(r«J) (A 1)

FIG. 7. Contours of the difference between the HNC and
convolution approximations for S3{k,/), as in Fig. 6.

is the total potential energy. Then the partition function
for N particles in a volume Q is

Z= r; exp —V k&T . (A2)

ence between S3 and the convolution approximation.
This is demonstrated in Fig. 7, where the difference for
the 1=6 projection is plotted. The positive peak is shifted
and the other structure is missing in the convolution ap-
proximation.

In this section we have shown a few examples of the
richness of this formalism. We have looked at various
projections of the triplet function and their analogs in
momentum space. The I=6 projection showed particular-
ly interesting features indicating significant preference for
close-packed structures.

XFs(ri«2««rs) (A3)

The Monte Carlo method samples sets of particle posi-
tions; one such set is callixi a configuration. For a calcu-
lation using N, configurations, the expectation of F, is
simply given by

The expectation value of F„an s-body operator (depend-
ing only on position}, is

(F, ) =Z ' f +dr; exp( —V/k&Tl

(F, ) =N, 'QF, (r;, rz, . . . , r,'), (A4)

VII. CONCLUSION

In this paper we have derived an HNC/0 equation for
the three-body correlation function and for a particular
four-body correlation function. The new approximation
for the triplet function is consistent with the BGY equa-
tion. In particular, by using this approximation for the
three-body correlation function and the BGY equation, we
recover the HNC/0 equation for g (r).

We have solved these new equations for the Lennard-
Jones system at two temperatures. Major differences exist
between this new approximation and the superposition ap-
proximation. We have looked at some examples of the in-

formation contained in the angular projections of the trip-
let correlation functions. The accuracy of these approxi-
mations is unknown, although the evidence suggests that
the overall structure is well described. In the future, we

hope that comparisons with molecular-dynamics results
will answer this question. The formalism in this paper
represents a new step in the theory of fluids, whereby cer-
tain three- and four-body correlations can be easily in-
cluded in many theories at a level of approximation
beyond the KSA.

where r is the position of the ith particle in the configu-
ration e.

The pair distribution function g is related to an expec-
tation value of a Dirac 5 function. Using the Monte Car-
lo method, g can only be obtained on a finite grid; using
equal increments of r will save computer time. For one
configuration, a function which counts the number of
pairs separated by a distance x is G, (xi}which is

x 2+62f2
G, (x')= g f d(y')5(y' —r, ), (A5)

l,J
l (J

where lL is the increment of the r grid. The pair distri-
bution function g is then calculated by summing over con-
figurations, i.e., by

N 5 n.xg (x)/Q=N, ' g G, (x ) . (A6)

The Legendre projections of the pair-pair correlation
function can be calculated in a similar manner. First, a

Ifunction G, must be calculated. For a given configura-
tion, G, is found by adding one to the appropriate bin
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corresponding to the interparticle distance. 6,'(x ) is cal-
culated by adding 1'~ (8;J,P;J ) to a bin designated again

only by the interparticle distance. 6,'(x ) is then given

by

x ~+A,~/26,(x')= g Yi (8;, ,P;, ) f, , d(y')5(y' r,,') .—
l&J

(J (A7)

For an isotropic fiuid, the choice of m is arbitrary. Note

that 6, (x )=V 4mG,
'= (x ).

The Ith Legendre component of the pair-pair correla-
tion function is then given by

N 6 xzP z z(x,z)/0

=N, 'QG', (x )6', (z )

—N g 6,'(x') g 6 ', (z')
C C

The last term will be zero for I+0 in a uniform fluid. A
5 function contributes the only leading-order term to Pz z.
The function Qp does not have this term and is given by

Q p(x, z)=NP i z(x,z) 5„,(4'—N, )
' g 6, (x ) . (A9)

C

This exact method can be used for testing the accuracy of
our approximations if a sufficient number of configura-
tions are used. Since Qp is a fluctuation requiring the
cancellation of the leading order in N, it requires many
more configurations then, e.g., g(r) The .advantage of
the HNC approximation introduced in this paper is its
relative ease of calculation and its need for a relatively
small amount of computer time.

APPENDIX 8

The correlation functions Qp, T, Si, and S4 described
in this paper can be approximated by linear integral equa-
tions of the form

where ap ——1 for the trapezoid rule (with —,
' at the end

points) and ap ———,, —,, or —, for Simpson's rule. We de-

fine

l 3 2 l
KlJ =6 J QJ-E lJ

Then the equation can be written as

[1 ~]F—'=D ' . (86)

X9'i(z —x —y /2xy) . (88)

This can be further simplified by defining the moments of
Das

I (r)=2m. f dhh +'D(h) .
0

Then the expression for Di becomes

(89)

D (x,y)= y A„(x,y)[Iz„(x+y) I2„( ~x —y—~
)]/xy,

(810)

where the A„'(x,y} are rational functions coming from the
Legendre polynomial expanded as

I
9'i(z —x —y /2xy)= g A„'(x,y)zi" . (Bl 1)

The matrix Di can be constructed from a tabulation of the
functions I„(Z). The functions A„' for 1=0, I, and 2 are
given in Table I.

Standard methods exist for solving linear equations. In
this calculation the matrices were dimensioned to be
150X 150, and partial Gaussian pivoting was sufficient in
getting our results using Simpson's rule with b, =0.1 A.

The calculation of D (x,y) was done by recognizing

D'(x,y)=2m f duiD[(x +y +2xyiU)'~ ]9'i(w) . (87)

Defining z =
~

x—y ~, the expression for D can be writ-
ten as

D '(x,y) =2n /xy f z dz D (z)

F(x,y)=D(
~

x—y ~
)+fdhK(

~

x—h
~
)F(h, y) . (Bl)

APPENDIX C

it is clear that since D and E depend on x,y and
cos8=x y/xy only, both I =1' and m =m' contribute.
Furthermore, F l ——F l~ and will be designated simply by
F . The integral equation splits into separate equations
for each I, and they can be written as

F (x,y) =D '(x,y)+ f dh h K (x,h)F (h,y) . (83)

The integral can then be approximated by a sum (using
Simpson s rule or a similar method). This then is a ma-
trix equation (on a regular grid),

F IJ' =D IJ'+~ XP ~pK &pFpj
P

(84}

Expanding F, D, and E in spherical harmonics, which is
given for Fby

F(x,y)= g F i~ (x,y)Y)m(8x&kx)Y(m (8p&kp), (82)

In this appendix the hypernetted-chain equation for the
triplet correlation function is derived. The starting point
is the partition function of a two-component system.
Functional derivatives of the partition function give the

TABLE I. The function A„'(x,y) for the first three Legendre
polynomia}s. For n & 1, these functions vanish. %e define

y =x2+y2 and $=2xy.

Ao(x, y) =1
Ao(x, y) = —2yg
A I(x,y) =g
Ao(x, y)= z y~g

A i(x,y) = —3yg
Ai= ~g
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a, b

a+b
a,a

various pair distribution functions. The second functional
derivatives define the various pair-pair distributions. The
HNC/0 approximation for a binary system is then used as
a basis for the integral equation for the pair-pair correla-
tion functions. In the limit of vanishing distinction be-

tween component particles, the difference of two correla-
tion functions is the triplet function. The integral equa-
tions can themselves be subtracted giving the integral
equation for the triplet function [Eq. (4.1)].

The details are now presented. The binary system will

consist of N, particles of type 1 and Na particles of type
2 in a volume Q. Lower-case italic letters [2, b, c, and d
will always refer to particles of type 1; Greek letters a, P,
y, and 5 will refer to type 2. Italic letters i, j, k, and I
will be used to designate type, i.e., one or two. The parti-
tion function can be written as

Z= f +dr, +dr expU,
a a

where the potential energy is given by

y u 1 1(»ob }+y u 12(»

gg(q) =gg+Ã~' gl' fl ' f dr e'e'[ge(r) )—] .

The HNC/0 equations are written as

lng»(r) =u»(r)+u»( —r)

(C4)

X g e -' '[S»(q) —S2, (q) /D (q)],
where D(q) is the usual determinant,

D(q) =Sl1('q)S22('q) S[2(q)S21(q) (C6)

The functional derivative of g» with respect to u[1 gives
Pl[11 and is a combination of two-, three-, and four-
particle distributions. However, 5g»(r)/5u22(r') does not
contain any two- or three-particle contributions. A suit-
able difference becomes the usual triplet function in the
limit in which the particles become indistinguishable.

We define the function Q;jki as

+N 1
' g e ' '[S»(q) —2+S22(q)/D(q)],

q
(C&)

lug[2(r) =u[2(r)+u21( —r)

+~—1/2~ —1/2
1 2

+ g u21(»aa)+ g u22(»aP) r (C2) 5 lnZ
Qijki(r, r') =(N;NjNkN() 0

u(J r uki r)

where u = v/2kri T a—s before and there is a formal dis-
tinction between u 12 and u21. Then the pair distribution
functions are

5;k5j[N—;
'

Nj
'

Qg; (r)5(r r')—

(r) =IIN [N [--
gij i j (C3)

—5;i5jkN;
'

Nj
' Qg;j(r)5(r+r') . (C7)

and the partial structure functions are
Then the integral equations for the Q»» can be written
as

g»'(r)Q[111(r, r') =g»(r')[Ml(r+r')+M[(r —r')]

+N[Q ' fdhM[(r —h)Q[[[[(h,r')+N[Q ' fdhM2(r —h)Q[211(h, r')

+N[Q ' fdhM, (r —h)Q»»(h, r')+N[Q ' fdhM4(r —h)Q»»(h, r'), (C&)

where the functions M are defined as

Ml(x}=N[ ' ge 'q'"[1 —[S22(q)/D(q)]2I,
q

M2(x)=N, » Nz~ ge 'q'*S2, (q)S22(q)/D(q)

(C9a)
Sl 1 (q )=f1

s (q )+f2

Si2(q) =S21(—q)+f '"f2"[S(q)—I],
(C10a}

(C10b)

tion of particles of type i In that .case, the following is
true:

(C9b} D (q) =S(q), (C10c)

M, (x)=N "N,'"g e-'q*S»(q)S22(q)/D(q)2,
q

where S(q) is the usual liquid structure function of the to-
tal system. Then the M's can be written as

M4(x) =N
1 Nz~ g e '1'*S[2(q)$2[(q)/D(q)

(C9c) M, (x)=2f,c(x)+f,M(x),

M2(x) =M2(x)

(Cl la)

(C9d)
=f, ' f' (f f, )c(x)+f' f' M(x), —

(C11b)
Now we allow the distinction to vanish. Defining
N =Nl +N2 and f; =N; /N, f 1 +f2 ——1 and f, is the frac- M4(x)= fl '» f2»'M[(x), — (Cl lc)
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Q&ii& fiQp+4fiT

Qizii f i '"fi"[fiQ,—2(fi —fi)G,
Quii~fi '"fz"(fiQs —4fiT)

(C1Za)

(C1Zb)

(C12c)

where M and c have been defined before. The Q's can be

decomposed into components that look like the pair-pair
and the triplet functions. Schematically, this becomes

By use of the equation for Q~, Eq. (C7) becomes the HNC
equation for the triplet function which was written as Eq.
(4.1). This equation is, of course, independent of the
choice of f~ and f2. The most convenient choice if
f& f2—————,', which makes M2 and M3 proportional to M
and Qi2» proportional to Q~. Subtracting the equations
for Q»» and Qiz» leads to Eq. (4.1).
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