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Discrete models for the formation and evolution of spatial structure in dissipative systems
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The dynamical structure of systems of coupled discrete-space, discrete-time oscillators is

described. The behavior of these systems is considered for different forms of the coupling term, and

parallels ~ith cellular automaton models are pointed out. An analysis of the dynamics of disloca-

tion structures is made and the mechanisms for their creation and destruction are discussed. Chaot-
ic spatial patterns may arise near intermittency transitions and the mechanisms which give rise to
these structures are studied. External noise can have important effects on the character of spatial

patterns and their evolution; such effects are also brieAy considered.

I. INTRODUCTION

The formation of spatial structures is a feature common
to many physical processes. In the far-from-equilibrium
regime the nature of such structures and their evolution
takes on special importance. Strong turbulence in fiuid
flow is one familiar case; morphogenetic processes in liv-

ing systems is another. Some of the best-characterized
spatial structures are found in chemical systems. The
Belousov-Zhabotinskii reaction is a chemical example of
an excitable medium, which displays expanding rings, tar-
get patterns, spiral waves, etc. ' All of the above processes
can be modeled by nonlinear partial differential equations
whose behavior is difficult to determine and organize.

As a result of the complexity of such processes and the
difficulties associated with the analysis of their differen-
tial equation models it is useful to attempt to construct
simpler models which are more tractable, both mathemat-
ically and computationally, yet are able to capture the
essential physics of the process. Perhaps the most fami-
liar of such simpler models of spatial and temporal struc-
ture development are cellular automata. In these highly
idealized models both space and time are discrete; the al-
lowed values of a dynamical variable are also discrete.

In spite of the simplification of the physical process im-
posed by these restrictions, automaton models are capable
of describing many features of physical processes. The
excitable-medium automaton provides an example: a
simple three-state, two-dimensional automaton displays
the rings, target patterns, and spiral waves mentioned
above and gives some insight into the nature of the initial
states that produce them. Also the automaton can serve
as a guide to the more complex patterns that arise in three
dimensions.

In this paper we study a related but different class of
models for such processes: coupled-map models. For
these models space and time are again discrete but the
dynamical variables are allowed to take on a continuum of
values determined by a multidimensional nonlinear map.
Parameters describing the nature of the nonlinear (isolat-
ed) oscillators and their coupling can be varied to alter the
space-time dynamical behavior of the system. The fact
that control-parameter variations are used to change the

dynamical state of the system, as in physical processes,
along with the fact that conventional bifurcation analyses
are easily carried out, make these models attractive for the
analytic study of spatio-temporal structure.

A number of general features of such systems are stud-
ied here. We focus primarily on cases where the dynami-
cal variables at a site, in isolation of its neighbors, oscil-
late in time. We then investigate the nature of the spatial
and temporal structure that develops when the oscillators
are coupled. Many chemical and biological systems have
the feature that they oscillate in their bulk "well-stirred"
state and develop patterns in space in the absence of stir-
ring or strong diffusion. ' The models we study here
may be taken as crude descriptions of some of the phe-
nomena that are seen in systems like these. '

After a description of some of the general features of
these models in Sex:. II, we turn to a study of spatial struc-
ture in Sec. III. In the period-2 regime the isolated oscil-
lators alternate between two states. %hen coupling is
present islands of both phases may coexist separated by
dislocation boundaries. Various stability properties asso-
ciated with the coexistence and morphology of the two
phases are discussed. Section IV is devoted to a study of
the different types of intermittency that are observed for
parameter values close to that where period 3 arises in the
isolated oscillator by a tangent mechanism. Within the
homogeneous period-3 regime various types of behavior
are found depending on the nature of the initial condition.
In particular some initial states can lead to spatial and
temporal chaotic patterns. We describe the mechanism
for transitions to such states. In many respects the cou-
pled system behaves like a noisy map and we explore this
analogy. In Sec. V we briefly consider some of the phe-
nomena that are observed when an external noise source is
added to the coupled-map system. This allows an assess-
ment of the robustness of some of the spatial structures to
be made. The results are discussed in Sec. VI.

II. COUPLED-MAP MODELS

Coupled-map models constitute a class of dynamical
systems whose space-time evolution is governed by equa-
tions of the general form
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x (i, t +1)=f(x (i, t);A, )+c(i,x(t);y), (2.1)

—4x (i&, iz, t}], (2.2)

in 2D with obvious generalization to other dimensions.
Such coupling is common in chemical, biological, and hy-
drodynamic systems, but these systems also provide exam-
ples of nonlinear coupling. From Eq. (2.2) it is clear that
the discrete form of diffusive coupling leads to interac-
tions among blocks of five neighboring sites on the lattice.

The coupling term can be generalized in a straightfor-
ward manner to take into account interactions among
q+ 1 sites on the lattice. Let c be proportional to the
difference between the value of the dynamical variable at
site i at time t and its sum over q surrounding sites at the
same time,

c(i,x(t)) =y[X(i, t) —qx (i,t)],
with

X( i, t) = g 'x (j,t),

(2.3)

where the prime denotes the sum over the q neighbors of
site i. Other choices for X(i,t) are possible; for example,
we may select a weighted sum over the neighbors of site i.

Since the value of x (i, t +1) depends on x (i, t) and the
sum of the values of x(j, t) of its neighbors, this class of
models is analogous to cellular automata with outer total-
istic rules. The model specifies a continuous transforma-
tion from old to new site values, which depends on bifur-
cation parameters. These parameter variations lead to
new dynamical behavior as bifurcation points are crossed,
similar to that obtained by rule changes in cellular auto-
mata. In most physical systems, changes in behavior are
affected by such parameter variation. We also note that
like systems with diffusive coupling, the models studied
here have the characteristic feature that the coupling term
vanishes for the spatially homogeneous state.

Wolfram has organized cellular automata into four
classes according to their behavior. Class-1 cellular auto-
mata evolve to homogeneous states. In certain regions of
the parameter plane the coupled-map model behaves like a

where f is a (nonlinear) function that depends on a set of
bifurcation parameters A, = [A,~, A,2, . . . }, and c is a cou-
pling function, characterized by the parameters
y= [y&,yz, . . . ], that specifies how the discrete-time os-
cillators interact with each other. Each dynamical vari-
able x is labeled by its site index i= [i„i2,. . . ] in the d-
dimensional array, and the discrete time t. The notation
x(t) refers to the set of all x (i, t). We restrict
ourselves to the case of periodic boundary conditions so
that in one dimension (1D) we have a ring of maps and in
2D the array of maps resides on a torus. A site i may
communicate with surrounding sites in a variety of ways.
The coupling may be linear or nonlinear; models of spa-
tially extended physical systems exist where the coupling
is of either type. Perhaps the most familiar type of cou-
pling arises from diffusion whose discrete form is

c (i,x(t);y}=y[[x(i,+ l, iz, t)+x (i~ —l, iz, t)

+x (i),&g+1,t)+x(~), i2 —1,t)]

A. Interaction-model dependence

The homogeneous regions described above have borders
which depend on the model for the interactions among
sites and on the wave vectors of particular Fourier modes
of the array. Crossing of a boundary signals the instabili-
ty of a particular wavelength mode, but the location of an
instability in the (A, ,y) plane depends on the nature of the
coupling term. In order to make this point explicit we
outline the results for the boundaries of the homogeneous
regions given earlier, but now in a form which is valid
for the entire class of models considered here, and for any
wave vector.

In Fourier space the evolution equation takes the form

with

c(k,g(t)) =u (k)g(k, t),
where g(k, t) denotes the Fourier transform of x (i, t),

(2.4)

g(k, t) =X "g exp( 2~i j k/X)x (j,—&) . (2.5)

In Eq. (2.4), f(g'(r);A. ) and c(k,g(t)) are the transforms of
f and c. The linear stability analysis of the periodic

class-1 automaton. In such regions the spatially homo-
geneous state, where all oscillators have the same phase, is
stable to small perturbations. It has been shown earlier
that the sizes of these regions in the two-parameter plane
satisfy universal scaling rules where the scaling parame-
ters are the same as those for the isolated map dynamics.

The spatially homogeneous states play an important
part in the understanding of the behavior of these systems
since one is often interested in the mechanism by which a
uniform system breaks its symmetry to form a spatial
structure as a bifurcation parameter is varied. For exam-
ple, crossing of certain boundaries produces period-
doubled inhomogeneous states with wave vector k, i.e.,
temporally and spatially periodic states. These states have
many features in common with class-2 cellular automata,
which evolve to periodic structures. In other regions of
parameter space, especially near intermittency transitions
to chaos, the coupled-map model behaves like a class-3
cellular automaton, i.e., it develops chaotic spatial struc-
ture. Pattern formation is possible even within the homo-
geneous regions provided the initial state is removed far
enough from the homogeneous state. Thus, depending on
the initial state, spatially homogeneous, periodic, or chaot-
ic structure is possible for the same system parameters.
This makes the classification of behavior difficult.

In Sec. II A we shall study some of the types of struc-
ture which form in different regions of parameter space
for different models of the coupling term. All the explicit
calculations presented in this paper are carried out for
coupled logistic maps where f(x, A, )=M(1—x). Many of
the results are independent of the specific form of the
nonlinear function but in some circumstances new phe-
nomena are observed for other map functions. Interesting
effects are seen when the map has more than one ex-
tremum, but this will not be described in this paper.
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homogeneous states leads to the bifurcation condition B.S5

g [f'(x';A, )+u(k)]=+1 .
a=1

(2.6)

This equation yields boundary curves in the (A, , u) plane
which determine the stability regions corresponding to
spatially horn. ogeneous period-n states. The boundary
curves of these regions depend on the coupling only
through u(k). Thus, the results for all models in this
class for all k values (for a particular f) may be obtained
simply by scaling the u axis. Analysis of Eq. (2.6) for the
period-doubled states leads directly to the scaling rela-
tion discussed earlier. As an example, the "universal"
boundary curves for the period-3 states are shown in Fig.
1. We shall discuss some special features of these curves
in Sec. IV. For an N )&N square array of maps there are
M =N(E/2 1)/2 w—ave vectors to consider. Thus for a
particular model each boundary curve in the (A, , u) plane
is split into M curves, which may be simply obtained
from the original curve. The boundary curves are para-
bolic in shape near their minima, and the minima for all
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We noted above that crossing of a boundary signals the
appearance of a spatially inhomogeneous state. In partic-
ular, when a boundary corresponding to —1 in Eq. (2.6) is
crossed, an inhomogeneous period-doubled state appears.

U

FIG. 1. "Universal" boundaries in the (A, , u) plane corre-
sponding to period-3 spatially homogeneous states. Results for
different models are obtained by scaling the u axis.
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FIG. 2. Evolution from an initial seed for a 100X 100 two-dimensional array of maps: (a) nine-neighborhood model with {A,=3.30,
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the pattern given in (c).



4222 GIAN-LUCA OPPO AND RAYMOND KAPRAL

X cos[n(ki —kz)/N] —4}, (2.8)

and for the thirteen-neighborhood model we have

u (k) =2y I cos[2m(ki+k2)/N]+ cos[2n(k, —ki)/N]

+2 cos [2~(k, +k 2 ) /N] cos [2m ( k, —k 2 ) /N]

+2cos[~(k, +k, )/N]

&(cos[m(k& —k2)/N] —6} . (2.9)

The change in the interaction model reorganizes the
boundary curves in the (A, ,y) plane so that rather different
spatial structures are observed at corresponding parameter
values. Consider the five-, nine-, and thirteen-
neighborhood models as examples. For diffusive coupling
in a 2D array (five-neighborhood model) u(k) takes the

OITQ

u (k)=4y I cos[n(ki+k2)/N] cos[m(k i
—k2)/N] —l },

(2.7)

while for the nine-neighborhood model u (k) is

u (k) =2yI cos[2~(k, +k&)/N]+ cos[2n(k, —kz)/N]

+2 cos[n(k i +k2)/N]

Using the above values of u (k) one may determine the
nature of the instabilities for the different models. The
first instability crossed in moving away from y =0 is that
with wavelength 2 in both lattice directions for the five-
neighborhood model, which leads to a checkerboard pat-
tern; this type of instability determines the behavior in a
relatively large region in parameter space. If instead one
considers the nine-neighborhood model the main instabiliUU

ty type is one with wavelength equal to 2 in one lattice
direction and infinite wavelength in the other. Of course,
this state is double degenerate. The dominant type of pat-
tern is one of horizontal or vertical stripes. Evolution
from initial seeds produces expanding rings for small
times, which later fragment [see Fig. 2(a)], rather than a
checkerboard pattern as in the five-neighborhood model.
The results for the thirteen-neighborhood model are
shown in Fig. 2(b). Here the dominant instability corre-
sponds to a wavelength of 4 in each direction.

Beyond the region corresponding to these major insta-
bilities there is a complex region of boundary crossings
where each pure mode occupies a very small region of the
parameter plane; here the inhomogeneous structure is
determined by mixtures of the pure mode states. The
character of the structure in these regions is also model
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dependent since the nature of the mixture of states varies
from model to model. Two examples will illustrate the
types of pattern possible. In Fig. 3 a series of pictures
shows how a random distribution of five initial seeds
evolves as a function of time for parameter values
(A, =3.30, y= —0.125) for the nine-neighborhood madel.
A set of concentric rings develops from each initial inho-
mogeneity. The pattern does not consist of traveling
waves, rather the outermost ring of excitation induces the
formation of the next ring, while maintaining its integrity.
At later times the rings from different regions collide and
annihilate forming a structure that resembles the target
patterns of the Belousov-Zhabotinskii reaction, but the
mechanism giving rise to the structure is quite different.
However, it is possible to construct coupled-map models
which can simulate the behavior of an excitable medium
like the Belousov-Zhabotinskii reaction.

As another example Fig. 2(c) shows the growth of a
pattern from a single seed for the thirteen-neighborhood
model in a region of parameter space where even more
complicated spatial periodic behavior is observed. The
spatial periodic character of this structure is revealed by
examining the pattern in Fourier space. Panel (d) in Fig.
2 shows the magnitude of the complex Fourier transform
of the real-space pattern. The wave vectors lie on an arc
in the k plane with center at k = (0,0).

III. DISLOCATiON STRUCTURES

Many different spatially inhomogeneous states are pos-
sible in coupled-map systems. Their nature depends not
only on the map model and its parameters but also on the
initial state, since multistability among the various at-
tracting states is possible. Even in the spatially homo-
geneous regions different initial states can lead to complex
structures with dislocations due competition among states
with similar stability. This is possible since the linear sta-
bility analysis which was used to derive the boundaries of
the homogeneous regions only guarantees that such states
are stable to small perturbations. It does not rule out the
passibility of multistability; other coexisting states may be
accessible from different initial conditions.

Consider a simple illustration of this phenomenon. In
the spatially homogeneous period-2 region the fixed-point
structure is identical to that for an isolated map with
period 2. If an array or a ring of such maps is considered,
with no coupling among the oscillators, then each oscilla-
tor may exist in either of the phases of the period-2 cycle.
One might then inquire about the nature of the final state
when the oscillators are coupled, given that there is an ini-
tial random spatial distribution of the two phases, an ini-
tial state far removed from the homogeneous state where
all oscillators are in phase. This type of initial condition
takes on added importance since relaxation to the stable
period-2 cycle is rapid. Hence, an arbitrary initial state
will, after a few time steps, relax close to the random-
phase initial condition. Subsequent relaxation to the final
attracting state will take place on a much longer time
scale. As time progresses homogeneous patches of either
phase develop, which are separated by dislocation ("kink"
and "antikink") boundaries. The long-time evolution of

the system depends on the interactions and motions of
these dislocation boundaries. " The sharpness of the
boundaries depends on the interaction strength; the
stronger the interaction the more diffuse the boundary.
For large interaction strengths, small nearly homogeneous
regions will not persist and the spatial structure will con-
sist of large patches of regions of equal phase. Spatial
structure of this type is shown in Figs. 4(a) and 4(b) for
the two-dimensional case. When the interaction strength
is small the dislocation boundaries are sharp and small
homogeneous regions may remain stable [see Fig. 4(c)j.

The above observations apply to the zones correspond-
ing to higher periods as well. In this case the spatial
structure is more complicated due to the fact that the
number of possible initial phases is greater. An example
of the spatial structure for the period-4 case is shown in
Fig. 4(d).

Similar dislocation structures are observed in arrays of
maps with d dimensions. The one-dimensional case is
especially simple since the final state consists of blocks of
cells with nearly the same phase. 6 An example of the type
of structure observed can be seen in Fig. 5(a) where the
time evolution of an initial random-phase state is shown.
One can see in the time history the competition among the
different size blocks. In order to investigate this case in
more detail, consider an initial state where almost all the
oscillators in the ring are initially in phase except for a
small number (n) of contiguous oscillators, which are set
out of phase. Solutions of this type are stable provided
the coupling strength is smaller than a threshold value

y, (n), which depends on n The num. erically measured
thresholds for different values of n are reported in Table
I. Insight into the mechanism of the instability can be ob-
tained from Fig. 5(b), which shows the first and the
second iterates of the single "out-of-phase" map for n = 1

for y slightly larger than the threshold y, (1). The average
effect of the rest of the oscillators in the ring is to give a
two. dimensional character to the out-of-phase map so
that its second iterate appears to be composed of two
branches. This behavior is reminiscent of the dynamics
observed in a map with additive dichotomaus noise, ' and
some parallels between coupled maps and noisy maps can

1

2
3
4
5
6

8
9

10
11
12
13

—0.027 715
—0.060 570
—0.095 784
—0.131 174
—0.165 958
—0.200 117
—0.233 910
—0.267 523
—0.301 194
—0.335 178
—0.369 752
—0.405 356
—0.442 821

TABLE I. Critical values of the coupling y, as a function of
the length n of the block of out-of-phase oscillators for A, =3.2.
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x (i, t + 1)=g(x(i, t), b, )

=4c (i, t)[1—x (i,t)]+6, . (3.1)

The A, dependence of g has been suppressed for notational
convenience. We note that the sign of b, changes at every
iterate. At the tangent threshold we impose the condi-
tions

x '(i) =g'2'(x '(i),6, ), (3.2a)

be made. However, the process described here is com-
pletely deterministic and successive iterates of the map al-
ternate between the two curves. Increasing y leads to a
progressive splitting of the two branches until a situation
akin to a tangent bifurcation is reached; the out-of-phase
map loses its stability and relaxation to the in-phase state
occurs.

The validity of this picture can be checked by introduc-
ing an average coupling term 5 in the equation for the
out-of-phase map, which we take to be located at position

Bg' '(x'(i), b, }=1,
Bx (i)

(3.2b)

g(1+g) (3x i
—4xi+4/A. )(3x i

—4xi+1+1/)i, )

4 x i(3+23.) —2xi(2+A, )+2+2/A,
(3.3)

Lx, —x, ( 1+2A, ) + 1+i,

3x i
—4x i +1+1/A.

xi b,,
2 A.(1+A. )

where

x, =(2A, ) '[A, +1+&(A,+ l)(A, —3)], (3.4)

are the period-2 fixed points of the uncoupled map. In
Table II the analytical results are compared with the nu-
merical solution of Eq. (3.2) and with the computed

from which both the fixed point x'(i) and the critical
value b,, can be calculated.

Since 5, is small, we can reduce the order of Eq. (3.2a)
by using an expansion valid to first order in b,, Imposing
the tangent condition, we have
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TABLE II. Comparison of the numerical simulations of the coupled-map model, the solutions of
Eqs. (3.2) and (3.5) using Newton's method, and the analytical result, Eq. (3.3), for the critical coupling
term 6, and the fixed points x~ and x2 for A, =3.2 and n=l.

Numerical
Simulation

—0.012 118
—0.010 172

0.753 065
0.607 184

Eq. (3.2)

—0.011 198

0.760749
0.593 631

Eq. (3.3)

—0.010296

0.759 987
0.592 601

Eq. (3.5)

—0.012070
—0.010083

0.752 022
0.608 822

values. Note that using the value of y, (1) and the fixed
points obtained by direct iteration, two values of b„are
available, one corresponding to each period-2 phase.
Since we have considered the average effect of all in-phase
oscillators on the one which is out of phase, this asym-
metry does not appear in the one-map theory.

Although the agreement between this simple theory and
the direct computations is quite good, it is possible to gen-
eralize the method by considering the following set of
equations:

x (i, t + 1)=Bc(i, t)[1—x (i, t)]+2y[x (i + l, t) x(i, t)]—
(3.5)

x(i + l, t+1)=&(i + l, t)[1—x (i + l, t)]

+y[x (i, t)+xi —2x (i + l, t)],
where xi is given by Eq. (3.4), with the suitable fixed
point chosen for each iterate. All oscillators except the
ith and its nearest neighbors are assumed to have the

x'(i, t +1)=Ax'(i, t)[1 x'(i, t)—]

+(2 y/n)[ x(i + l, t) —x'(i, t)], (3.6)

same value xi. Thus, the explicit effect of the nearest-
neighbor oscillators is included. As in the earlier calcula-
tion, the tangent condition is applied to the ith oscillator.
The numerical solution of Eq. (3.5), using Newton's
method, is shown in the last column of Table II and pro-
vides a test of the theory. In addition, the case n=2 is
immediately recovered if 2y is replaced by y in the first
of Eqs. (3.5).

For larger values of n, the tangent mechanism contin-
ues to operate but more complicated coupling effects
make a simple description like that of Eq. (3.5) difficult to
formulate. However, if we suppose all the out-of-phase
oscillators may be treated as an average oscillator with
value x', and write an equation for this average value, we
obtain

0.9,

4~@I

0.4
04

0.9
0.9

04
0.4

FIG. 5. (a) Time evolution of an initial random distribution of the two period-2 phases for 200 coupled maps in a one-dimensional
chain. The ordinate is time and the abscissa is the site index. The results are plotted every two time steps up to t=320 with (A, =3.2,
y = —0.25). (b) First and second next-amplitude maps for the single out-of-phase oscillator in an otherwise homogeneous chain with
(A, =3.2, y = —0.02775). Solid lines have been dragon through the points in order to make the "tangent character" of the map evident.
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where x (i,t) is the effective dynamical variable for the
entire block of length n .Replacing the first equation of
(3.5) by (3.6), a rough estimate of the thresholds for n & 2
can be made. In spite of the crude nature of these as-
sumptions, the final error is, for example, less than 20%
for n=7. The explicit form of the couphng term in Eq.
(3.6) also explains the linear variation of y, (n) with n,
which is observed in the numerical simulations (Table I).

We can now ask how the existence of the thresholds

y, (n) affects the dynamics of the one-dimensional model.
We once again use initial states with randomly distributed
phases. For fixed values of the coupling parameter y, we
evaluated the number of patches with a certain length
after transients were discarded. The results for four
values of y are reported in Fig. 6. As the coupling is in-
creased small patches are no longer stable and the initial
exponential distribution [see Fig. 6(a)] is destroyed since
patches of large size are favored [Figs. 6(b)—6(d)]. Per-
colation and phase-transition thresholds can be defined in
both the two- and three-dimensional models.

Dislocation structures are also observed in regions of
the parameter plane where strictly alternating states are
stable. These alternating states arise by a subharmonic bi-
furcation process where the in-phase (infinite wavelength)
states lose stability and an out-of-phase state with a wave-

length of 2 is born. One may now have patches of oscil-
lators with different registrations of the alternating pat-
tern (Fig. 7).

In contrast to the homogeneous states, the alternating
states may lose their stability through a Hopf bifurcation,
which gives rise to invariant circles in the vicinity of each
out-of-phase fixed point. The existence of these invariant
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FIG. 6. Plot of the log~o of the average number of blocks of
in-phase oscillators of length n vs n for a chain of 100 coupled
maps with A, =3.2. The average was computed over 200 realiza-
tions of the random-phase initial conditions. {a) y= —0.02, (b)

y = —0.11, (c) y = —0.25, and (d) y = —0.39. For (b), (c), and
(d), y is sufficiently large that small blocks are not allowed,
hence, the gap in the plot.

circles can have an important effect on the dynamics of
the dislocation boundaries separating the alternating states
with different registration. Indeed, for parameter values
close to and larger than those corresponding to the Hopf
boundary, the kink and antikink boudnaries can propagate
along the chain and annihilate upon collision. This pro-
cess leads to an increase in the average length of the
patches of alternating sites; far enough from the Hopf
boundary the strictly alternating state on the chain is
reached (Fig. 7).

This effect is similar to that of added noise, which is
discussed in Sec. V and implies that the stability of states
with dislocations is connected to the fixed point nature of
the maps. Any stochastic (external noise) or deterministic
(like the Hopf bifurcation described above) perturbation of
the fixed point leads to the progressive destruction of
these spatial irregularities and enlarges the region of pa-
rameter space where the perfect "crystalline" state is ob-
served.

IV. SPATIAL STRUCTURES
NEAR INTERMITTENCY TRANSITIONS

The spatial structure that appears close to the intermit-
tency threshold is discussed in this section. Some related
qualitative results for the behavior in this region have
been presented by Kaneko.

We shall focus on the dynamics of the coupled-map
model in and near the homogeneous period-3 region in the
two-parameter plane. This is one of the most prominent
regions where intermittency is observed for the logistic
map. The boundaries of these in-phase regions were
shown in Fig. 1. They have a form different from those
of the period-doubling sequence. While each curve cor-
responding to +1 in Eq. (2.6) has a locally parabolic
shape, one half of the curve (dashed) is obtained from the
unstable fixed point of the stable-unstable pair generated
at the tangent bifurcation and is, therefore, irrelevant for
determining the stability region. The relevant branches of
the curves are joined by straight lines at the top and bot-
tom of the region at the bifurcation points of the uncou-
pled system. These straight lines correspond to the k=0
(infinite wavelength) boundary curves. Thus„the tangent
bifurcation point of the logistic map is drawn out into a
line )i,=1+~8 in the (A, ,y) plane for the coupled-map
model.

%ithin these boundaries the synchronized state is stable
to small perturbations but, as discussed earlier for the
period-2 and period-4 regions, large perturbations from
this state can lead to other coexisting attractors. Consider
the evolution of a single-seed perturbation in an otherwise
homogeneous one-dimensional ring. Beyond a critical
amplitude e, of the seed (i.e., the distance from the in-

phase point) a dramatic change of the evolution occurs.
For amplitudes less than e, the in-phase period-3 solution
is restored after a transient period. On the other hand, for
e&e, the chaotic evolution of the perturbed oscillator
propagates along the chain inducing spatial disordered
patterns like those shown in Fig. 8(a). It is important to
note that e, is always much smaller than the coordinate
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e'=F'3'(e),

where

(4.1a)

8(e)=Le[1—2(y +y/1, ) —e],
with

(4.1b)

shift of the out-of-phase solution. This implies that, for
every value of the coupling, random-phase initial condi-
tions evolve towards chaotic states; the probability of
reaching the in-phase solution is very small within the en-
tire "homogeneous" region of Fig. 1.

A mean-field-like theory for predicting the critical am-
plitude e, can be constructed. Consider a single map in
the chain displaced from its in-phase period-3 value by an
amount e. Assuming the nearest neighbors of the per-
turbed map are not affected by its dynamics, the evolution
of the initial dephasing e is governed by the following
Il1ap:

y'=f(y)=&y(1 —y) .

The above equations apply for A. values inside the in-phase
period-3 stability region (Fig. 1), and homogeneous initial
conditions y equal to one of the three fixed points of the
logistic map for all other oscillators. For the parameter
values of interest, the map (4.1) has a nearly parabolic
shape and possesses a stable fixed point at @=0 and an
unstable one at a positive value of e. The boundaries of
the immediate basin of attraction of E=O provide a good
estimate of e;+, where + and —label the sign of the per-
turbation from the in-phase periodic solution [see Fig.
8(b)]. The basin boundaries are given by the unstable
fixed point and its preimage, which can be evaluated using
Newton's method. The results are compared with direct
measurements in Table III. The best agreement is found
for small values of y where the mean-field approximation
is expected to be accurate. It is worthwhile to notice that

FIG. 7. Dislocation dynamics in a strictly alternating pattern. Starting from a random-phase initial condition with (A, =3.748,
y = —0.07), a purely alternating state is reached after approximately 13000 time steps.
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QO7
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FIG. 8. {a) Time evolution of an initial seed in a homogeneous period-3 chain with (A, =3.835, y = —0.01). The results are plotted
every three time steps up to t= 300. (b) Plot of the map (4.1) for (k =3.835, y = —0.01), which governs the evolution of the initial de-

phasing e. The critical dephasing amplitudes e,—are shown in the diagram.

at the bifurcation point (A,,=1+v 8) and small values of
y, a finite e, always exists. Indeed, expanding F' I(e)
close to e=O we obtain

{a)
I T

(b)

F' '( e)=a e(c —e),

where

(4.2)

a(A, , y)=A, Q,

c(A.,y) =Q 'vpvivz,

with

I

0 05

' {c)

0.5 I.O

e~+=c —1/a, e, =1/a. (4.3)

Q ( A, ,y ) =A, ( vpvi ) +A vpvz+ viv2,

where we have defined

v;=1 —2(y;+y/A, ), y;=f"(y), i =0, 1,2.
From Eq. (4.2) the unstable fixed point and its preimage
can be determined. We find

(,0

Q

I

05
X

l.0

For small values of (A, —A,, ) and y, these critical ampli-
tudes take the forms

e'+=(ci —ai)(A. —A., )' +(cr —a„)y, (4.4)

=czp+ (xi ( A, —A ~ ) +

Czar

y,
where the (A, —A,, )'~ terms arise from the A, dependence
of the fixed point y of the unperturbed map. The ci, cr,

FIG. 9. Comparison between the coupled-map system and a
single noisy map. (a) Invariant density P(x) on the unit interval
of x for a single map in a coupled-map chain with {X=3.83,
y = —0.02) (random-phase initial condition). (b) Probability dis-
tribution of the coupling term E(x) normalized to the unit inter-
val, for the conditions in (a). (c) Invariant density P(x) for a
single map with added Gaussian noise. (d) The probability dis-
tribution of the Gaussian noise. This was roughly sealed to
rnatch A(x) in (b). The invariant densities in (a) and (c) are quite
similar.
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TABLE III. comparison between the numerical simulations of the coupled-map model and the soluIE

tion of Eq. (4.1) using Newton s method, for the critical dephasing e,—for parameter values within the
stability region of the in-phase period-3 solution.

Numerical simulation
+

&c

Mean-field model

Ec &c

3.828 5
3.828 5
3.828 5

—0.002
—0.010
—0.030

0.005 16
0.008 47
0.01392

—0.028 72
—0.028 61
—0.026 99

0.005 22
0.009 43
0.01998

—0.028 72
—0.028 76
—0.028 86

3.8300
3.8300
3.8300

—0.002
—0.010
—0.030

0.020 37
0.024 30
0.032 85

—0.028 68
—0.028 70
—0.028 32

0.020 39
0.024 60
0.035 14

—0.028 68
—0.028 71
—0.028 81

3.835 0
3.835 0

—0.002
—0.010

0.040 55
0.04460

—0.028 54
—0.028 57

0.040 55
0.044 76

—0.028 54
—0.028 57

ai, and ar coefficients can be expressed in terms of
derivatives of the map function (4.1). In the case of
A, =A,, and y=0, e, is found to be equal to —0.0292. . . ,
in good agreement with the numerical computations.
Moreover, expression (4.4), describing the growth of the
trapping region, also gives some hint about the probability

of observing in-phase solutions starting from random-
phase initial conditions, after a chaotic transient period.

The theory presented here can be applied to other forms
of f(y) as well and can, for example, provide a descrip-
tion of the mechanism of the self-similar growth of lami-
nar regions in coupled circle maps.
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FIG. 10. Evolution from an initial seed for the two-dimensional five-neighborhood model for {A,=3.3, y = —0.1): (a) fragmenta-
tion due to the roundoff error at t=400, {h)—(d) under external noise P=10, (h) t=80, (c) t=1000, aud (d) t=2000.
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Upon crossing the —1 boundary of the stability region
shown in Fig. 1, a subharmonic bifurcation leading to a
strictly alternating state occurs. The new fixed points
remain on the third-iterate map and the previous descrip-
tion still applies. However, as y is tuned the system may
undergo a Hopf bifurcation, which converts the alternat-
ing fixed points to invariant circles. As y is increased
further the sizes of the circles increase until a crisis be-
tween them and the preimage of the unstable point occurs.
For larger values of y, every perturbation of the in-phase
state yields spatially and temporally disordered solutions.

A different analysis can be carried out for random-
phase initial conditions. As already pointed out, asymp-
totic solutions with no spatial correlations are most prob-
able. For such solutions, the behavior of a map at a site
mimics that of an isolated map with an added noise
source; the remainder of the array generates the noise.
We have tested this observation by comparing the dynam-
ics of an oscillator in the ring with that of a single noisy

quadratic map. Figure 9 shows the good agreement be-
tween the invariant densities of the coupled system and
the noisy map for X=3.83. For the noisy map we used a
Gaussian noise source which was roughly scaled (by
changing its width and variance) to the distribution of
coupling strengths in Eq. (2.1) (deterministic dynamics).
Moreover, for A, values corresponding to chaotic motion
for the logistic map, this implies fast decay of the tem-
poral correlation function, i.e., fast propagation and am-
plification of perturbations along the chain. All of these
ideas may be generalized to the two-dimensional array
and the different types of coupling terms introduced in
Sec. II.

V. EXTERNAL NOISE

There is evidence that the evolution of the spatial struc-
ture in some parameter regions is quite sensitive to small-
amplitude external noise. Consider the evolution from a
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FIG. 11. Temporal evolution of a one-dimensional ring of 200 oscillators for {A,=3.2, y= —0.11) with added external noise {a)
P=O, (b) P=0.01, (c}P=0.02, and (1}P=0.04.
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x ( i, t +1)=f(x(i, t);1 )+c(x(t);y)+ri(i, t), (5.1)

where g(i, t) is a random variable taken from a uniform
distribution with width P. Figures 10(b)—10(d) show the
evolution under the same conditions as above but now us-
ing Eq. (5.1) with P=10 . Since the homogeneous state
is unstable for these parameter values the noise is ampli-
fied and after about 80 time steps the inhomogeneties pro-
ductxi by the noise are clearly visible in the figure. Before
the original seed has had a chance to evolve it is
overwhelmed by the growing patterns from other sites.
The system evolves to a checkerboard state with disloca-
tion boundaries, which is quite stable to the small amount
of noise present in this simulation.

Dramatic effects on the spatial nature of the final state
in presence of noise are also found in the homogeneous
parameter regions. Figure 11 shows the temporal evolu-
tion of a string of 200 oscillators starting from a random-
phase initial condition for A, =3.82, y= —0. 11 and four
different values of P. As the noise amplitude is increased,
kinks and antikinks move along the chain and annihilate
upon collision. Thus, noise has the effect of "annealing"
defects in the structure and a more homogeneous final
state is produced [Fig. 11(d)]. These results should be
compared with those near the Hopf bifurcation, which
were discussed in Sec. III.

These few results imply that external noise may play an
important role in spatial pattern evolution. Stochastic
models of spatial structures observed in physical systems
may be essential in some circumstances.

single seed in the region far outside the homogeneous
period-2 boundary where there is a long-wavelength insta-

bility in addition to one with wavelength 2. As the pat-
tern evolves it fragments as it grows larger [Fig. 10(a)].
This can be attributed to round-off error in the numerical
computation.

We can simulate the effects of external noise by the sto-
chastic difference equations

VI. DISCUSSION

The results presented in this paper suggest that
coupled-map models provide a useful framework for
describing a variety of spatio-temporal structures in far-
from-equilibrium systems. The behavior of the system
can be studied as a function of control parameters charac-
terizing the oscillators and their coupling. Furthermore,
they lend themselves to bifurcation analyses as shown, for
example, in Sec. II where generalized expressions for
boundary curves for homogeneous states were obtained
for any number of coupled oscillators, for a variety of in-
teraction models, and for different spatial dimensions.
Moreover, bifurcation theory can be used to construct
mechanisms for a number of dynamical phenomena in-
volving spatial structures. The mechanisms for the de-
struction of the dislocation boundaries and the evolution
of chaotic patterns near intermittency provide examples of
such analyses.

While the models discussed in this paper were not in-
tended to model a particular system, the phenomena ob-
served bear many similarities to the spatio-temporal struc-
tures in physical systems. The results presented here
could provide guides to the nature of the origin and
dynamics of particular spatial structures which have not
yet been observed.

Furthermore, coupled-map models are characterized by
deterministic rules of interaction among sites and are thus
similar to cellular automata. Indeed, generalizations of
the excitable-medium automaton are akin to the models
discussed here. The exploration of these and related
models with a direct physical basis is a worthwhile en-
deavor.
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