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Parametric instabilities in the interaction between a cold-electron beam, a static or electromagnetic

pump, and a scattered {signal) electromagnetic wave are studied. The interaction schemes are classi-

fied according to the mutual sense of propagation of the waves and the beam. The unified analysis

yields the known convective and absolute slow-plasma-wave instabilities [forward- and backward-

wave free-electron lasers (FEL)]. In addition, we identify the possibility of convective and absolute

fast-plasma-wave instabilities. Analysis and numerical computation of gain and oscillation in both
known and new instability mechanisms are performed in the framework of a general model beyond

the range of previously reported studies. A general approximate threshold condition expression for
all the possible absolute instabilities is given. All of these instabilities may appear in practical
schemes like FEL oscillators as parasitic effects. Their relative importance is considered by means

of numerical examples.

I. INTRODUCTION

There have been a number of previous theoretical inves-
tigations of the backward-wave absolute instability in the
cold beam, one-dimensional magnetostatically pumped
free-electron laser (FEL). Liewer et al. ' showed that this
instability requires contradirectional group velocities of
the beam and the em signal, and calculated a threshold in-
teraction length or pump strength for the instability.
Cary and Kwan investigated this instability numerically
and analytically, ' and by arguing that the excited wave
depletes energy from the beam, calculated an upper limit
for its saturation level. Liewer, Lin, Dawson, and
Caponi showed in a particle-simulation study of the mag-
netostatically pumped FEL that this long-wave absolute
instability may sometime dominate the FEL device (Ref.
4, Sec. V).

Our purpose in the present paper is to describe the FEL
beam instability problem in a more general framework of
parametric interaction analysis, allowing the pump
(wiggler) to be either static or time varying (electromag-
netic). Stability of the beam in the presence of an elec-
tromagnetic pump is of interest because FEL's with an em

pump are currently considered in various experimental
designs, and also because the circulating radiation power
in a high-intensity static wiggler FEL oscillator may
behave as a secondary em pump (wiggler) for absolute in-
stabilities in the beam.

The consideration of the more general (electromagnetic
pump) case has also a more far-reaching ramification. It
reveals that, in the general case two different kinds of ab-
solute instabilities can exist in the beam —one involving
interaction with the slow (negative-energy) plasma wave
and the other involves interaction with the fast (positive-
energy) plasma wave. While the first kind (slow-wave in-
stability) can take place with either static or em pump, the

second kind (fast-wave instability) cannot take place at all
with a static pump and ~ould be exposed only with a gen-
eral description of the pump as taken in the present
analysis.

The instability analyzed by' for the static pump is the
slow-wave instability, while the fast-wave instability was
partly analyzed before in Ref. 5 (only for the specific ex-
ample of an electromagnetic pump moving at the speed of
light in the electron-beam propagation direction) and was
considered there erroneously as a slow-wave instability.
These two contradirectional interaction oscillation
schemes (absolute instabilities) are identified and classified
in Sec. II along with the codirectional interaction FEL
amplifiers (convective instabilities) of the system, thus re-
vealing all the parametric instability schemes that are pos-
sible in a general FEL structure consisting of two elec-
tromagnetic waves and an electron beam. The threshold
conditions of the two absolute instabilities are different
from each other, they are calculated and compared in Sec.
V.

In addition to the generalization to electromagnetic
pump and fast-wave instabilities the model taken in the
present paper is more general than the previous papers in
the following respects. (a) The wiggler field may be
strong to the extent that the quiver velocity is relativistic
(a~ =eA~/trtc —= 1). (b) The highly relativistic limit is not
taken. (c) The wiggler and signal may have arbitrary po-
larization and phase velocity. (d) The beam cross section
is finite. (e) In order to keep the analysis applicable to
most optical-wavelength FEL's the collective (space-
charge-dominated regime) limit 8~ =co~L/Vo, ~&1 is not
assume a priori in the analysis, but we take this limit fur-
ther on in order to obtain analytic expressions. %e also
assume this limit in the qualitative discussion of Sec. II
for the purpose of exposing the fundamental physical pro-
cesses underlying the instability effects.
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II. QUALITATIVE DESCRIPTION OF INSTABILITIES Codirectional Interac tion

( Amplifiers )

Contradirectional interaction

( Oscillators )

In this section we provide qualitative explanation and
classification of all the instability schemes possible in the
general FEL structure. The model taken to describe the
FEL structure in this section allows a static or em wiggler
field of arbitrary propagation direction and phase veloci-
ty. The generated signal field is any transverse em wave
in an e-beam-loaded waveguide or open space. The e
beam is assumed to be in the space-charge-dominated re-
gime 8& »1, where 8& co~L/——Vo, is the space-charge pa-
rameter, co~ = [e no/(earn y, yo)]'~ is the longitudinal
plasma frequency of the e beam, and L/Vo, is the
interaction-region transit time. Taking this limit allows
us to discuss the parametric interaction in terms of the
collective eigenmodes of the beam: the slow and fast
space-charge waves. Nevertheless, the quantitative
analysis of the next section is not bound to this limit.

Figures 1 and 2 describe the various interaction
schemes in the FEL structure according to two different
crass sectians of classification. Figure 1 classifies the in-
teraction schemes according to the wiggler- and signal-
wave propagation directions relative to each other and to
the beam. The interaction is viewed as general distributed
parametric interaction schemes in a nonlinear medium
(like Raman scattering in matter). The nonlinear medium
is the e beam, and since it is an unisotropic medium, four
different schemes are possible: two [Figs. 1(a) and 1(b)]
are backward Raman scattering schemes and the other
two [Figs. 1(c) and 1(d)] are forward Raman scattering
schemes. "Farward" and "backward" are used here in the
sense that the scattered wave (signal) propagates in the
same or in the counter direction to the pump (wiggler)
wave, respectively.

Figure 2 describes an alternative cross section of classi-
fication. It depicts the Stokes diagrams af the various in-
teraction schemes classified according to the kind of idler
wave (space-charge wave) with which the interaction takes
place and according to the relative orientations between
the signal- and the idler-wave group velocities. This is a
more significant classification, because in the linear non-
depleted pump model used here, only the characteristics
of the interacting idler and signal waves determine the na-
ture of the interaction.

It is well known that when the signal and idler waves
are carrying energy in counter directions, a contradirec-
tional distributed feedback mechanism is introduced,
which can result in oscillation (absolute instability) if gain
is available. On the other hand, when the two waves are
eodirectional, only amplification (convective instability)
may be obtained. The contradirectional oscillation
scheines are depicted in Figs. 2(b) and 2(c) while the
codirectional convective instability FEL amplifier
schemes are depicted by Figs. 2(a) and 2(d). In Figs. 2(a)
and 2(c) the idler wave is the slow space-charge plasma
wave and in Figs. 2(b) and 2(d) it is the fast space-charge
wave. (Note that the group velocities of both space-
charge waves are equal to the e-beam velocity + Vo, .)

e-
z

e-
z

Backward
Raman

Scat ter ing

e-
z

Forward

Raman

Scat tering

FIG. 1. Four basic scattering schemes: (a) backward Raman
scattering amplifier (conventional FEL), (b) backward Raman
scattering oscillator, (c) forward Raman scattering oscillator, (d)
forward Raman scattering amplifier.

In the Stokes diagram of Fig. 2 the wiggler is represent-
ed by corresponding arrows stretched between the space-
charge wave and the signal-wave dispersion curves. These
diagrams represent the conservation of energy and
momentum conditions in the interaction between the ele-
mentary excitations of the system. Notice that all four in-
teraction schemes take place only with the two intersec-
tion paints of the lower displaced space-charge dispersion
curve and the signal-wave dispersion curve. It is only
where the wiggler arrow starts: upper and lower half-
plane-corresponding to up or down conversion of the
scattered radiation (signal) wave —which determines if the
intersection point corresponds to the slow or fast space-
charge wave, respectively. The slopes of the wiggler vec-
tors are the phase velocities of the wiggler waves. Various
phase velocities and wave orientations are depicted in Fig.
2, including slow waves ( V~h &c), which are possible in
slow-wave structures and static pumps. The latter case is
represented by horizontal arrows.

Inspection of Figs. 2(b) and 2(d) confirms that the
down-conversion fast-wave instability diagrams cannot be
gene~ted at all with static pumps (horizontal vectors), in
agreement with our observation in the Introduction.

Our analysis revealed that all the instabilities possible in
a general FEL structure without beam prebunching are
the ones given by Fig. 2. This includes the slow and the
fast space-charge-wave convective instabilities (up-
conversion and down-conversion FEL amplifier), depicted
by 2(a) and 2(d), respectively, and the slow- and fast-wave
absolute instabilities (up- and down-conversion oscillators)
depicted by 2(c) and 2(b), respectively. In the absence of
electron prebunching there are no instabilities involved
with the other upper-two intersection points of the disper-
sion curves. A physical explanation of this result can be
given using Fig. 3, which depicts the only two possible
parametric processes between the elementary excitations
of the system that can generate signal-wave photons
(gain). The diagram 3(b) requires annihilation of a
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(a)

,Kt)

(c)

FIG. 2. Stokes diagrams (conservation of energy and momentum) for the scattering processes which are discussed in the present
paper. The curve u =e k2+~, 0 represents the dispersion relation of the signal wave and the curves co= Vo,k +a~ are the space-
charge waves dispersion relation. Note that the solid lines correspond to the fast (positive-energy) space-charge waves, and the
dashed lines correspond to the slow {negative-energy) space-charge waves. {a) Slow space-charge wave convective instabilities, (b) fast
space-charge wave absolute instabilities (contradirectional interaction), (c) slow space-charge wave absolute instabilities (contradirec-
tional interaction), (d) fast space-charge wave convective instability.

FIG. 3. Feynman diagrams, showing the photon-plasmon
scattering processes: (a} one wiggler photon is annihilated, a sig-
nal photon and a plasmon are created. (b) one wiggler photon
and one plasmon are annihilated, and a signal photon is created.
This process is possible only if the electron beam is prebunched.

wiggler photon and an idler plasmon to generate a signal
photon. This is not possible in a beam without prebunch-
ing, where plasmons are not inserted and therefore this di-
agram is ruled out all together (the prebunched-beam FEL
is considered elsewhere ). We thus consider only diagram
3(a) and write down its corresponding energy-conservation
conditions for the respective cases of fast and slow
plasmons' generation: fico~ =ficof +fuu„ fico = ( fuu, i)—
+fico, (note that the slow plasmon has negative energy

fico,i). These relations di—ctate down conversion of the
signal-wave frequency when gain is obtained by coupling
to the fast space-charge wave, and up conversion in the
opposite case. It can be seen that on1y the two lower in-
tersection points of the dispersion curves of Fig. 2 satisfy
these conditions, whatever the wiggler vector is chosen to
be.
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Each Raman scattering scheme described in Fig. 1 has
corresponding Stokes diagrams in Fig. 2. A detailed dis-
cussion of all possible instabilities in the general FEL sys-
tem in terms of the Fig. 1 and Fig. 2 diagrams classifica-
tion is given in Appendix A. The instabilities which are
previously known or are of special interest are the follow-
ing.

(1) The conventional magnetostatic and electromagnetic
pump FEL's (convective instability) are depicted by Fig.
1(a) and by the horizontal and left-going wiggler arrows
of Fig. 2(a).

(2} The electromagnetically pumped fast-plasma-wave
contradirectional interaction oscillation (absolute instabili-
ty) which was analyzed before by Gover is depicted by
Fig. 1(b) and by the right-going vector of Fig. 2(b). It is
shown that this same instability can also be excited by the
configuration depicted by Fig. 1(c) and the left-going ar-
row of Fig. 2(b).

(3) The inagnetostatically pumped slow-plasma-wave
contradirectional interaction oscillation (absolute instabili-
ty) which was analyzed before by Liewer et al. ' and Car-
ry er al.2 i is depicted by Fig. 1(c) and the horizontal vec-
tor of Fig. 2(c).

(4) Various electromagnetically pumped forward Ra-
man scattering schemes [Figs. 1(c) and 1(d)] were found
capable of producing absolute or convective instabilities.
These schemes are closely related (inverse processes) to the
plasma heating and electron-acceleration schemes
analyzed before by Rosenbluth et al. , Cohen and others.
In the FEL schemes they are usually of little practical in-
terest as devices since they produce signal waves of fre-
quency very close to the pump frequency. However, they
should be of some concern in FEL oscillators design, since
they may also be sources of parasitic instabilities.

Finally, we add a clarifying comment regarding termi-
nology. The term backward-wave oscillation is frequently
used in the literature in the sense of oscillation by means
of contradirectional interaction feedback mechanism. '0

This should be distinguished from the terms forward and
backward scattering used in this paper. For example, Fig.
2(b) depicts a contradirectional ("backward-wave") fast
space-charge oscillation me:hanism, but it can be obtained
by both forward and backward Raman scattering
schemes.

counter to the e beam, —z). The fields are

E2(x,y, z) =Re[C2(z) S' 2(x,y)e ' ],
82(x,y,z) =Re[C2(z)ri 2(x,y)e ' ),

+lk2Z —lC02f
~ 1 1 +lk 2Z —l k)2t

1 1

where S'z(x,y)e ' and A 2(x,y)e ' ' are the
fields of the empty waveguide modes and C2(z) are the
amplitudes of the waves in the prescence of the beam.

The excitation equations for the wave amplitudes C2(z)
are derived from Maxwell equations' '
dC2(z}

dz
+lay'

4
I
+z I

X f f JT2(x,y,z).S' rz(x, y)dx dy,

1
—lNl t

, n;(x,y, z—)e ' +c.c. (4)

We confine our discussion to purely transverse fields.
Then the first-order response of the electron velocity is
purely transverse:

VT(r, t) = f —,
'
VTi(x,y,z)e ' + —,

'
VTz(x,y, z)e ' ]+c.c.

where J2(x,y,z) are the current components at the fre-
quencies of modes S'z(x,y), T denotes the transverse
components, and 9'z are the normalization powers of the
electromagnetic modes:

%2———,'Re f f [8'2xk'z"] i,dxdy . (3)

The electromagnetic modes S'(x,y) may be waveguide
modes or free-space modes (like Hermit-Gaussian modes)
where in the latter case it is assumed that the interaction
length I. is shorter than a Rayleigh length. The modes
may be of arbitrary polarization. The phase velocity of
the waves caulk may have any value, including zero, which
corresponds to a static wiggler (zero-frequency pump).

We now define the beat frequency co; =coi —co2 and as-
sume the presence of a density (idler) wave at the beat fre-
quency:

n;(r, t}=Re[n;(x,y, z)e ' ]

III. QUANTITATIVE ANALYSIS

In the quantitative analysis we make no a priori as-
sumption which of the space-charge waves are involved in
the interaction. Indeed, the analysis will apply even in the
tenuous beam regime 8& ~~1, where there is no isolated
coupling to one of the space-charge waves. A small-signal
(linear gain) model is used to describe the electromagnetic
~aves and electron-beam current excitation. '" The beam
is assumed to be "cold" and thus can be described by
fluid-plasma equations.

These velocity fields give rise to transverse current
components at the signal and wiggler frequencies. By
substituting Eqs. (4) and (5) into the expression

JT—— en; (r, t)V—T(r, t)

and neglecting terms which are not oscillating with fre-
quencies co&,~2, one fiends that

where

A. Backvrard Raman scattering schemes

We mark the wiggler and signal field by indices 1 (the
wave which propagates in the same direction as the e
beam, +z) and 2 (the wave propagating in the direction

2 e+T2~

1

JT~ ————,eVT&n;

We now assume that the variation of all the fields
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across the e-beam cross section is small. Consequently,
when the total velocity field

V=i, Vo, +[—,V T2(x,y,z)e '+c.c.]

r

—i to;+ Vo, —,
' V„(z)e ' +c.c.' z

[Esc(z,t)+( VXB).i, ] . (9)
is substituted in the first-order (in E,B) transverse com-
ponent of the Lorentz equation, the transverse velocity
phasor equations results:

1 () i—i~2+ Vo. ~ T2=-
Bz

E,'+ Vo,i, XBz
$07tl

Vro=
C

' 2 —1/2

Substituting Eqs. (1) in, we obtain explicit expressions for
VT2

V T2(r) C2(Z)~ T2(x y)e

Esc(z, t) is the longitudinal space-charge field generated
by the density modulation, y, =(1—P, )

' =yo/
(1+a ~ )', tT~ is the normalized rms transverse mechani-
cal momentum of the electron in the wiggler field. " For
a magnetostatic wiggler a =eB~/mck may be in prac-
tice of the order of 1 (transverse relativistic regime) and
thus not negligible. For electromagnetic pumps
a =e

~

A
~

/mc &&1 in most practical situations. The
second forcing term is the ponderomotive "field, " which
using (1) and (7a) is given by

( VX 8),= —,
' [(V»e ' +VT2e

' )+c.c.]
4

X[(BTi ' ' +BT2 ' ' )+ ]

e /7'otn
T2(x,y) = —l

c02+ Vo k2

(7) —leo f
Taking only phasor components which oscillate as e
we get from Eq. (9)

X[I T2(x,y)+Vo, i, XEf T2(xy)]
—ia);+ Vo,

(lz

where

V„= 2 (Esc+E~ e)r.ro~
(10)

where Vo, is the axial dc electron velocity (in +z direc-
tion). By substituting Eq. (7a} in the excitation equations
(2) we obtain

e —((k(+k&)z

X T2xyn xyz T~xy x y,

dC2(z)
C e l(k, +k&)z

~ g7. i'(k
&
+k2 )s

E ~.d =&2 (z)ci(» &
i

'nde

gt ~„d———[F T i(x,y) X A T2(x,y)

+i"T,(x,y)X iP Ti(x,y)], (11)

and where the transverse velocities i T2 are given in Eq.
7(b). Equation (11) describes the ponderomotive force
which couples the plasma beam modes with the em waves.

To fully describe the electron beam we also need to in-
troduce the continuity and Poisson equations:

X f f p"Ti(x,y)n,'(x,y,z) O' T2(x,y)dx dy .

~zi —l coi eni
z

eEsc= ——&;,
(}Z E'()

(12)

(13)

Equations (7b) and (8) describe the excitation of the em
fields by the density modulation. We now turn to the in-
verse process and derive the excitation equations of the
density wave n; by the em fields. The density modulation
n; is generated by the ponderomotive force, which results
in from second-order expansion of the Lorentz-force
equation. First, we derive the longitudinal velocity modu-
lation. The total velocity field in the z direction is
(neglecting any transverse variation across the narrow
beam)

J„= e(nov„+ V(i,n,—) . (14}

These equations are written as one-dimensional equations
assuming that the e beam is narrow enough to neglect
transverse variations. Three-dimensional effects of the
plasma waves can be accounted for but for simplicity will
be presently neglected.

Equations (8), (10},and (12)—(14) are now a complete,
self-consistent set of equations that need to be solved
simultaneously.

V, (r, t)= Vo, +[—, V~.(z)e ' +c.c.] . l. Backward Raman scattering amplifier (conuentional FEL)

Substituting into the longitudinal component of the
Lorentz-force equation expanded to second order results
in

By substituting s (signal) for 1 and w (wiggler) for 2,
and making the nondepleted pump approximation,
C~ =const, we turn (8a) into a linear equation:
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dC, (z) e,.(k+k ),

dz 8/H,
/

Assuming initial conditions n;(0) = V„(0)=Esc(0)=0,
we get for Cs(s) the known gain-dispersion relation of the
conventional FEL amplifier:"

X P"T„(x„y,)n;(x„y„z)I' T, (x„y, )&, ,

—ia);+ Vo, V (z)
Bz

where

z [Esc(z)+E ~„d(z)], (16)
'Yz TO~

where A, is the effective cross-sectional area of the elec-
tron beam, and (x„y,) are the coordinates of the center of
the narrow e beam.

From Eqs. (10) and (11),

C, (s) (s i—8) +8&

C, (0) s [(s i—8) +8y ] i—~8~

where

CO].8= —(k, +k ) (detuning parameter),
V

s UP

2 & 2
noe co&

8~ =
z i ——

z (space-charge parameter),

Ts harps~ C~
~ +pp d(k, +k )

S

(18)

~ Q7, i(k, +k )zE p'nd=Cw Cs«)& p'nde

and

8'~„d= —,'(W„XXI; +MT XA„),
e j(yom)

s [@'r~(xs ys)
~+ Voskw

+ Vo i, X Af T (x y )] .

Equations (15), (16), and (12)—(14) are now a set of
linear differential equations and can be readily solved by
applying the Laplace transform a(s)= f "„a(z)e "dz.

(coupling parameter),

~+\set

and where 8'~„d and the transverse velocities F"T~ are
given in Eqs. (16) and (17) and the beat frequency co; is
defined by co; =&os —co~.

2. Backward Raman scattering oscillator

We now analyze the scheme depicted in Fig. 1(b), by
substituting for 1 a to (wiggler) and for 2 an s (signal).
Assuming again an undepleted pump, and following ex-
actly the same analysis of Sec. III A 1 we get a new set of
equations:

TABLE I, Summary of the four basic schemes formulation. Use the upper sign of k for the backward scattering schemes and
the lower sign for the forward scattering schemes.

Codirectional interaction amplifiers
(convective instability)

Contradirectional interaction oscillators
(absolute instability)

OP ~

pond

Cubic

equation

s —w

(s —s8) +I' =gain
s [(s i 8}i+8~ ]—i ls;8~—

—(k, +k.)
Oz

8 9',
i

Y~[P T, XA T (x„y,}+MT X&T,(x„y,}]i,
e/(yyn)

[O'T, (x„y,)+ Vp, i, X@T,(x„y,}
co, —k, Vo,

e/(yon)—i [$'T (x„y,)+Vp, i, X&T (x„y,}]
co +k Vo,

(5k) —28(5k }i—(8~ —Hi }5k+Q =0

(s +i 8)'+ 8~2 = (gain)
s [(s +i 8}'+8p)+i~8'

' —(k, +k )
Os

Ts'~Tiu~ Pond ~
~~

~

'{k,+k }
8 9',

—,'[F'T', XST (x„y,}+K'T Xk T,{x„y,}) i,
e /(ygm )—i [N'T, (x„y,}+Vp, i, X ST,(x„y,)]a, +k, Vo,

e/(y yn)—i [O'T {x„y,}+Vp,i, X P T (x„y,)]~ +k Vo.

(5k}'+28(5k} —(8~ —8'}5k—Q =0

em pump

ms pump

e2 ~ 2, {k,+k„}2
Ts Till TlU

}SpPl C S W
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C, (s)

C, (0)

where

(s+i8) +8~
s[(s+i8) +8~]+i~8'

(20)

ik'z —ice' tE' =Re[C'(z)$"' (x,y)e ],
B'„=Re[C~ (z)3P ~ (x,y)e ],
i=s ~w ~

(22)

8= —(k, +k ) (co;=co —co, ),
~oz

2 t 2
e no

Op
——

y2y~OVOz ~Oz

&, N'T, ~T IC I'&i'.d«. +k»
8/9',

[

(21)
i(k +k )z

'„d—C„C,'(z)S' '„qe

e /(yom )y" z,, ——j ~ ~(g r~+VoiigxAI T, )

~, + vo.k.

(23)

For the forward Raman scattering oscillator,

E' =Re[C' (z)I" (x,y)e ),
(24)

B' =Re[C'(z)A ' (x,y)e "],
CO;=a)w COs ~

(25)

The analogous derivation steps lead eventually to the
same gain-dispersion relations and associated parameters
definitions derived before for the backward Raman
scattering instabilities with the transformation k ~—k~.
These expressions are summarized in Table I in which the
lower sign of k corresponds to the forward scattering
schemes.

'We note that in all cases ~; may be positive or negative
without loss of the generality of the derivation. The dif-
ferent definitions of co; for the amplifier and oscillator
cases were chosen to keep co; positive in the most common
configurations of the backward Raman scattering
schemes.

Excepting co;, 8, and P"T, these equations are identical
with the gain-dispersion relation of the conventional FEL
[Fig. 1(a)] but is applied here for the backward-
propagating signal-wave scheme (lb). Nevertheless, there
is an important difference between the two sets of equa-
tions: In the conventional FEL scheme, where the signal
is propagating from left to right in the +z direction, the
expression for C, (s)/C, (0) is the gain-dispersion function
(the signal wave enters the interaction region at z =0 and
its output value is evaluated at z =L), while in the back-
ward Raman scattering oscillator, where the signal enters
the interaction region at z =I. and couples out at z =0,
the expression C, (s)/C, (0) represents (gain) '. Thus the
inverse Laplace transform of Eq. (20) is (gain) ' as a
function of the interaction length.

The gain-dispersion relations of the backward Raman
scattering amplifier and oscillator and the associated pa-
rameters definitions are summarized in Table I in a com-
parative way. Use the upper sign of k~ for the backward
Raman scattering schemes.

B. Forward Raman scattering schemes

The generalization of our analysis to the forward Ra-
man scattering schemes [represented by Figs. 1(c) and
1(d)] is straightforward. From the point of view of
signal-idler —wave interaction in the nondepleted pump re-

gime there is no substantial difference between the
codirectional interaction amplifiers with backward Ra-
man scattering [Fig. 1(a)] or forward Raman scattering
[Fig. 1(d)], and the same can be said on the backward
[Fig. 1(b)] and forward [Fig. 1(c)] Raman scattering con-
tradirectional interaction oscillations. Consequently, the
gain-dispersion relations of the forward Raman scattering
amplifier and oscillator can be derived by substituting
k ~—k in all the derivation steps of the backward Ra-
man scattering amplifier (Sec. III A 1) and oscillator (Sm.
IIIA2), respectively. We thus obtain the following ex-
pressions for the forward Raman scattering amplifier:

IV. NUMERICAL RESULTS AND ASYMPTOTIC
DISPERSION RELATIONS

C, (s) (s+i8) +8&

s [(s+i8) +8~]+i~8'
(26)

where the plus sign is used for the amplifiers [convective
instabilities, Figs. 1(a) and l(d)] and the minus sign is used
for the oscillators [absolute instabilities, Figs. 1(b) and
l(c)].

Inverse transforming Eq. (26), and evaluating
C, (z)/C, (0) at z =L where L is the interaction length,
yields the same equation for all four schemes:

In the previous section we derived the four basic
scattering schemes in such a way that they differ from
each other in the final equations only by changes of signs
of k and in the detuning parameter.

From the second row of Table I we see that the disper-
sion functions C, (s)/C, (0) are independent of the sign of
k and therefore are the same for the backward and for-
ward scattering schemes. Furthermore, the two expres-
sions of the dispersion equations may be written by a sin-

gle formula:
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the mode normalization power [Eq. (3)] and (x„y,) are
the e-beam center coordinates. S is the average power
density carried by the wiggler field in the electromagnetic
pump case, and 3 is the rms value of the wiggler
strength in the magnetostatic pump case. Note that for
all cases the calculated value of a. is always positive. Also
note that the maximum coupling coefficient is obtained
when the wiggler and signal waves have the same polari-
zation, and this maximum value is the same for linear or
circular (helical) polarization. (The comparison of dif-
ferent polarizations should be done with wigglers of the
same average power density or rms magnetic field. }

Equations (28) and (29) are third-order algebraic equa-
tions which have explicit solutions for 5k; (i=1,2,3).'

The only difference between the two equations is in the
sign of the second and fourth coefficients. This difference
causes only a change of sign in all three roots but does not
change their absolute value. ' It is straightforward to
show that changing the sign of all three roots leaves the
absolute value of C, (L)/C, (0) [Eq. (27)] unchanged (see
Appendix 8). This result enables us to use a single formu-
la to describe all four cases.

The explicit analytic expressions for the roots of (28)
(Ref. 14) were substituted in (27) and the amplitude ratio
C, (L)/C, (0) was computed numerically. The'power-gain
parameter

~
C, (L)/C, (0)

~

is displayed in Fig. 4 in a con-
tour map in the 8-Q plane with 8& as a parameter. [The
contours are for constant value of

~
C, (L)/C, (0)

~
]. The

maps can be used for all the four scattering schemes de-
picted in Fig. 1, with the help of Eqs. (30) where the cor-
responding definitions of 8 and a for each scattering
scheme are given in Table I.

As already mentioned, Eq. (27) is the small-signal gain
function for the right-going signal schemes [amplifiers,
Figs. 1(a) and 1(d)] and the small-signal (gain) ' for the
left-going signal schemes [oscillators, Figs. 1(b) and 1(c)].
Thus, when

~
C, (L)/C, (0)

~

=0, the linear gain for the
left-going waves goes to infinity, and oscillations (absolute
instability) are excited in the beam. Three oscillation
points are clearly identified in the first quadrant of the
(Q,8) plane (Q, 8&0) in Fig. 4(a) (8~ =0). In Figs. 4(b)
and 4(c) (8~=5,10) two oscillation points (modes) are
identified within the parameters region shown. The value
of

~
C, (L)/C, (0)

~

was checked to be less than 10 ' at
these oscillation points.

When one changes the space-charge parameter 8~, the
oscillation points coordinates move in the 8,Q plane. This
movement was analyzed numerically for the first two os-
cillation orders and the dependences of the oscillation
points (Q,8) values on 8& are shown in Figs. 5(a) and 5(b)
for the first oscillation mode order, and in Figs. 6(a) and
6(b) for the second oscillation order.

Let us examine now the asymptotic behavior of the de-
tuning parameter 8 at the oscillation points. It is evident
from Fig. 5(b) that for 8& »1 oscillation always takes
place at 8=8~. Using the definitions of 8 for both kinds
of oscillators (Table I) one finds the asymptotic relation

C

—k; =Op —— (31)
Oz

where m& is the longitudinal plasma frequency. ~; is the
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FIG. 5, Parameters of the oscillation conditions for the first-
order oscillation. (a) Gain parameter Q vs P~ and (b) detuniug
parameter 8 vs 8&. Note the asymptotic linear behavior of 8 for
large values of P~.
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beat frequency which is defined for the oscillators (contra-
directional interaction) schemes as co; =co~ —co, (see Table
I); k;=k, +k for the backward Raman scattering oscil-
lator and k;=k, —k for the forward Raman scattering
oscillator.

co; and k; are the frequency and wave number of the
ponderomotive force which by modulating the beam ex-
cites the idler wave (co;,k;). The dispersion relations of
the space-charge waves are as follows. The fast-wave re-
lations are

lG,«(
EXACT

ASYMP =

Vo,k+cop, a) g 0

Vogk —Np, 6) +0 .

The slow-wave relations are

(32)

0 20
Vpgk —a)p, a) y 0

N= ~

Vosk+~p, co &0
(33)

Comparison of Eqs. (32) and (33) with (31) confirms
right away our assertion that the oscillators involve cou-
pling to the fast space-charge wave when co; =co~ —cu, &0
(down conversion ) and to the slow space-charge wave
when co; =co~ —ui, &0 (up conversion').

In a similar way it is possible to show that the amplifier
(convective instability) schemes acquire in the asymptotic
limit 8~ &&1 maximum gain at 8= —8& [inspect Figs. 4(b)
and 4(c)]. Since in these schemes we defined co; =ui, —co

(Table I) we conclude that the amplification process in-
volves coupling to the slow space-charge wave in the up-
conversion amplifiers which are shown in Fig. 2(a) (and as
well known for the conventional FEI. amplifier) and to
the fast space-charge wave in the peculiar down-
conversion amplifiers like the one shown in Fig. 2(d).

V. THRESHOLD CONDITIONS

C, (s) s (s +Zi8~ )

C, (0) e=e~ s (s +2i 8&)+ix8&
(34)

Making now the small growth rate assumption
I
s

I ~&28~ (Ref. 5) one finds

C.(s) s
(35)s'+ —,

' x8,

Inverse transforming Eq. (35), evaluating C, (z)/C, (0) at
z =L we find

In this section we derive an asymptotic threshold condi-
tion expression for all kinds of oscillations in the limit

8~ && 1, and compare it to the numerical results. We start
with the oscillator's dispersion relation (20):

C, (s) (s+i8) +8~
C, (0) s [(s +i 8) + 8p ]+i~8~

Following the arguments of the last section, we assume
19=8&, and Obtain

8p

FIG. 7. Plot of zl vs 8& for the first-order oscillation. The
asymptotic expression is in agreement with the exact numerical
results for P~ & 4.

CJ(0)=0],

L =n.(1+Zn)
1

+Za8~
'

or, for the lowest oscillation order (n =0),

(36)

+2~8~
(37)

Equation (37) is a general expression for the oscillation
threshold, and can be used for electromagnetically or stat-
ically pumped devices, and for any kind of the pump po-
larization by using the corresponding definitions of a
which are given in the previous sections and in Table I.
The asymptotic approximation [Eq. (37)) xL =m /28&L is
drawn together with the numerically computed threshold
condition in Fig. 7. The figure displays excellent agree-
ment between the curves for 8& & 4.

VI. SOME SPECIFIC FEL SYSTEMS

We turn now to calculate explicit expressions for the os-
cillation conditions of two common absolute instability
examples.

» I
I rs Irw I

'
I
~

A y02pyg 2~ ksk cow
(38)

Assuming that the em dispersion relation is approxi-
mately co =ck, ~~co~, and 8=61&, we get an expression
for co, :

A. Backward Raman scattering oscillator with an em pump

This instability is the one proposed in Ref. 5. The ex-
pression for a as given in Table I is

C, (L)
=cos[( —,

' a 8~ )' L ], co (1—p, )+co~ 1 —p,
1+P. " 1+P. (39)

which yields, for the oscillation condition [C,(L)/ where p, = Vo, /c. Substituting (39) in (38), and assuming
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~

I r 'lT
~

=1 we find

~ c gp ~em Vo

which, together with (37), yields

1/2
PIC ~w ~ozPz VO ~ em

e 2iucop
~
S~

~
Aq

(I+g & )1/2

(40}

(41)

Equation (41) determines the threshold value of the in-
teraction length for a given pump strength. Note that this
equation is not valid in the tenuous beam limit.

assuming
~

b f; bT~
~

=1 and inserting k„we find

(43)

where P, = Vo, /c. Substituting (43) into (37) we get a fi-
nal expression for the threshold length:

' 1/2
nc 5y4 kw VosPs(1+Ps)7'z ~em

Lmi. = Xo (44)
cue Np

where oi, =e
~
Br„~ /m in MKS units.

This absolute instability was investigated theoretically
and numerically by Liewer et al. ' for the special case of a
helical wiggler. It is possible to compare both results in
the limiting case of a highly relativistic beam (which was
assumed in Liewer's analysis}. In this case we get

2&ego p g ck~ A em
Lmin =

c COp Ag

' 1/2

which differs from Liewer's results only by the introduc-
tion of the filling factor A, /A, and the y correction
y,'=yo/( I+& ' ).

It is important to notice that in Liewer's analysis there
is a hidden assumption of interaction with the slow plas-
ma wave only. This corresponds to the limiting case
Oz &~1, which is also the validity condition of our analyti-
cal expression (45}. However, our analysis is valid beyond
this limit, for arbitrary values of 8& including the tenuous
beam limit, 8& ~ 1, but one must then use the numerically
computed curves of Fig. 5 in order to evaluate the oscilla-
tion threshold.

In the conclusion of this work, we examine the thresh-

B. Forward Raman scattering oscillator,
with a transverse magnetostatic linear

or helical wriggler

This kind of instability is the absolute instability
analyzed before in Refs. 1—4. We follow now the same
procedure of the first example. Assuming the dispersion
relation of the signal wave is approximately
oi, =ck, »co&, we get an expression for k, :
k, =k P, /(1+P, ). Using the appropriate expression for
v given in Table I,

old conditions for excitation of various absolute instabili-
ties in a conventional magnetostatically pumped FEL.
Consider, as shown in Fig. 8, a helical or linear magneto-
static wiggler FEL system which amplifies a short-
wavelength em signal Si propagating from left to right.
Two kinds of instability can exist: the first one is the
magnetostatically pumped slow space-charge wave insta-
bility, ' the second is the em-pumped fast space-charge
wave instability, in which Si acts as an em wiggler field.
In both cases the excited signal is a long-wavelength em
field Sz which propagates from right to left.

The radiation condition of Si is well known:

cats ——ck~2y, where cps is the radian frequency of Si,
] Z

1

k = 2m /A, „, A, is the static wiggler period and

y, =go/( I+n wMs» with ~wMs defined as awMs
=eB„/mck (8„ is the wiggler rms magnetic field
strength). The radiation condition for S2 involves two
different calculations, which lead to the same results: for
the magnetostatically pumped instability we set
8= —ois, /Vo, —(ks, —k )=0 which leads to the condi-

tion ops ——Tck~. Similarly, for the em-pumped instability

e set 8=(o~s, —ops, )/Vo, —(ks, +ks, )=0 ~high, upon

substituting the radiation condition of cps leads again to
1

the relation co+ ———,
' ck,

2

Inserting ops as co in Eq. (41), and defining a
"threshold-ratio" parameter as the ratio between L ;'„and
I.';„(which are the threshold lengths of the magnetostati-
cally pumped and electromagnetically pumped instabili-
ties, respectively), we find, after taking the limit y »1

1/2
Lmin

I Sem I

L min —,
' V'so/iuc'

~
&r~

I

(46)

where S, is the average power density of the electromag-
netic signal Si. Equation (46) determines what instability
is more dominant for a given FEL system, designed to
operate at a given wiggler strength and to produce a given
signal power. If 9F & 1 one must check the stability cri-
teria of the electromagnetically pumped oscillations using
Eq. (41), if 9F & 1 then the magnetostatically puinped in-
stability is dominant and Eq. (44) is the relevant stability
criteria.

We now calculate two specific numerical examples us-
ing typical parameters occurring in high-power FEL
designs. ' Consider a FEL system with the following pa-
rameters: A,~ =10 cm (o~ =0), yo ——9, 8„=3kG, Jo ——50
A/cm, A, /A, =25, and the circulating em power densi-

l ~ il i /,
'

(&
I li S2

e-

FIG. 8. Conventional, magnetostatically pumped FEL am-
plifier. SI is the amplified signal and S2 is an em wave excited
by the instability of the beam. This instability can be pumped
by the static wiggler (slow-wave instability) or by the em signal
S1 I fast-wave instability).
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ty of Si is about 96 MW/cm . Using Eq. (46) we find
A'=0.42, thus the dominant instability is the magneto-
statically pumped one. Using (45) we get

Thus the instability will be excited if the interaction
length I. is greater than 8.7 m. Now we turn to check the
validity of our calculations: the above parameters corre-
spond to cuz ——5.8)&10 sec ' which yields 8&

——2.1 m

(8i, =cd, /y, yo Vo, ) thus 8~ =18.6, and our result is, ac-
cording to Fig. 7, in good agreement with the numerical
calculations.

For the second example we multiply the current density
Jo of the first example by 10, which leads to Jo ——500
A/cm and to a circulating power density about 1

GW/cm (the saturation power is proportional to current
density" ), all the other parameters are the same as those
of the first example. The instability ratio for this system
is about 1.36, thus the electromagnetically pumped insta-
bility is dominant, using Eq. (41) we find the threshold
length to be about 3.6 m. These parameters correspond to
co&

——1.8X10' rad/sec, which together with L=3.6 m
leads to 8& ——24 (8& co&L/y——,yo Vo, ), and again our
asymptotic calculations are valid.

In conclusion, two short comments regarding the stabil-
ity of a general FEL system are in order.

(a) In the last section only two absolute instability
schemes were computed and compared, but it is important
to notice that in a general FEL system (especially oscilla-
tors with optical resonators) other instabilities like the
em-pumped forward Raman scattering oscillator and am-
plifier depicted in Figs. 1(c) and 1(d), respectively, can
give rise to oscillation, due to the high-intensity circulat-
ing fields in the cavity. All possible parasitic instability
processes should be evaluated in specific high-power FEL
laser designs.

(b) In the stability analysis of the present paper we as-
sumed a stationary time dependence exp(icot) and a con-
tinuous electron beam. Infinite-gain conditions where in-
terpreted as absolute instabilities, which would tend to
amplify the noise in the system up to saturation. Some
relevant questions about the oscillation buildup time and
stability criterions of finite-pulse FEL devices are still left
open. In particular if the parasitic oscillations buildup
times are long relative to the FEL pulse duration, the ef-
fect of the parasitic oscillation in the FEL operation may
not be of significant concern.
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APPENDIX A

We discuss now the various interaction schemes follow-
ing Fig. 1. Figure 1(a) corresponds to the conventional
FEL amplifier (convective instability), in which the
wiggler wave propagates in counter direction to the elec-
tron beam and the signal wave. The Stokes diagrams of

this interaction scheme in the collective limit 0& ~~1 are
represented by the left-going vectors of Fig. 2(a). The
Stokes diagrams express the conservation of energy and
momentum conditions in the three-wave parametric cou-
pling process involving the pump (wiggler) wave (0, —k„)
or (co, —k ) (corresponding to static and electromagnetic
pumps, respectively), the signal wave (co„k,), and the idler
wave (co;,k;), which in this case is the slow space-charge
wave. The three-waves interaction is strong when the
phase matching conditions co; =co, —co and k; =k, +k
are satisfied. Alternatively, the condition of strong in-
teraction can be expressed in terms of a synchronism con-
dition between the phase velocities of the ponderomotive
wave and the idler (slow space-charge) waves V~ = Vsc."
The ponderomotive wave is the force field produced by
the beating of the two electromagnetic waves via the non-
linear Lorentz force equation and it propagates with phase
velocity V~ =(co, —co )/(k, +k ). The phase velocity of
the slow space-charge wave is V,i

——Vo, /(1+co&/I co; I).
The phase matching and the synchronism conditions are,
of course, equivalent.

In Fig. 1(b) the roles of the pump and signal waves were
interchanged. The signal wave propagates in counter
direction to the beam and pump wave. Since the interact-
ing signal wave and electron beam propagate in counter
directions, a feedback mechanism is constituted, and con-
tradirectional interaction oscillation (absolute instability)
may be excited. This is the instability that was analyzed
in Ref. 5, and we have shown that in the case of down

(up) conversion it involves excitation of the fast (slow)
plasma wave of the beam. The right-going vector of Fig.
2(b) shows the Stokes diagram of this scattering scheme.
It is seen that the fast plasma wave

( —co;, —k; ) =(co, —co~, —k, —k~) can be coupled to the
down-converted signal wave (co„—k, ) via the right-going
wave (co,k ) where co, ~co .

In Fig. 1(c) the scattered wave propagates in the same
direction as the pump wave, and both of them opposite to
the beam. If coupling to the electron-beam space-charge
waves is possible then evidently this scheme constitutes
again a contradirectional interaction feedback mechanism
between the signal and the beam waves, and consequently
oscillation (absolute instabihty) may be excited.

It is somewhat difficult at first glance to become con-
vinced that synchronization between the ponderomotive
force and any of the plasma waves is possible in the
scheme 1(c), because one normally would expect the
space-charge waves to propagate in the right direction
with speed close to the beam velocity and the ponderomo-
tive wave to propagate in this scheme leftward. Closer
examination shows that both of these assuinptions
are not always true. The phase velocity of the fast space-
charge wave is Vf ——Vo, /(1 —

co&/ I
co;

I
) and when

I
co;

I

= Icos —cow
I &co~, then u/&0 and the fast space-

charge wave propagates in counter direction to the elec-
tron beam. In this case the fast space-charge wave may
couple to a left-going ponderomotive wave produced by
two left-going normal electromagnetic waves. The Stokes
diagram of this scheme is represented by the left-going
vector in Fig. 2(b). Apart froin the wiggler direction, the
interaction scheme is basically the same fast-wave oscilla-
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tion of Fig. 1(b).
Another way by which the forward scattering scheme

of Fig. 1(c) may be realized, is by synchronizing the
right-going slow space-charge wave of phase velocity
V,i ——Vo, /(&+co~/

~

co;
~

) to a right-going ponderomotive
wave. The phase velocity of the ponderomotive wave gen-
erated by two left-going electromagnetic waves is

V~ = —(co, —co~)/(k, —k~) and with any normal elec-
tromagnetic modes (free-space or uniform waveguide
modes) it is negative. However, if (co, —k ) is allowed to
be a slow electromagnetic wave: co~/k~ &c (e.g. , a slow
space harmonic of a Floquet mode in a periodic
waveguide ) or simply a static wiggler: co =0, then it is
possible to obtain k, ~ k and consequently V~ & 0. The
synchronization with the slow space-charge wave is then
possible. The Stokes diagram of this case is shown in Fig.
2(c) for both slow electromagnetic and static pumps. The
static pump case is the instability that was analyzed in
Ref. 1.

In Fig. 1(d) an interesting new scheme of forward Ra-
man scattering FEL amplifier is shown. In this case both
signal and wiggler waves propagate in the same direction
with the electron beam. Such forward Raman scattering
amplification (convective instability) schemes can take
place with both up and down conversion involving cou-
pling to the slow and fast space-charge waves, respective-
ly. The Stokes diagram of the forward Raman scattering
slow space-charge wave instability is represented by the
right-going vector in Fig. 2(a) and the fast space-charge
wave instability is depicted in Fig. 2(d}. The slow space-
charge wave instability is a peculiar scheme of little prac-
tical interest since it involves only a small-frequency up
conversion. The nature of the interaction is not different
from that of the conventional FEL instability represented
by Fig. 1(a) and the other two Stokes diagram of Fig. 2(a).
The fast space-charge wave instability is closely related to
the beat-wave acceleration schemes discussed in Refs. 8
and 9 (it is the inverse process). It is, too, of little practi-
cal interest as an amplification mechanism, but should be
of some concern, since it may be excited by a conventional
FEL high-intensity signal wave which serves as a sec-
ondary pump for this instability.

APPENDIX 8

We show that by changing the signs of all the three
roots 5k; of the cubic Eq. (28) (this happens when the
signs of the second and the fourth terms in this equation
are reversed) the absolute value of C, (L)/C, (0) [Eq. (27)]
remains unchanged. It is obvious that the multiplication
factor outside the square brackets of Eq. (27) is not affix;t-
ed at all by changing the signs of 5k;, thus we have to
concentrate in our discussion only on the expression given
by

5k2 —5k3 I~k, 5k3 —5k),-gk, 5k )
—5k2

Because all the coefficients of the cubic equation are
real, there exists only one of the possibilities' as follows:

(1) all the three roots I5k; j are real,
(2) one root is real and the other two are complex conju-

gates.
(1) Assuming all roots are real, we define 5k; as x;

(i =1,2,3). In that case, expression (Bl) can be written in
a general way as

IZ i IX2 EX3g=a~e +a2e +a3e

where a i ——(xz —x3)/xi, a2 ——(x3 x i )/x2
a 3

——(x, —x2 ) /x 3 ~ Equation (82) is equivalent to

(82)

'g =a )cosx ) +a2cosx2+a3cosx3

+i(a ~sinx i+azsinxz+a3sinx3) (83)

and changing the signs of x; (=5k;) will not affect the ab-
solute value of (83) at all.

(2) One root is real and two are complex conjugates.
We define

5ki ——Ri+ix, ,

5k2 ——Ri ix)—,
5k3 ——R3 .

(84)

(85)

(86)

Substituting into (Bl) we get, after some algebraic ma-

nipulations,

g=RT+ixT, (87)

—Z&Rr ——e (a i cosR, —b
~ sinR, )

—e ' (a i cosR i +b i sinR i ) —b 3 sinR 3,

xr ——e '(b~cosR i+a isinR)

where

+e ' (b
~
cosR

~

—a
~
sinR

~ ) +b 3 COSR 3 (89}

Ri(Ri —R3)—x f 5k2 —5k3
=Re

Ri+x', (810)

x)(R3 —2Ri)
b )

——
2 2

——Irn
R )+x)

5k2 —5k3

5k)
(811)

2x&
b3 ——

R3
(812)

Changing the signs of 5k; would change the signs of
R I, x&, and x3 but will not affect at a11 the va1ue or sign
of ai, bi, b3. Looking carefully at Eqs. (88) and (89} we
see that this will transform Rr to —RT, while xT is not
modified at all, thus the absolute value of g is again un-

changed.
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