PHYSICAL REVIEW A

VOLUME 33, NUMBER 6

Multiple-contact diffusion-limited-aggregation model

Paul Meakin

Wilmington, Delaware 19898
(Received 7 November 1985)

New diffusion-limited growth models are described in which growth occurs at the site which is
first contacted by k (k is a small integer) random walkers launched from outside the growing cluster
and adsorbed on contact with the cluster. This model is closely related to the dielectric-breakdown
model in which the growth probability is proportional to the kth power of the field gradient at the
surface of the growing cluster. For the case k =2 our results for the radius-of-gyration exponent 3
are consistent with the theoretical predictions of Turkevich and Sher. However, our results do indi-
cate that the main assumption of the theory of Turkevich and Sher (the formation of a diamond
shape on the square lattice) is not correct in this case. The clusters grow into a crosslike shape in
which the increase in length and width of the arms of the cross with increasing cluster size are
described by different exponents. A similar anisotropy is not observed from the largest clusters
which can be grown on hexagonal lattices for the cases k =2, 3, and 4. For k =2 the radius-of-
gyration exponent has effective values of about 0.73 and 0.70 for the largest clusters which can be
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grown on square and hexagonal lattices, respectively.

INTRODUCTION

Considerable interest was generated in nonequilibrium
random growth models following the demonstration by
Witten and Sander! that a simple diffusion-limited aggre-
gation (DLA) model leads to the formation of structures
which seem to possess interesting, nontrivial, scaling and
universality properties.!~® In this model particles (often
represented by occupied lattice sites) are added to a grow-
ing cluster or aggregate of particles using random walk
trajectories. In recent years a variety of models more or
less closely related to the Witten-Sander model have been
developed and applied to a broad range of physical phe-
nomena.*> In one of these models the growth probability
at each unoccupied surface site adjacent to an occupied
site on the growing cluster (i.e., at each growth site) is ob-
tained by solving Laplace’s equation (V2¢=0) subject to
absorbing boundary conditions (¢=0) on the growing
cluster and a fixed value for the potential (¢=1) at some
distant boundary.®’” Laplace’s equation is solved numeri-
cally in a discretized form using standard relaxation
methods.>”® The growth probability at each of the sur-
face sites is then assumed to be proportional to some
power (€) of potential (¢) or proportional to the same
power of the potential gradient (V¢) (since =0 on the
cluster, these two procedures are essentially equivalent):

P~gc. (1)

In other words, the growth probability is proportional to
some power of the harmonic measure. This model was
first introduced by Niemeyer et al.® to describe dielectric
breakdown phenomena (here ¢ is the electric potential)
and was developed independently by Meakin’ to describe
growth of biological systems (here ¢ is the concentration
of some growth controlling chemical).

In the case e€=1 this dielectric breakdown® or
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diffusion-limited growth’ model becomes equivalent to
the Witten-Sander model for diffusion-limited aggrega-
tion (apart from some details which depend on how the
models are implemented and are not believed to change
the scaling properties of the aggregates). In general, these
models lead to fractal-like structures in which the fractal
dimensionality (D) (Ref. 9) varies continuously with the
exponent € [Eq. (1)]. Because of this characteristic, these
models have the potential of being able to describe a
broader range of phenomena than the original Witten-
Sander model.

Based on some early, rather small scale, simulations,' ™
it has generally been assumed that these models are
universal in the sense that they lead to structures which
can be described in terms of fractal dimensionalities or
scaling exponents which do not depend on model details.
This idea has recently been challenged by Turkevich and
Sher'® who have developed a new theory for DLA based
on the idea that the fractal dimensionality is determined
by power-law singularities in the distribution of growth
probabilities and that the strength of these singularities is
determined by the structure of the lattice. Based on these
ideas, they predict that D=3 for a two-dimensional (2D)
square lattice and + for 2D triangular and hexagonal lat-
tices. Recent large scale computer simulations'' are not
inconsistent with D=3 for the square lattice but do not
support a value of + for the triangular and hexagonal lat-
tices. However, in this case the discrepancy between
theory and simulation can be rationalized on the basis of
the cgncepts embodied in the theory of Turkevich and
Sher.

Turkevich and Sher have also used their theory to make
predictions concerning the dielectric breakdown model.
For the case e=2 they find Dz% for a square lattice,
and for €=0.5 they find D=1; (1.833). In their simula-
tions carried out using the dielectric breakdown model,
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Niemeyer et al® found D=1.6 for e€=2 and
D=1.89+0.01 for e=+, while Meakin’ found D=1.40
for €é=2.0 and D=1.90 for €=0.5 using an essentially
identical model. Unfortunately, large amounts of com-
puter time are required for complete relaxation of the
field (¢) in these simulations (in particular, a large num-
ber of relaxation cycles are needed for large € in order to
obtain accurate values for the growth probabilities). In
addition, the fixed boundary conditions (¢=1) are im-
posed at distances of only 2—3 R_,,, from the growth site
or seed (where R,,, is the maximum radius of the cluster)
in current algorithms. Although it might be possible to
make substantial improvements to the algorithms used for
the dielectric breakdown® and diffusion-limited growth’
models, it does not seem probable that results from large
numbers of large clusters will be available in the near fu-
ture. In this paper some results are presented which have
been obtained from a closely related model.

In this new, multiple-contact model, particles are
launched one at a time from outside of the region contain-
ing the cluster and follow random walk trajectories.
These trajectories are terminated if they reach a distance
of 100 R.,,, from the cluster or enter an unoccupied site
adjacent to an occupied site (a growth site). A record is
kept of how may times each of the growth sites is occu-
pied, and the first growth site to be contacted k times is
occupied (k is a small integer). After each growth event
the whole procedure is repeated with each growth site
having an initially zero contact score. This model is not
equivalent to the dielectric breakdown model, but in the
limit of large cluster sizes (where all of the growth proba-
bilities for the growth sites are small) the growth probabil-
ities for a site with probability P will be proportional to
P¥, and we expect the asymptotic scaling behavior for the
clusters obtained from this model to be the same as that
for the dielectric breakdown model with e=k.

COMPUTER MODELS

All of the simulations used in connection with the work
described in this paper were carried out using two-
dimensional square or hexagonal lattices. At the begin-
ning of a simulation a site in the center of the lattice is
filled to represent the “seed” or growth site. Particles are
released, one at a time, in the vicinity of the cluster and
allowed to undergo random walks. If the mobile particle
undergoing a random walk moves into an unoccupied lat-
tice site which is a nearest neighbor of an occupied site
(i.e., a “growth” site), the random walk trajectory is
stopped and a new trajectory is started. A record is kept
of how many times each of the growth sites has been con-
tacted. The first growth site to be contacted k times is
occupied and the procedure described above is repeated.
After each growth event the number of contacts for each
of the growth sites is set to zero.

At later stages in the simulation, when a cluster of oc-
cupied sites has been found, the particle trajectories are
started from a random position outside of the region oc-
cupied by the cluster>*12 and are terminated if a growth
site is reached or if the particle reaches a distance greater
than 100 R,,, from the seed or growth site where R ,,, is
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the maximum radius of the cluster. In order to reduce
computer time requirements, the particles are allowed to
take large off-lattice jumps if they are situated a large dis-
tance from any occupied site on the cluster.!> However, if
the particles reach a position within 6—7 lattice units
from any occupied site on the cluster, they are transferred
to the nearest lattice site and the random walk continues
on the lattice until the particle either enters a growth site
or moves a distance greater than 6—7 lattice units away
from the cluster. Thus, in the vicinity of the cluster, these
models work like ordinary lattice models for diffusion-
limited aggregation.>3

At larger distances from the cluster the length of an
off-lattice step is restricted so that the particle cannot
penetrate more than one lattice unit into the region in
which the on-lattice walk occurs. An illustration of this
model, for the case of a square lattice, is given in Fig. 1.
The motivation for this somewhat elaborate procedure is
to obtain a model which will give results which are indis-
tinguishable from those obtained using completely on-
lattice random walks while retaining the efficiency in-
herent in long off-lattice steps.'> The procedures used in
these models are very similar to those which have been
used recently to grow large numbers of quite large (~ 10°
particles or sites) DLA aggregates.!? In both the models
used in connection with the work described in this paper
and the improved models for diffusion-limited aggrega-
tion, an underlying lattice is used to inform the random
walker how long its next step may be. Since this pro-
cedure does not make efficient use of computer storage
capabilities, the size of clusters which can be generated is
limited. However, that is not an important practical con-
sideration since clusters of the size used in this work re-
quired 1—2 hours of CPU time on an IBM 3081 computer
to generate.

LATTICE MODEL

FIG. 1. Early stage in a simulation carried out using a square
lattice. The occupied sites comprising the cluster are shaded
and a typical particle trajectory is shown. The growth site
which is contacted by the particle and at which the particle tra-
jectory terminates is outlined. The on-lattice steps in the vicini-
ty of the cluster and the larger off-lattice steps further from the
cluster are shown.
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RESULTS

Square lattice models

14 000-site clusters were grown on a square lattice using
the two-contact model (k =2). Figure 2 shows a superpo-
sition of 30 of these clusters. The most remarkable
characteristic of this figure is the way in which the densi-
ty is concentrated along the axes of the lattice to form a
“cross” shape. A similar, but much smaller, concentra-
tion of density along the axes of the lattice has been ob-
served for DLA clusters (k =1) generated on a square lat-
tice.!>!* Similar results have been obtained using the
three- and four-contact models. Figure 3 shows a super-
position of forty 5,000-site clusters grown using the four-
contact model (k=4). In this case the concentration of
density along the lattice axes is even more pronounced.

A total of seventy-eight 14 000-site clusters were gen-
erated using the two-contact (k =2) model. Seventy-eight
7500 site clusters were generated using the k=3 model,
and forty-five 5,000 site clusters were generated using the
k=4 model. For all three models the dependence of the
effective exponent, 3, which describes how the radius of
gyration (R, ) increases with cluster mass (M) has been in-
vestigated:

R, ~M?B . )

The effective values of 3 were obtained by least-squares
fitting straight lines to the coordinates (In(R;), In(M))
over various ranges of cluster mass (bins). For “bin” 8,
clusters in the size range M, /2<M <M, were used,
for bin 7, clusters in the size range M., /4<M
<M,,./2 were used, and for each successively smaller
bin number the cluster masses were smaller by a factor of
2. Figure 4 shows some of the results obtained from all
three square lattice models.

For the two-contact model the effective value of B is
weakly dependent on the cluster mass (by an amount bare-
ly larger than the statistical uncertainties) and the depen-

1350 LATTICE UNITS

FIG. 2. Superposition of thirty 14 000-site clusters grown on
a square lattice using the two-contact (k =2) model. For each
cluster every tenth particle (occupied lattice site) is shown.
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1625 LATTICE UNITS

FIG. 3. Superposition of 40 5000-site clusters grown on a
square lattice using the four-contact (k =4) model. For each
cluster every tenth lattice site to be occupied during the growth
process is shown.

dence of B on M is not inconsistent with a limiting
(M — ) value of 0.75 predicted by the theory of Turke-
vich and Sher. However, it is clear from Fig. 2 that these
clusters are not homogeneous fractals and that they do
not have a square or diamond shape characteristic of the
lattice. For k >2 the dependence of B on cluster mass is
more pronounced. It is difficult from the results shown in
Fig. 4 to even guess what the limiting value for the ex-
ponent 3 might be. However, our results do suggest limit-
ing (M — oo ) values greater than 0.8 for kK =2 and greater
than 0.9 for k£ =3.

Hexagonal lattice models

A series of simulations similar to those described above
were carried out using hexagonal rather than square lat-
tices. Sixty-seven 15000-site clusters were generated us-
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FIG. 4. Dependence of the effective radius-of-gyration ex-
ponent (f3) on cluster mass (number of occupied lattice sites) for
the square lattice model.
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ing the two-contact model, seventy-one 7500-site clusters
were generated using the three-contact model, and forty-
seven 5000-site clusters were generated using the four-
contact model. Figure 5 shows a superposition of 10% of
the occupied lattice sites from forty simulations carried
out using the four-contact hexagonal lattice model. This
figure should be compared with Fig. 3 obtained using the
corresponding square lattice model. There is no indica-
tion in Fig. 5 that the density is concentrated along the
axes of the hexagonal lattice or that growth occurs pre-
ferentially along these axes. However, it is possible that
anisotropies of this type might develop in much larger
clusters grown on a hexagonal lattice. Figure 6 shows the
dependence of the effective radius of gyration exponent
(B) on the cluster size for all three hexagonal lattice
models. In the case of the two-contact model B seems to
be almost independent of cluster size and has a value of
about 0.7 for all cluster sizes. For clusters in the size
range 75—15000 lattice sites a value of 0.700+0.005 is
obtained for B assuming that Eq. (2) describes the depen-
dence of R; on M and that 3 is mass independent. For
the three-contact hexagonal lattice model, B is dependent
on cluster mass for small clusters but seems to reach a

limiting value of about 0.80 for clusters containing more.

than about 500 occupied lattice sites. For the four-
contact model, B is increasing with increasing cluster
mass for the largest clusters we are able to generate. In
this case it is difficult to estimate a limiting (M — )
value for B, but our results do suggest a value greater than
0.85.

Anisotropy of clusters generated
by the square lattice models

Figures 2 and 3 show a strong anisotropy in the density
distribution associated with the square lattice models.
This anisotropy is reminiscent of that found by Ball et
al.’® for DLA clusters grown on a square lattice with a
higher sticking probability for addition of particles in two
of the four possible directions on the lattice. Similar re-
sults have also been found by Meakin'® for DLA on a
hexagonal lattice with sticking in three of the six possible

1250 LATTICE UNITS

FIG. 5. Superposition of 10% of the sites from 40 clusters
generated on hexagonal lattices using the four-contact model.
Each cluster contains 7500 sites.
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FIG. 6. Effective radius-of-gyration exponents (f3) for vari-
ous ranges of cluster mass obtained assuming a linear depen-
dence of In(Rg) on In(M). This figure shows the results from all
three hexagonal lattice models. Bin 8 corresponds to clusters in
the size range M. /2 <M <M ,,,, bin 7 corresponds to clusters
in the size range M ,,,/4<M <M., /2 occupied lattice sites,
and for each successively smaller bin number the clusters are
smaller by a factor of 2.

directions. In the case of the square lattice simulations
Ball et al. found that compact needle-like objects were
formed (in the limit of large cluster mass) for any amount
of anisotropy in the sticking probabilities. They showed
that the strength in the “easy” direction could be
described by X ~M?2/3 and growth in the “hard” direction
by X ~M'73. In our case the growth in the easy direction,
along the axes of the square lattice, will be described (in
the limit M — oo ) by the relationship

X~ME (3)

where B is the same exponent which describes the growth
of the radius of gyration [Eq. (2)]. To characterize the
growth in the “hard” direction the distance Y from the
closest of the lattice axes has been measured for particles
which have been added to the clusters during small inter-
vals in the growth process (M +8M /2). The quantity Y
can be regarded as the mean distance from the active
zone'S to the nearest axis of the lattice (with the origin at
the growth site). The results shown for the two-contact
model are shown in Fig. 7. Our data indicate that in this
case

Y~MY, (4

where the exponent y has a value of about 0.6. The fact
that y is significantly smaller than B (8>0.7) indicates
that the shape of the clusters will become more and more
anisotropic as they get larger and larger (i.e., we have two
divergent length scales). In the anisotropic sticking prob-
ability model of Ball et al. the quantity S+7 has an
asymptotic limit of 1.0 and the clusters are asymptotically
compact. In our case B+7 is considerably larger than 1
(B+7v>1.3). From least-squares-fitting straight lines to
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FIG. 7. Dependence of the mean deposition distance (Y)
measured from the nearest lattice axis for the two-contact model
clusters grown on a square lattice.

the coordinates (In(M),In(Y)) a value of 0.58+0.04 was
obtained for the two-contact model. Similar measure-
ments have been made for the three- and four-contact
models. In these cases we find y=0.60%0.05 for k=3
and y=0.63%0.09 for k =4 for the square lattice model.
Similar measurements have not been made for the one-
contact (ordinary DLA) model. However, in this case a
value close to 0.6 would almost certainly be obtained for
clusters in the size range of a few thousand up to 100000
occupied lattice sites.!! Consequently, it seems that
¥ =0.6 for the k=1, 2, 3, and 4 square lattice models.

Correlation functions

For all six models the two-point density-density correla-
tion functions! C(r) have been measured as a function of
distance (r). Figure 8 shows results obtained from the
square lattice models. Despite the complexity of the
structure of these clusters, the dependence of C(r) on r
seems to follow a simple power law

Clr)~r—¢ (5)

over a substantial range of length scales from a few lattice
units to more than 50 lattice units for the k =2 model and
more than 100 lattice units for the k=3 and k=4
models. By least-squares fitting straight lines to the coor-
dinates (In(#),In[C(r)]) over the range 5 <r <50 lattice
units the exponent @ was estimated to have a value of
0.587+0.005 for the k=2 model, 0.724+0.004 for k=3,
and 0.792+0.003 for k =4.
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FIG. 8. Two-point density-density correlation functions
[C(r)] obtained from the k =2, 3, and 4 square lattice models.
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Similar results have been obtained for the hexagonal
lattice models (Fig. 9). In this case the dependence of
In[C(r)] on In(r) is almost linear for lengths ranging
from a few lattice units to more than 100 lattice units.
For distances 7 in the range 5 <r <100 lattice units, the
results a=0.578+0.010 for k=2, =0.728+0.011 for
k=3, and a=0.800+0.016 for k=4 were obtained.
Within the statistical uncertainties (95% confidence limit
ranges) both the square lattice and hexagonal lattice
models give the same values for the exponent a for any
particular k in the range k =2—4.

DISCUSSION

The structure of the clusters grown on a hexagonal lat-
tice using these multiple contact DLA models seems to
approximate much more closely that of a self-similar frac-
tal than does the structure of clusters grown on a square
lattice. For a self-similar fractal the radius of gyration
exponent B and the density-density correlation function
exponent a are related by

D=1/B=d—«a (6)
or
a=d—-1/B. (7)

In the case of the hexagonal lattice models these relation-
ships are satisfied quite well at least for k=2 and 3.
For k=2 we found «a=0.578+0.010 and
d—1/8=0.571£0.01. For k=3,a=0.728+0.011 and
d —1/B~0.75. For the k =4 model it is difficult to esti-
mate a limiting (M — «) value for 8. However, our re-
sults for a (0.792+0.003) would imply a value of about
0.83 for the radius of gyration exponent. For the largest
clusters we can generate, B is larger than 0.83 and seems
to be increasing with increasing cluster size.

For the square lattice models our results for the radius
of gyration exponent B and the exponent y, which de-
scribes how the mean deposition distance from the closest
lattice axis increases with increasing cluster size, seem to
have distinctly different values. This result indicates that
these structures are not self-similar fractals but may be
described as self-affine fractals. This result may be relat-
ed to the observation that the density-density correlations
for ordinary DLA clusters have different dependencies on

T T T T T T T T T

-1 HEXAGONAL LATTICE .

= SLOPE = -0.595
S k=3
£

3 / d

-4+

1 L L

L . 4
o} 0S5 10 15 20 25 30 35 40 05 50
tn (r)

FIG. 9. Two-point density-density correlation functions
[C(r)] obtained from the hexagonal lattice models.
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distance measured in the radial and tangential directions
which can be described by two different effective ex-
ponents.'” 18

The apparent qualitative differences between clusters
grown on hexagonal and square lattices may, of course, be
more apparent than real. It may be that clusters must be
grown to a very much larger size on hexagonal lattices be-
fore the much weaker anisotropy associated with these
lattices is able to control the form of the clusters. For
very small clusters the values of the radius-of-gyration ex-
ponent, f3, are quite similar for the hexagonal and square
lattice models for all three cases (k =2, 3, and 4). In fact,
this behavior also extends to the k=1 (DLA) case, where
B is essentially cluster-size independent for the hexagonal
lattice models but increases slightly with increasing clus-
ter mass for the square lattice models.!* For relatively
small clusters, 8 has a value close to 0.585 for both
models.

One of the main objectives of this work was to test the
theoretical predictions of Turkevich and Sher.'° While
the results obtained for the radius-of-gyration exponents
for the k =2 case are not inconsistent with this theory, it
is clear that one of the main assumptions of the theory
(the diamondlike shape of the clusters) is not correct. We
also seem to be seeing evidence for the nonuniversal
behavior predicted by Turkevich and Sher. However,
since there is clear evidence that we have not reached the
asymptotic (M — o) limit in our simulations, it is not
clear how our results should be interpreted. Clearly,
much larger scale simulations would be desirable. Our
present algorithms are limited by both computer time and
storage requirements. Algorithms of the type described
by Ball and Brady'*!” make much more efficient use of
computer storage capabilities, but it is doubtful if very
much larger clusters could be grown using these algo-
rithms because of the computer time requirements.
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FIG. 1. Early stage in a simulation carried out using a square
lattice. The occupied sites comprising the cluster are shaded
and a typical particle trajectory is shown. The growth site
which is contacted by the particle and at which the particle tra-
jectory terminates is outlined. The on-lattice steps in the vicini-
ty of the cluster and the larger off-lattice steps further from the
cluster are shown.



