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Screening of classical charges in quantum Coulomb systems
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We show that the imaginary-tine Green's functions of a system of quantum charged particles at
equilibrium satisfy a set of sum rules which express the screening of a classical external charge. We
also provide a new derivation of the perfect screening property limI, ~ (k)=0 where e(k) is the
static dielectric function. The proof relies on exact equations for the Green's functions and certain
assumptions of spatial clustering. It is nonperturbative, independent of the statistics, and applies to
jellium as well as to multicomponent systems.

I. INTRODUCTION f drS, (k)= ik i'+o(ik i') . (1.6)
A fundamental characteristic of homogeneous metallic

(or plasma) phases in thermal equilibrium is the diver-
gence of the static dielectric function e(k) in the long
wavelength limit

This expresses the perfect screening of a static test charge
in the system. In the homogeneous one-component quan-
tum plasma (OCP), Eq. (1.1) can be deduced from the ex-
act compressiblity sum rule e(k)—= 1+4me
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~0, y being the compressibility. ' In general mul-
ticomponent systems of quantum charged particles,
Eq. (1.1) holds in the Thomas-Fermi or in the random-
phase approximation which give the behavior
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0, A, being the
screening length.

The perfect screening relation (1.1) is equivalent to
three sum rules for the first moments of the charge-
charge Green's function S,(x)= (Q,(x)Q(0) ):

f dx f d~s, (x)=0,P
(1.2)

xx rS~ x =0,P

f dx ~x ~' f d~S,(x)=— (1.4)

(1.3)

X(k)= — f d~S, (k) .]k['
Since e '(k) = I+X(k), the perfect screening relation (1.1)
reads

(1.5)

Q(x) is the total charge-density operator, Q, (x) is its
imaginary-time translate formally defined by
exp(rH)Q(x)exp( rH) and ( ) i—s the thermal average
with respect to the system Hamiltonian H in the thermo-
dynamic limit. Because of the neutrality we have
( Q(x) ) =0 for all x in a homogeneous state.

The connection between (1.1) and the sum rules
(1.2)—(1.4) is the following. The static susceptibility X,
defined as the linear response function of the charge den-
sity to an external classical charge distribution, is related
to the Fourier transform S, of S, by

By Fourier transform (1.6) is equivalent to (1.2)—(1.4).
In this paper, we provide a generalization of the sum

rules (1.2) and (1.3) to a large class of Green functions, ex-
pressing the perfect screening of a static classical test
charge in the quantum plasma (Sec. III). Then, we give a
simple proof of the perfect screening relation (1.4) based
on the only assumptions that the Green functions obey the
conditions of thermal equilibrium and have a reasonable
spatial decay (Sec. IV). The proof is nonperturbative and
covers the case of the OCP as well as multicomponent
systems. We thus conclude that an homogeneous phase of
charged particles is necessarily metallic, in the sense of
Eq. (1.1), when the correlations cluster sufficiently fast in
space (essentially, if the first and second moments exist).

The new sum rules derived in Sec. III are

f dx 9'i(x) f dr(Q, (x)A ) =0,P
(1.7)

where 9'i is a harmonic polynomial of degree I and A is a
general local observable. When A is the charge density
and I =0, 1, we recover (1.2) and (1.3) [note that (1.3)
holds trivially by spherical symmetry when A =Q(0), but
becomes nontrivial for a nonrotationally invariant A].

Our method is analogous to that which was used to es-
tablish similar sum rules for the correlations of a classical
charged fiuid~ 5 and for the reduced density matrices in
the quantum case. We show that the relations (1.7) and
(1.4) are constraints imposed by the long range of the
Coulomb potential which follow necessarily from the
structure of the equilibrium equations for the Green's
functions. The derivation relies on certain assumptions
on the spatial decay of the Green's functions which have
so far not been rigorously proven, even at high tempera-
ture. In particular, different behaviors can occur accord-
ing to the type of correlations which are considered. In a
plasma phase, one may expect that the function

~ ~dr(Q, (x)A ) involving the correlation of the charge
0

with any other local observable has a fast (at least inte-
grable) decay. But some care has to be exercised for
correlations between observables which are not diagonal in
the configuration representation. For instance, the
current-current density correlations (J,(x)J(0)) ~, 0 of
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the quantum OCP have a nonintegrable decay even when
the corresponding classical phase shows Debye screening.
The precise relation between the clustering properties and
the validity of the sum rules (1.7} is analyzed in Sec. III:
in any case, the violation of (1.7) for a local A will imply
a slow decay of some correlations. The arguments which
are given in Sec. IV for the proof of the perfect screening
relation (1.4) are similar to those presented in the classical
context where the result equivalent to (1.4) is known as
the second-moment Stillinger-Lovett condition.

To conclude this introduction we give a heuristic
derivation of (1.4) and (1.7) in the framework of linear
response theory. Let V=e0 x x ' x be the po-
tential energy due to an external point charge e0 located
at the origin. To first order in eo, the equilibrium average
(A), of an observable A in presence of this external

0

charge is

(A),,=(A) —eo f dx f, d~ Ix I
-'(Q, (x)A) . (1.8)

If the charge eo is screened, the state ( ),, will differ

from the unperturbed state only in a neighborhood of the
origin over distances of the order of the screening length

Assuming that ( A (y ) ),,—( A (y ) )=c exp( —
I y I

/A, )

decreases exponentially fast as Iy I
~oo, with A(y) the

space translate of A, we conclude from (1.8) and the
translation invariance that

x x ' ~,xayP

=f dx
I
x+y

I

' f d~(Q, (x)A ) (1 9)

dmays faster than any inverse power. As this last expres-
sion has the form of an electrostatic potential generated
by what might be called an excess charge density
induced b eo, we thus conclude from (1.9) that the excess
charge d~(Q, (x)A) carries no multipoles, which is

0
exactly the content of the sum rules (1.7).

Moreover, choosing A =Q(y), the perfect screening of
eo, fdy(Q(y) ), = —eo, together with neutrality leads to

f dy f dx Ix I

' f dr(Q, (x)Q(y))=1. (1.10)

By translation invariance and the Poisson equation, (1.10)
is equivalent to

I=f dy f dx Ix —yI-' f d~S, (x)
P

P=-,' f dy lyI'~ f d»I» —yI ' f «S'.(x}

= —(2m. /3) f dx Ix I f d~S,(x), (1.11)

which is the sum rule (1.4).

II. GENERAL SETTING

The system consists of s species of quantuin particles in
dimension v=2, 3 with mass m, charge e, spin o, and
statistics e~, a = 1, . . . , s (s = + 1 for bosons, c,= —1 for
fermions). The particles interact by means of the
Coulomb potential V(x)= Ix I

', v=3 [V(x)=—lnx,
v=2], and may be submitted to the field due to a classical
uniform background of charge density pa (jellium). In
multicomponent systems (with pa ——0), at least the species
of negative charge obey the Fermi statistics to insure ther-
modynamic stability. A short range potential may also be
added to the pair interaction: all results will be the same.

The charge-density operator and the Hamiltonian are
formally defined by

Q(x)= g pe a "(a,{T,») a( a, {7, »)+p~,
a=1 0

(2.1)

H=E+ U,

S~=g f dr f d'(. Ip'/2m. Ir') a (a, r)a(a, r'),
a=1

U=
2 Xl X2 X1 ~ X1 X2 X2

(2.2)

(2.3)

with the notation r=(o,»), f dr = f dxg
The colons mean Wick ordering. The creation and an-
nihilation operators satisfy the usual canonical
(anti-)commutation relations

"f—Tr(e+P& N {P ~)HAe Hg—
) 0 & r &P—

(2.5)

p, N= g IJ~N~,
a=1

where p and X are the chemical potentials and
particle-number operators, and Y is the grand partition
function. A and 8 belong to the algebra generated by n

body observables of the form

a(a, {T{,x{)a'(a, oi,»2) —e a'(a, oq, »2)a(a, {T{x'{ )

=5, ,5(xi —xp),
(2.4)

a(a, oi,xi)a(a, {rz,»2) e~(a, o—2,x2) ( aoa, iix)=0',

and the operators belonging to different species commute.
The imaginary-time Green's functions (ITGF) are de-

fined (in a finite volume system) by

A =— dri . . dr„ fdr{ . dr„'(r{, . . . , r„ I A~(1,2, . . . , n) I
r'i, . . . , r„'}

nt

Xa (a, ri) . . a (a,r„)a(a,r„') . . a(a, r'i) for n=1,2, . . . , a=i, . . . , s . (2.6)

A~(1,2, . . . , n ) is a local n-body operator for the particles
of species a, i.e., its configurational kernel in (2.6) van-
ishes when some of the xj or xJ are outside of a bounded
space region.

In this paper we shall assume that the thermodynamic
limit of the ITGF (2.5) exists, and we denote the infinite
volume ITGF by the same notation (A,B ) (the existence
of the thermodynamic limit of the ITGF can be proven in
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some cases, charge symmetric systems with Bose statis-
tics ).

The infinitely extended state is stationary,

(A, )=(A),
and translation invariant,

(A(x)) =(A),
A(x) being the space translate of A.

%e also assume local neutrality
S

&Q(x)) = g e p +p&=0,

(2.7)

(2.8)

(2.9)

(B,A &=&Ati,B&, (2.10)

where p =(N (x)) is the density of particles of species a
and X (x)=g a'(a, a,x)a(a, o,x).

It follows from their definition that the finite-volume
ITGF obey the basic equations

Combining (2.10) and (2.11) leads immediately to

f dr([H, B],A) =f dr(A, [H,B])=([A,B]) .

(2.12)

From now on, we assume that the infinite-volume ITGF
still verify Eq. (2.12) for local A and B. Equation (2.12)
for the infinite system, supplemented with the clustering
condition (2.15) below, will be the scattering point of our
investigation.

Because of the long range of the Coulomb potential, the
commutator [H,B] occurring in (2.12) is not local. Work-
ing out the left-hand side of (2.12) for a one-body operator
of species a (2.6), we find explicitly, with H =E+U,

f dr(A, [&,8]&=f« f dr'(r
~
[I(.'.(I),8.(I)] ( r )

13

dr( A,a '(a, r )a(a, r') )0

(2.13)

(B,A ) = ([H,B],A ) .
O'7

(2.11) and

f d (rA, [U,B]&=e~f dri f dri f dx2 fdx2(ri, x2 ( [V(1~2)»&(I)] ) r'i~xz)
13

dr( A, :a'(a, r, )a(a, r', ) Q( x):)
=e dr] r'& r& 8 1 r& x2 V x~ —x2 —V x

&

—x2
P

)( dr (A, :a'(a, ri )a(a, ri )Q(x2):)
0

(2.14a)

(2.14b)

We see that the x2 integral occurring in (2.14b) is abso-
lutely convergent if the Green's functions satisfy the clus-
ter property with respect to the charge

dr(A, B(x))r (
o ' /x["

and for the three-point function

(3.2)

P Mdr( A,a '(a, cr,x )a(a, cr', x')Q(y) )

(2.15)

e & 0, for fixed x, x', and A.
The expression (2.13) and (2.14) together with the clus-

ter condition (2.15) and their generalizations to n-body
observables 8, will be taken as definition for the left-hand
side of (2.12).

III. SUM RULES FOR THE GREEN'S FUNCTIONS

In this section, we show that the sum rules (1.7) follow
from the equilibrium equation (2.12) under appropriate
cluster assumptions. We introduce first the truncated
correlation in the usual way

(AB . C) =((A —{A))(8—(8)) . . (C—(C))) .

(3.1)

The rate of decay of the ITGF will be characterized as
follows. For fixed local A and 8, with 8(x) the translate
of B, we assume for the two-point function a bound of the
form

~A,Bx y
P M(t)

0
(3.3)

with t =min(
~ y ~, ~y

—x
~

). The conditions on 7) and
the decay of M(t) will be specified below. In (3.3), M(t)
estimates the joint decay in the three-point truncated
function, as the second point y is sent to infinity, A being
fixed. Notice that the bounds (3.2) and (3.3) concern only
the ~-integrated ITGF and not the ITGF themselves.

We say that a local observable A is diagonal if the n

body operator A (1,2, . . . , n ) is diagonal (i.e., acts multipli-
catively) in the configuration representation (like the
charge and particle densities, the potential, etc.). Typical
nondiagonal observables correspond to functions of mo-
menta of the particles. In the sequel we shall specifically
use a local approximation of the current associated with a
species a. This is formally defined by

Jf — f dr fdr'(r
~ (pf +fp }/2

~

r')
ma

Xa'(a, r)a(a, r') . (3.4)

p = —iA'7 is the momentum operator and f(x) is a
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smooth function of the position (spin independent) with
compact support.

%e treat separately in propositions 1 and 2 the 1=0
sum rule (charge sum rule) and the higher-order sum rules
l & 1. The charge sum rule holds under weak clustering
assumptions formulated in proposition 1, whereas
stronger cluster properties are needed to establish the
higher-order sum rules.

Proposition 1. Let A be a given local observable. As-
sume that

(i) for any one-body local 8, (3.2) and (3.3) hold with

g g v —1 and tM t & 00',

(ii) when 8(xI=Q(x), (3.2) holds with ri & v;
(iii) p~=(N (x))+0 for some a, a= 1, . . . , s, then the

charge sum rule

f dx f dr(Q, (x)A ) =f dx f d~(A, Q(x)) =0

is true.
Proof ofproposition l We w. rite Eq. (2.12) for the given

A and for 8=Jf(x),

f dr[(A, [H,Jf(x)])—(A, ) ([H,Jf(x)]) I

= ([A,Jf(x)]) (3.5)

and investigate i.ts asymptotic behavior as x~ao. In
(3.5), the truncation of the Green's function in the ~ in-
tegrand can be introduced freely since ([H,Jf(x)]) =0 by
the stationarity of the state. We work out explicitly the
terms of (3.5) with the help of (2.13) and (2.14}, noting
that

[V(x i
—xz» i [p if(x i )+f(x i )p i ]]

iAF(x, ——xz)f(xi),

where F(x)= —VV(x) is the force.
Using also the translation invariance we find

13

([A,Jf(x)])=f d~(A, [K,Jf]( )x)T (3.6a)

2
eaPa—i' f dx) f dx2f(xi)F(x)+x —x2)
m

X ~A, x2 (3.6b)

2ea f dx, f dx2f(x, )F(x, +x x,)—
ma

P
X v A, :X x~+x x2. T.

(3.6c)

We set x =A,u for a fixed unit vector u and let A,~ oo in
(3.6). Since the asymptotic form of F(xi+A, u —x2) is
uk, ' ", it follows from the assumption (ii) (see lemma 1

of Ref. 6) that the term (3.6b) behaves as

2
eaPa Q—iA f dx, f(x~)
m gv —1

All the other terms in Eq. (3.6) vanish faster than A,

the commutator [A,Jf(A,u }] vanishes for A, large enough
since both A and Jf are local. The commutator [K,Jf]
is the second quantized of the (nondiagonal) one-body
operator

T

e p pf+f
2m a 2

[p(p vf+vf'p)+(p sf+sf p)p] .
4m a

Thus the clustering assumption (i) implies that the term
(3.6a} is o(A, '" ") as A, ~ao. Finally an application of
lemma 1 of Appendix A enables us to conclude with (i)
that (3.6c) is also o(A, '" "). Therefore, the coefficient of

"in (3.7) has to vanish, giving the result of the pro-
position.

Remark (a). Assumptions (i) and (ii) specify different
forms of asymptotic decay according to the type of the
observables involved in the Green functions (3.2) and (3.3):
the assumption of integrable clustering enters only in (ii)
for the charge whereas the correlation between two nondi-
agonal observables may show a nonintegrable clustering
even in the plasma phase, as allowed by (i) (to order fi,
equilibrium correlations of the current density decay only
as I/~x (

in the OCP').
Remark (b). It is necessary for this proof to choose a

nondiagonal 8: therefore, for a general A, an assumption
on the clustering of correlations between nondiagonal ob-
servables can not be avoided. However, the proof does not
depend on the specific choice 8=Jf.

We now give conditions for the validity of the higher-
order sum rules.

Proposition 2. Assume that for a diagonal local A

(i) for one-body local 8 (3.2) and (3.3) hold with
M(t)=0(1/t") and g & v+l, l being a non-negative in-
teger;

(ii}p &0 for some a, a= l, . . . ,s. Then the multipolar
sum rules

f dx+k(x) f dr(Q, (x)A)
P

P=f dx 9' (kx)f dr(A, Q(x)) =0

are true for k =0, 1,... , l. 9't, is a harmonic polynomial of
degree k.

Remark (c). Proposition 2 is formulated for diagonal A
so that assumption (i) involves no correlations between
pairs of nondiagonal observables. If (i) holds also for a
general A, the same result will follow.

The mathematical details of the proof of proposition 2
are similar to those for the reduced density matrices given
in Sec. III of Ref. 6. &We give only a brief sketch here.

0
Setting h (x)=f dr(A, Q( )),xlemma 1 of Ref. 6

gives the multipole expansion

f dzF(A, u —z}g(z)

(i};,. . . ;„F)(iu )

I
( 1)k

1x f dxi f dr(A, Q(x2))+o (3.7)
l

1 lk 1
X f dz z ' . . z "g(z)+o (3.8)

gv —]



33 SCREENING OF CLASSICAL CHARGES IN QUANTUM. . . 4195

Proceeding by induction and assuming that the multipoles
of g(z) vanish for k =0, 1,..., 1 —1, the term (3.6b}
behaves as

—iA f dxif(xi) (8; . . . ; F)(Au)
eapa

'
( —1)'

ma

g(x)=h

1, 0& ixi &1
h(x)=

(4.3}

1dzz'. . z'h z+0
gv —1

(3.9)

By (ii) and lemma 2 of Ref. 6, all other terms in Eq. (3.6)
are o(1/A, " '). Introducing for a fixed j, 1 &j(v,

Proposition 3. If the assumptions of proposition 1 are
satisfied for A =K'J(0), ij =1, . . . , v, (3.11), and those of
propositions 2 for A =1ii (xi)X (xq), 1=0,1, and if thea2

second moment of dr S,(x} is finite, then the perfect
0

screening rule (1.4) is true.
Proof ofproposition 3. We write Eq. (2.12) with A =DJ

and 8 =J&J for a fixed direction j, 1 (j(v:

J 1 1

we must conclude that

f dzz ' z'h(z)=0.

([DJ,JJ ])= f dw{DJ [K,JJ ])

f dr(Daj, [U,J~J ]),

(4.4a)

(4.4b)
Then the same argument as in Appendix 8 of Ref. 6 im-
plies that the Ith-order multipole of h (z) vanishes.

The two following sum rules will play a particular role
in establishing the perfect screening relation in Sec. IV.
The first one is the charge sum rule

f dx f dr{Q,(x)K~J(0))=0,P

for the non-diagonal local observable

(3.10)

K'J(y) =f dx (x
~

p'pj ~y ) g a'(a, o', x) o( o, o, y)

(3.11)

[g"KJJ(y) can be interpreted as a kinetic energy density].
The second one is the dipole sum rule for the diagonal
& =N, (xi)N, (x2) (the product of two-particle densi-

ties)

X„is the volume of the sphere of radius 1 in R". Letting
R ~ 00, we show that (4.4) reduces to the perfect screen-
ing relation (1.4).

Evaluating the commutator in the left-hand side of (4.4)
gives

lim {[D~,JJ ])a

«e cpa . 1
lim f dx f(x)Vi{xjg(x))

m~

l Sea pa ice aPa
lim fdx f(Rx)VJ(x Jh (x) ) =

ma z w X„ ma

(4.5)

This follows by dominated convergence from the fact that
Pf dx x f dr& Q,(x)X,(xi )1V,(xq) & =0 . (3.12) 1, fxi (1

lim f(Rx)=

IV. PERFECT SCREENING

In this section, the perfect screening rule (1.4) is de-
duced from the Eq. (2.12) for the Green's function with
the help of a special choice of the observables A =Dx and
8=Jq. D~ and Jz are the local polarization and
"current" associated with a sphere of radius R. We define
Jz as in (3.4) with the smooth cutoff function

1, /xf(Rf' '=
o,

(
()R+I, (4.1)

VJ(x Jh (x ) )=h (x ) +x JVJh (x)= 1

for 0(x &1 .

We find in Appendix 8 that the kinetic energy term
(4.4a) is

hm d~ D& K~J
13

l

=ifie~m f dx f d {Qr,( )Kx~~(0) ) =0 . (4.6)

and we set

DR ——f dx xg(x}Q(x)

with a smooth g (x),

(4.2)

This quantity vanishes as a consequence of the charge
sum rule (3.10).

Introducing the fully truncated three-point function, we
find that potential energy term (4.4b) is the sum of two
contributions as in (3.6b) and (3.6c)
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f di. (D& [U Ji ))y~&z p Ry ' 8
I~aga 1 Pf dx&dxidx3FJ(xi —x2)f(x, )x~3g(x3) f di.(Q,(x3)Q(xi)) (4.7a)

m 0

ea 1—&fi dxidxzdx3F (xi —xz)f(xi)x@(xi)
m~

P
dv x3.E~x~ x2. T. (4.7b)

The limit of (4.7b) is (see Appendix B)

—ifi f dy F~(y) f dxx~ f di.(Q,(x):N (0)Q(y):) T 0——,
m~

which is zero by the dipole sum rule (3.12).
After the change of variables z =x, , x =x3 —x, , y =x3 —xz, the terin (4.7a) is

2

—i(& f dx &(m f dzf(z&(z+x&(g(zix& (zz f dy V(x —y& f dzS, (y&.
R~~ gQ"

(4.8)

(4.9)

To find its limit, we note that with the definitions of f and g

z z z+x g 2+x
Y

V

xj f dz f(Rz)h z+ —+ f dz f(Rz)zjh z+—
R X„ R

X„
xj f dz f(Rx)h z+ —+ f dz f(Rz)zj+ x f dz f(Rz)zj(Vh) z+5—,0(8(1, (4.10)

R X„ X„ R

The first term in (4.10) tends to xj, the second being in-
dependent of x does not contribute to (4.9), and the last
one tends to zero [since (Vh)(z)=0, ~z

~
(1). Thus, the

limit of (4.9) is

2

iA f—dxxJV', f dy V(x —y) f diS, (y)
m~

2

=i' f dx f dy V(x —y) f diS, (y)
m~

2

i' —f dx ~x f diS, (x),
Pl~ 2v

c2 2ir, c&
——4ir——, (4.11)

where the last line is obtained as in (1.11). This, together
with (4.5), (4.6), and (4.8) gives the perfect screening rela-
tion (1.4).

V. CONCLUDING REMARKS

As shown in the Introduction, the sum rules (1.7) for
the imaginary-time Green s functions express the shield-
ing of external classical static test charges in the system.
It is important to remark that the ITGF sum rules are
conceptually different from those for the reduced density
matrices (RDM) discussed in Ref. 6. Since the reduced
density matrices describe internal correlations in the sys-
tems, the RDM sum rules are linked to the shielding of
the system's own charges which are truly quantum
mechanical.

If the system is treated classically, this distinction does
not occur: the excess charge density introduced in Ref. 4
in the classical case can equivalently be interpreted as the
induced charge density by an external distribution, or as
the charge cloud associated with a specification of a num-
ber of the system's particles. But in the quantum-
mechanical case, these two types of screening may not be
equivalent: they depend on the cluster properties of the
ITGF or the RDM which might be different. One could
even conjecture that the ITGF, more closely related to
classical screening, might have better cluster properties
than the RDM. The latter embody necessarily some
dynamical correlation between a particle and its cloud
since quantum mechanically position and velocity distri-
bution cannot be disentangled.

This point can be illustrated when we compare the sus-
ceptibility X and the structure function So(x}
= (Q(x) Q(0) ). Classically, since both quantities are sim-

ply proportional in Fourier space, X(k) = —4irSO( k)/
~

k ~, the perfect screening condition (1.1) yields immedi-
ately a sum rule for So(x) (the second-moment Stillinger-
Lovett relation). This remarkable fact is not true in quan-
tum systems: the susceptibility g(k) given by (1.6) has no
direct relation to So(k), and a sum rule for it yields no in-
formation on So. Apparently, except for the OCP, no
exact sum rule [other than the electroneutrality

fdx So(x}=0] is known for the quantum-mechanical
structure function. In the OCP, because of the special
feature that the mass and charge current are proportional,
the plasmon mode co~ =(4ire p/m )'~ is undamped in the
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long-wavelength limit. This results in the second-moment
sum rule

f dx
I
x

I
'So(x) = —(3/4')fico~coth(Pfuo~ /2)

which is specific to the OCP and has the same classical
limit as (1.4) (Refs. 2 and 7).

APPENDIX 8

Proof of (4.6). For 1 &i & v, let

K&= f d» dy ,' —&»
I
[p', Ip',f] 1 ly &

&&pa'(a, o,x)a(aa, y),

APPENDIX A
where I a, b j =ah+ha and f is given in (4.1). Some alge-
bra shows that

Lemma. Let I'(x) =xl x
I

"be the Coulomb force and
g(x,y) be a bounded function on 8 "&(R' satisfying

[ I p I
'/»(p'f+fp')/2]= g [P"K"']

k=1
(81)

g(x y) I &, i =min(
I y I I

x —y I
)

M(r)

tM t ~ac,
then fdy +(» —y)g (x,y}=o(

I
»

I

Proof. For a fixed x, we decompose R"=DUD into
two disjoint domains with D= Iy I ly I

& ly —x
I I and

D its complement. Then we have on D

pFx —pg x,p

"f dy M( ly I
& I» —y I

' '

& I»I "f dyM(lyl&lyl' "

& lxl "f dyM(lyl&lyl' "=o(I»i "&

Similarly, on D,

dyFx —ygxy

"f dy M( x —y I
&

I
x —y I

' "

"f„.dy M( ly I
& ly I

'-"=O( I»
I

—
) .

We apply the lemma to (3.6c) with
P

g(x,y)= f dr&A, :N (x)Q(y):&r .

Thus (3.6c} is majorized by

i)ie m ' f dxif(xi)CI»i+x
I

"=o( lx
I

' ")

since f has compact support and q ~ v —1.

& D$, [P",K„]& + & [P",D$, ]K" &

=&[P",D] ~„"J]&=0.

The left-hand side of (4.6) is, by (82) and (83),

(83)

=(XQ") 'itic m

V

X g g f dx, V (x{g(x,})f dr&Q, (x, )K»J& .
k=1 cr

(84)

Writing explicitly the anticommutators, we have

K "1=p pjf+i tip "Vjf /2+imp JV"fl2 AVJV"f/4 —.
(8&)

The contribution of the first term of (85) to (84) is es-
timated below. The other terms contain at least a first
derivative of f. Since the volume of the support of Vf is
of the order of R" ' for large R, they are O(R ') and
vanish in the limit R ~ 00 (see Appendix 3 of Ref. 7, in
fact the terms linear in p do not contribute because of
time-reversal invariance). The first contribution to (84) is

which implies [see (3.11)]
V

[K,zj ]=e.m. 'g -[P',K,"J),
k=1

where P is the generator of the translations. By transla-
tion invariance of the state,

V P(XQ") 'itic m~ g f1»iV"(x~ig(xi ))fdxif(xi) f dr&Q, (xi)K"i(xz) &

k=1
V P=ice m g f dr&Q, (x)K '(0) &(XQ") ' f dy f(y —x)V"(y'g(y)) (86)

k=1

by translation invariance and a change of variables. With the definition (4.3), we get

lim (X&") ' f dy f(y —x)V"(yjg(y))= lim X„'f dz f(Rz —x)V (zJIi(z))=X„' f dz V"(zjh(z))=5»
R —+oo R~ao Iz I

~1

Thus by dominated convergence, the limit of (86) leads to (4.6).

Proof of (4.8). After a change of variables, the term (4.7b) is
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ice'm ' f dy F(y) f dx f dr(Q, (x):N (0)Q(y):)T (XQ") ' f dz f(z)(z+x)'g(z+x)
P

(B7)

and we find, as in (4.10), that the term in the large parentheses tends to xt as R ~ co. By the cluster assumption, the
Green s function is jointly integrable in x and y, hence (4.8) follows by dominated convergence.
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