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Comparison of the path-probability method (PPM) with the master-equation method (MEM) is
extended to a higher degree of approximation (triangle approximation) for the kinetics of ising fer-
romagnetism. The evolution equations of the averages and of the fluctuations around them are de-

rived analytically in this high degree of approximation for the first t,ime for both methods. Contrary
to the case of pair approximation presented in ishikawa et al. (the preceding paper), it was not pos-
sible to bring the evolution equations derived by the MEM into a complete agreement with those by
the PPM even with the use of the most reasonable closure relations.

I. INTRODUCTION

As promised in the preceding paper (hereafter referred
to as I), ' we extend the comparison of the path-probability
method (PPM) and the master-equation method (MEM)
to a higher degree of approximation (triangle approxima-
tion) in deriving the evolution equations for the averages
and for the fiuctuations based on the Ising model fer-
romagnetism in the two-dimensional triangular lattice.
Never before has the kinetics of Ising ferromagnetism
been worked out to such a high degree of approximation
analytically both in the PPM and in the MEM.

Although the PPM and the MEM seem to be complete-
ly equivalent with respect to the kinetics of Ising model
ferromagnetism based on the results of our earlier treat-
ment, ' the treatment in the triangle approximation shows
surprisingly that it is not possible to bring the evolution
equations derived by the MEM into a complete agreement
with those derived by the PPM even with the most
reasonable choice of closure relations. This paper tries to
seek possible origins of such discrepancies in order to
determine whether they are intrinsic or not. For this pur-
pose, we present the derivation of the evolution equations
in detail for both the PPM and the MEM.

The contents of this paper are, therefore, almost paral-
lel to those of I in spirit. The differences from the previ-
ous results, however, are emphasized and somewhat de-
tailed explanation of the treatment of the MEM in the tri-
angle approximation is given in Sec. V because this is the
first derivation by the MEM in the triangle approxima-
tion. Discussions with respect to the possible origin of the
discrepancies are given in Sec. VI.

II. THE MOST PROBABLE PATH IN THE PPM

The Hamiltonian for a homogeneous ferromagnetic Is-
ing system is given in I, Eq. (2.1). We apply the PPM in
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FIG. 1. The state variables x;(t), y;j(t), and z;jk(t) which
specify the probabilities of the configurations at time t for (a) a
point, {b) a pair, and (c) a triangle. The value P indicates the
weight factor, or the number of different configurations having
the same probability.

the triangle approximation to this system. The state vari-
ables in this approximation are defined as x;(t) and y;~(t)
just as in I together with the triangle variables z,sk(t),
where the suffixes i, j, and k designate + 1 or —1, de-
pending on whether the state of spin is up or down. In a
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similar fashion, extra path variables Z jk; j'k (t, t +b, t) are
introduced in addition to the path variables X;; (t, t +b, t)
and Yj;j (t, t +6 t) defined in I; NZjk; j k (t, t + At} (N is
the number of lattice points) is the number of triangles
which is in the (i,j,k) state at time t and will change to
the (i',j ', k') state at t + b, t T.he time span, b, t, is chosen
short enough so that it is safe to assume that, at most,
only one of the second subscripts i', j', and k' is different
from the first subscripts i, j, and k. These variables are
listed in Figs. 1 and 2, respectively. Because the system is
assumed to be homogeneous, abbreviated notations are in-
troduced with the use of the symmetry of the system.
These are also shown in Fig. 2.

All path variables are not independent of each other.
There are geometrical relations among the state and the
path variables. Also, since the path variables are the joint
probabilities connecting the state at t and that at t +At,
we can write the state variables also as linear combina-
tions of path variables. When the system is specified by
the state variables Izjk(t); i,j,k =+1I at time t, IZ, (i);
i =1,—1, s =1,2, 3I can be chosen as the independent

path variables as shown in Fig. 2.
I.et us construct the path-probability function (PPF),

H(t + b,t), which is made of three factors. The first fac-
tor is the transition probability of the system in ht in a
unit kinetic process
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where 8 is a spin-flip fractional per unit time. The second
factor 9'z is the probability of activating the system
through the interaction with the heat reservoir. By using
the energy change in b t of the system

Z»1+1-1 Z3("' 3 -11'I,'I1'I ) 3

hE=N g I 12J[Z)(i)—Zi(i)]+2poHiX(i)], (2.2)

we can write the second factor as

Hz ——exp( &E 12kjr T),— (2.3)

+pair= g [(N~iji j )] ~, ''
(i,j ), (i',j ')

where J and p~ have the same meanings as in I. The
third factor 9'i is the number of possible configurations
corresponding to the change given in Eq. (2.1) (this factor
corresponds to the entropy in the equilibrium case} in the
triangle approximation and is given schematically by

p3
(2.4)
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where
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FIG. 2. Definition of the path variables for the Ising model
in the triangle approximation. These specify the path fraction-
als (a) X;;(t,t+ht) for a point, (b) Y;,;,'(t, t+ht) for a pair,
and (c) Z,jk;~'k(t, t+ht) for a triangle. "Abbr. " columns show
the shortened notations for certain path variables, and the P
column indicates the weight factor or the number of equivalent
configuration changes for each path variable.

~triangle [(NZjk, j'k)l].
(i,j,k), (i'j ', k')

The combinatorial factor, Eq. (2.4), is one of the key rela-
tions of the treatment, and has the same expression as that
in the triangle approximation of the CVM if the state
variables are replaced by the corresponding path variables.
By multiplying these factors, we have the PPF in the log-
arithmic form as

1—In&(r, t+br)= g [X;;in(Her)+X;;1n(1 Ojt r)]+3— g W(I;j,. j') —2
i =+1 (~j),(&',j')
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W(Z
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(2.5)
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Xi; y;; (t) Zi(i)

xi(t) it( Zi(i)+Zp(i)
=Oht,

where W(x) =x (lnx —1), K =J/kii T, and L =p~/
kg T.

Differentiations of the PPF with respect to the six in-

dependent path variables Z, (i) then give the following re-
lations:

as Eq. (2.11) in I. We then see that A+(i) (i =+1)
represents the environmental effect when a spin at the
center of the cluster changes its direction.

In the triangle approximation, the system is character-
ized by the three-spin correlation m3(t) in addition to the
magnetization mi(t) and the pair correlation m2(t) used
in I. They are defined with convenient numerical factor
as

x;(t)

Xi; y;;(t)y;;(t)

yi-i(t}
zt —i —&(t) Z2(i)+Zi(i)

'6

(2.6)

mi(t)= g ix;(t),
i=+1

mz(t) =3 g ijy,j(t),
ij =+1

m3(t) =2 g ijkz jk(t) .
i,j,k=+1

(2.12}

22(i}
x

[Z, (i)+Zz(i)][Z2(i)+Zi(i)]

'3

(i =+1),
where the caret indicates the most probable path variables
and the tilde is used for abbreviations as follows:

b, m i(t) = —2[X(1)—X( —1)],
b, m2(t)= —2z g [Y&(i)—Y2(i)],

i =+1

Em3(t)= —2z g i[Zi(i}—2Z2(i)+Z&(i)] ~

i =+1

(2.13)

The changes in ht can then be written as the linear com-
bination of path variables as

x;(t)=x;(t)e '", y (Jt)= y(jt) 'e+J(ij =+1}. (2.7)

(2.8)

and

Since a set of equations with i =1 in Eq. (2.6) is indepen-
dent of that with i = —1, we can treat each set separately.

A set of path variables [X(i),Z, (i), s =1,2, 3I is associat-
ed with a spin flip from an i to a —i state in b, t, and can
be transformed as

X(i)=8bt x;(t)[iI.+(i)]'

dmi(t)
f

dm2(t)

= —28 g iX;(t)[A,+(i)]',
i =+1

Substitution of the most probable path variables into Eq.
(2.13) leads to the evolution equations for the order pa-
rameters in the limit of b t ~0 as
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where

z;,;(t) z;;;(t)
y;;(t) y;;(t)

DA, (i)
where the bar on m;(t)'s indicates the most probable path.

III. THE PROBABILITY DISTRIBUTION
OF THE FLUCTUATION PATH

DA(i) =
1/2

z;;;(t) z, , ;(t) 4[z;;;(t)]'
+

y;;(t) y;;(t) y;;(t)y;;(t)

(2.10)

By applying the system size expansion developed by van
Kampen to the PPF, we write the path variables as

Z, (i)=Z, (i)+e' g, (i;t, t+bt) (i =+1, s =-1,2,3),

z;;;(t) z, ;,(t)
A, +(i}=— + +DR(i)

y;;(t) y;;(t)
(2.11)

and z is used for the coordination number (z =6 for the
triangular lattice). Note that Eq. (2.8) has the same form

where a=1/X is the smallness parameter of the system
and g, (i;t +Et)'s represent the deviations from the inost
probable path. The PPF is expanded up to the second
power of the g, (i) as
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—In&(t, t+bt)=2 g W(z,"k(t))—3+&(y; (t))+ gW(x;(t}}1

i,j,k=+1 E,J

—3
1 [ki(t)+242(t)+43(t)] [k(t)+42(t)] [42(t)+(3(t)]

X(i) Yi(i) Y2(i)

2[4(i)]'
+ ' + '

Z i(i) Zz(i) Z3(i)
+O(e ) . (3.2)

The PPF, H(t, t +Et), is then considered as the probability distribution function of the fluctuation path from the most
probable path. It is a product of two factors except for an unimportant (for the present purpose) multiplicative factor

9'( t, t+ b t) g F((,(i),g (i),g (i)), (3.3)

F(gi(i), gz(i), (3(i))=cexp ——, y gg(i)[D(i)]$$ 'gg (i)
s,s'= 1,2, 3

where C is a normalization constant and the matrix [D(i)] ' is given by

(3.4)
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Z Z+
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1
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2
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(3.5)

1

X(i)

2
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'+'
Y,(i) Z, (i)

The inverse matrix of the above matrix defines the correlation matrix

[D(i)]» (g, (i)g,——(i) ) (s,s'=1, 2, 3), (3.6}

where ( ) denotes the average over the distribution function, Eq. (3.4). When the fluctuation from the most probable
path is taken into account, Eq. (2.13) is rewritten as

b mi(t) —R, (t)bt = 2e'~ —g i[/, (i)+2(z(i)+(3(i)],
i =+1

b m 2(t) —R2(t)ht = —4e'~z y [g](i) (3(i)]—, (3.7)

6m 3(t) R i(t)b t = 6e—' g—t [g,(t ) —2/2(t )+$3(l )]

where the average velocities IR, (t), s = 1,2, 3 j are defined by

dm, (t)
=R, (t) .

dt

Further, when we define the variance matrix I R» (t) I as

eR„(t)ht=([hm,(t}—R(t)b, ]t[b m(t) —R, (t)ht])
=eR,;(t)b t (s,s'= 1,2,3),

we can calculate R„(t)with the help of Eqs. (3.3)—(3.7). The explicit results are given in the Appendix.

The following point, however, should be noted here. Let us define a function

G(t)=8 g x;(t)A+(i},

(3.8)

(3.9)

(3.10)
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+

y;;(t) y;;(t) y;;(t)y;;(t)
(3.11)
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Here, G(t)ht is identical to g, +iX(i) given in Eq. (2.8) if z Jk(t) is replaced by z Jk(t) .Then it can be shown, in the
limit of b, V~O, that the average velocities [R,(t); s =1,2, 3] and the variance inatrix [R„(t);s,s =1,2, 3I are derived

by the differentiation of 6(t) with respect to the conjugate fields L, K, and V of order parameters as

and

R (t) 2BG(') R (t) 2BG(') R (t) 2BG()
BL

''
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' ''
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(3.12)
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a vaL
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BLBE

B 6(t)
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B 6(t)
avM

B'6(t)
BLBV

B'6(t)
MBV
a'6(t)

BV

(3.13)

We obtain the proof of Eqs. (3.12) and (3.13) by first cal-
culating the right-hand sides of Eqs. (3.12) and (3.13), and
then by comparing those results with Eqs. (Al) and (A2)
in the Appendix.

IV. THE FOKKER-PLANCK E(}UATION
FOR FLUCTUATION OF ORDER PARAMETERS

The derivation here can be made in a completely similar
fashion to that in I. By making use of the velocities R;(t)
and the variance matrix [R,J(t)I, we can represent the
transition probability P(bm;m, t) that the state m at time
t changes into I+hm at t +4t as

qi(bm;m, t) =C'exp — [bm —Am(t)]
1

2mb t

we obtain in the limit of Et~0
B W(m, t)

Bt
a

[R,(t) W(m, t)]
Brn

3 B2
[R„(t)W(m, t)] .

2 .. . m, m,

(4.4)

This is the master equation for order parameters which is
correct up to the order 0 (e). Note that Eq. (4.4) is essen-
tially the same as Eq. (4.3) in I except that s in the trian-
gle approximation runs up to 3 instead of 2 in the pair ap-
proximation. Therefore, when the probability distribution
function for the fluctuation from the average path is de-
fined by

X[R(t)] '[b,m —b,m(t))r Q(ri, t) = W(m(t)+e'"q, t), (4.5)

(4.1)

where C' is a normalization constant, the vector notation
for m, is introduced as m = (m i, rn3, rn 3), and the super-
script T denotes the transpose of the vector concerned.

Because the Markovian process is assumed, the proba-
bility function W(m, t+ht) of finding m at t+bt is
connected with W(m', t) at t through the transition prob-
ability, Eq. (4.1), by

W(m, t +b t)

= f f f W(m —b,m, t)%(bm;m —hm, t)d(hm) .

(4.2}

By expanding both sides of Eq. (4.2) with respect to ht
and hm, and by noting the following relations

f hm, g(bm;m, t)d(bm) =R,(t}bt,

f Am, bm, P(bm;m, t)d(Am) =eR (t)ht

+R, (t)R, (t)(bt)',
(4.3)f bm, bm, urn, -g(bm;m, t)d(bm) =0((ht) )

(s,s',s"= 1,2, 3},

we have the Fokker-Planck equation for the fluctuation:

BQ(g t) 3 B 3 BR{m(t)}
(q, t)

I
3 Q2

[R„(m(t))Q(g, t)], (4.6)
s s'=1 9s }s'

where the dependence of m(t) on R, (t) and R (t) is
denoted explicitly. From Eq. (4.6), the evolution equa-
tions for the fluctuation such as {{ri, (t) )) and
{{gs(t)7b (t) )) can be readily derived, where {{)) denotes
the average with respect to Q(g, t) Thus, the ev.olution
equations for both the average and for the fluctuation o
order parameters can be derived directly by the PPM in
the triangle approximation.

V. THE MEM IN THE TRIANGLE APPROXIMATION

The basic equation of the MEM is the evolution equa-
tion of the probability function P(M, t) with M=Nm.
The function P(M, t) gives the probability that, at time t,
the system has the configuration M, where m is defined
in Eq. (2.12). Then the master equation for a homogene-
ous system is written in the triangle approximation as
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= —f W(M~M', t)P(M, t)d M'

+ I W(M'~M;t)P(M', t)dM', (5.1)

where W(M —+M; t) is the transition probability from the
state M to M' per unit time at t. When a spin of the sys-
tem with spin state i changes its direction, the order pa-
rameter M of the system changes by the amounts

bM&(i) = 2—i,
bM, (i, [j,j)=—2i(j, +j,+ +j,),
bM3(l, [J, j )= —2&(J&Jz+JzJz+ +JgJ) ),

(5.2)

b E (i, [j, j )
exp

2k' T
=exp i E—g j, +L

i=1
(5.4)

The second factor, the probability factor, p, +&, of Eq.
(A3) in I was written as a product of the pair probabilities
y;J(t) In the p.resent treatment, we have to use the trian-
gle probabilities zJk(t) instead. However, there is no
prescribed rule for writing p, +,(i, [j,j,t) in terms of
z&k(t} in the MEM, and this is where the arbitrariness of
the MEM exists. On the other hand, in the PPM, each
step in the formulation is strictly prescribed once the basic
cluster is specified. Therefore, we tentatively write the

l

where {j,=+1, s =1,2, . . . ,z) is a configuration of the
nearest-neighboring spins around the center spin with i
Because spin flips are assumed to occur independently at
each lattice point, the transition rate of the system can be
given as

W( M~M+ 6 M;t) =Nw{m;b M(i, [j, j ),t) . (5.3)

As was done in the Appendix of I, we can write w as a
product of two factors. The first factor, the energy fac-
tor, is the same as Eq. (A4) in I and is given as

following relation for the p, +~(i, [j,j,t) in the MEM on
the basis of the superposition concept as

P, +~(t,J ~,Jz, . . . ,J„t)=~x;(t) g
s=1

zpj j (t)

yJ (t)
(5.5)

where M is a normalization constant and j,+1——j1. By
combining Eqs. (5.4) and (5.5}, we obtain the transition
rate

z;1 J exp — i(j, +—j,+&) exp( —Vij,j,+, )

Vij ij +&

where the conjugate field V for the combination of three
spina is introduced for the convenience in later arguments.
Since the state variables are expressed in terms of order
parameters as

x;= —,(1+im~ ), y;~ =—1+(i+j)m&+ ijmz—1 & lJ z

(5.7)
1 2"

z Jk
———1+(i +j+k)m~+ (ij +jk—+ki)mzlJ

g Z

1..+—ijkm 32

the transition probability depends on order parameters m
at t By substi. tuting Eq. (5.6) into (5.1) along with the re-
placement of P(M, t) by P(m, t), we obtain the master
equation in the triangle approximation

w(m;bM(t, [j,j),t)= limM8x;exp( Li) —gA (j„j,&),
V-+0

(5.6)
~ (Js Js+t)

e ' = —tr[w(m;bM(i, [j,j })P(m,t)]+tr[w(m —e bM(i, [j, j );bM(i, [j, j ))P(m —b M(i, [j, j ),t)],dP(m, t)
dt

where tr=g, . +,QJ J J +&. When we define the moments with respect to the transition probability as

Ct, I,I,(m, t) =tr[[bM&(i)] '[bMz(i, [j,j )] '[bM3{i,[j, j )] 'w{mbM(i, [j,j )}],

(5.8)

(5.9)

BP(m, t) y y y ( —e)

l) ——0 l2 ——0 l3 ——0 {j }

l
1 +12+13~0

8'3

lz
Bm 1 BP12 BPtl 3

XCI I ( (m, t)P(m, t), (5.10)

where the moment function is further transformed as

CI t t (m, t)= 2 2 2 G(t),
BV

(5.11)

we have the Kramers-Moyal expansion of the master
equation

G(t) =tr[w(m;bM(i, [j, j ),t)] (5.12)

Here, it should be noted that the limiting operation
limz 0 is always taken after the differentiation with
respect to V is made. The function G(t} in Eq. {5.12) is
thus the moment generating function. It is seen that the
evaluation of G(t) is reduced to an eigenvalue problem if
A (j„j,+&) is identified as the {j„j,+&) element of a ma-
trix A ', and is transformed as

G(t)=~8 g x;e "'tr[(A')']
i =+1

=~8 g x;e "'[[iL+(i)]'+[A, (i})'j, (S.13}
i =+1

where A+(i} and A, (i} are ei,genvalues of the matrix A',
1.e.,
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v l ziii
A (i)=—.

2 3'ii

E —l —l+
3'i —l

ZlH ZE —l —l

A —E

1/2

(s =+1) . (5.14)

Note that only A, +(i) appears in the equivalent expression
in the PPM, Eq. (3.11). In the limit of V~O, A, +(i}
naturally becomes A+(i,) in Eq. (2.11). It is also
noteworthy that A, (i =+1) appears in Eq. (5.13), but not
in corresponding expressions, Eqs. (2.8) and (2.9} in the
PPM. This indicates the difference between the PPM and
the present version of the MEM.

Up to O(e) in Eq. (5.10), the master equation is written

3

[C,(t)P(m, t)]

E 3 g2
[C (t)P(m, t)],

2
1

ttl lsl
(5.15)

and

C11(t) C12(t) C13(t) C200(t) C110(t) Cloi(t)

C21(t) C22(t) C23(t) C110(t) C020(t)

Coll�(t)

C»(t) C32(t) C33(t) C1oi(t) Coii(t) Coo2(t)

(5.17)

are introduced. By applying the system size expansion to
Eq. (5.15) or (5.10) with the transformation

Q(g, t) =P[m(t)+e'"g, t], (5.18)

we obtain the Fokker-Planck equation for fluctuation of
order parameters in the MEM

+—g [C (@(t))Q(g,t)], (5.19)
3 $2

s,s'=1 s s

where the evolution equations of order parameters are
chosen as

drn, (t) =C, (ftt(t)) . (5.20)

Equations (5.19) and (5.20) are to be compared with Eq.
(4.6) and (3.8), respectively. It is seen that, because the
kernel functions such as R„R,C„and C~ can be de-
rived from the moment generating functions, the differ-
ence in the evolution equations derived by the PPM and
those by the MEM is derived from the difference of G(t)
in the PPM and G(t) in the MEM.

where

Ci(t) =Cipp(m, t), C2(t) =Cpip(m, t), C3(t) =Cppi(ni, t)

(5.16)

VI. DISCUSSION

In the present paper, we have extended the treatment of
kinetics of Ising ferromagnetism both by the PPM and by
the MEM to the triangle approximation for the first
time. Our special interest is to compare the treatment of
the PPM and the MEM in such a high degree of approxi-
mation. Our major aim was to clarify the features of the
PPM as a kinetic method so that its applicability to a
variety of irreversible phenomena could be correctly un-

derstood and ways to broaden the applicability can be
found as stated in the preceding paper (I).' For this
reason, in the PPM we have derived the evolution equa-
tions not only for the order parameters but also for the
fiuctuation from the most probable path with such a high
degree of approximation. In dealing with the MEM in
the triangle approximation, we derive the evolution equa-
tions for corresponding quantities by making use of the
superposition approximation, Eq. (5.5), familiar in the
CVM. The superposition approximation was also used in
the treatment in the pair approximation. '

In the point and the pair approximations, the PPM and
the MEM give identical results. ' On the other hand, in
the triangle approximation the results thus derived by the
two methods are not exactly identical. In the MEM, all

moments with respect to the transition probability, which
specifies the evolution of the system, are obtained simply
by the differentiation of a generating function even in the
triangle approximation, if an additional conjugate field to
the three-spin correlation is introduced. The generating
function G(t) thus far derived is characterized by two
kinds of characteristic values A, +(i) [see Eqs. (5.13) and
(5.14)]. Thus, k+(i) and A, (i) appear on the same footing
in the MEM, while in the PPM, A, (i) is always missing
[Eqs. (2.8) and (2.9)]. In the PPM, the meaning of A+(i),
is clear in that it represents the effect of the environment
on the center i spin when it flips its direction. Therefore,
it can be said that the PPM and MEM in the present
treatment give different environmental effects. Because
of the relation, A+(i) & A, (i), thi, s difference is expected to
vanish in the limit of high coordination number. Also, it
can be shown that both results lead to the same equilibri-
um expected from the triangle approximation of the
CVM. s Thus the difference between them is related only
to the kinetics. On the other hand, even if the equilibrium
state is unique, there can, in general, be many kinetic
paths converging to the same final equilibrium state. As
is shown in Sec. V, if we drop the A, (i) term in Eq. (5.13)
for G(t) and choose G(t) in Eq. (3.10) as the generating
function of transition moments, the MEM leads to exactly
the same evolution equations of the average and the fiuc-
tuation as those by the PPM. However, the physical ori-
gin of the modified G(t) in such a case cannot be justified
from the viewpoint of the MEM.

While the MEM is a differential type of formulation,
the PPM is of integral type. The latter can thus be direct-
ly connected to the path-integral formulation. We expect
that this viewpoint would make the relation between the
two methods clearer. It is, therefore, necessary to clarify
why the PPM and the MEM should lead to similar but
different results in the triangle approximation. In other
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words, it is necessary to answer if there is a reasonable
MEM formulation which gives the same results as those
of the PPM in the triangle approximation before we can
conclude that both the PPM and the MEM are equivalent.
At the same time, the clarification of this problem would
be very useful to critically review the features of the PPM
as a kinetic method.
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=
Y) (i)Y2(i)Z ) (i)Z3(i)

(i =1,—1) . (A 1)

Since the inverse matrix of D(i) ' gives the correlation
matrix

APPENDIX

In order to calculate the variance matrix, we first note
that the determinant of D(i) ' is given by
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[D(i)]».—(g, (i)g, (i)) (s,s'=1,2,3),

we reach after some calculations by using Eq. (3.7),

(A2)

Ri((t)Et=4 g ([g)(i)+2(2(i)+(3(l)] )
i =+1

=4 g X(i),
i =+1

R&z(t)At=8 g (t[g, (i)+2/2(&)+g, (t)][(,(t) —g&(i)])
i =+1

=8 g i[Zt(i) —Z3(i)]=R2)(t)bt,
i =+1

/3(t)b t = 12 g ( [g&(t)+2(2(t)+$3(&)][(~(i)—2)2(t)+(3(&)])
i =+1

=12 g [Z&(t) —2Z2(t)+Z3(i)]=R3, (t)dt,
i =+1

R22(t)Et=16 g ([g,(i)—(3(i)] )
i =+1

(A3)

i =+1

[Z, (i)—Zi(i)] 2Y)(t) Y2(t)[Z)(i)Y2(i)+Zi(&) Y~(&)]+ A A
X(i) 3Z2(i)X(i)

RQ3(t)At=24 g (i[(~(i)—$3(i)][(~(i)—2(i(t)+$3(t)] )
i =+1

=24 g t I [Z~(i) Z3(i) —4Z2(&)—][Z&(i) Z3(&))/—X(t)+ —, [Z~(&)—Z3(&)]Y~(i) Y2(&)/X(i) I

=R»(t)b, t,

R33(t)bt =36 g ( [g~(t) —2(2(t)+$3(t)] )
i =+1

=36 g ([Z~(i)—2Z2(&)+Z3(i)] /X(t) —, [Z~(t—)Zt(t)/X(&) —[Z~(i)+Z3(i)]Y&(t)Y2(i)/X(i) I) .
i=+1

In the calculation, the relation

( g, (ig';(i') ) =0 for i &i '

1s Used.

(A4)
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