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Time evolution of fluctuations in the path-probability method. I
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The path-probability method (PPM) is applied for the first time to the time development of the

fluctuation from the most probable path, where the kinetic Ising ferromagnetism in the pair approx-

imation is treated as an example. The evolution equations of the variance as well as the average

motion of order parameters are derived and compared critically with the results obtained by the

master-equation method (MEM). In the pair approximation, the PPM results agree completely with

those of the MEM. This agreement is to be compared with the disagreement in the triangle approxi-

mation presented in %'ada et al. (the following paper).

I. INTRODUCTION

The path-probability method' (PPM) of irreversible sta-
tistical mechanics has been applied successfully to a
variety of diffusion and phase transition kinetics.
The PPM has been developed as a natural extension to the
time domain from the cluster-variation method (CVM)
(Ref. 6) in equilibrium statistical mechanics. In the CVM,
the free energy function is constructed in terms of state
variables which characterize a state of the system.
Minimization of the free energy function with respect to
these variables gives us the free energy and the state vari-
ables in thermodynamical equilibrium. On the other
hand, in the PPM, the path-probability function (PPF) is
constructed in terms of a set of path variables which
denote the change of the state variables in time ht. Then
the equations for describing the evolution of the state
variables are derived from the most probable path corre-
sponding to a maximum of the PPF with respect to these
path variables. In addition to the most probable path, be-
cause of its variational nature, the PPF is expected to con-
tain information with respect to the fluctuation from the
most probable path. Nevertheless, in the framework of
the PPM, only the most probable path has been studied so
far and no work has been done on the time evolution of
fluctuation except for one simple example. '

The derivation of the transition probability by a sys-
tematic construction of the PPF and its evaluation based
on the variation principle in a similar fashion to those of
the free energy function of the CVM in dealing with ir-
reversible phenomena are strong points of the PPM.
However, the applicability of the PPM is also closely con-
nected to this formalism and i.ts success depends 1argely
on the type of irreversible phenomena. For example, the
PPM is most suitable in following the time dependence of
the state variables (macrovariables) such as the time evo-
lution of order ' and of magnetization, but is less success-

ful in dealing with transport phenomena where the time
correlation of individual particles rather than the assem-

bly of particles is followed. In order to find a way to
extend the applicability of the PPM, it would be most
fruitful if the process of deriving the evolution equations
can be compared with other respectable methods such as
the master-equation method (MEM) adopted in irreversi-

ble statistical mechanics. ' Because of this, we took an

example of Ising ferromagnetism which has been proved
to be suitable for the treatment by the PPM and compared
the procedures with those of the MEM as the first step to-
ward this goal. At the same time, we demonstrate how
the information on fluctuation can be derived by the
PPM.

Recently, starting with the master equation, Kubo
et a1." developed a general theory dealing with the evolu-
tion of inacrovariables, assuming that those variables fol-
lowed the Markovian process. With the use of this
theory, which we will call the MEM specifically, Saito
and Kubo' investigated the kinetic Ising model in the
pair approximation. They derived the evolution equations
for the average and the fluctuation of order parameters of
the system. Therefore, the derivation of the evolution
equations by the PPM can be critically compared with
those by the MEM.

In Sec. II, the most probable path is derived from the
PPM. Section III presents the PPF expression for the
fluctuation from the most probable path. Section IV
shows that the PPM leads to the Fokker-Planck equation
for the fluctuation of order parameters, and then to the
evolution equations of the fluctuation which are identical
to those derived from the MEM reviewed in the Appen-
dix.

In the following paper (hereafter referred to as II), we

show the extension of this treatment to a higher degree of
approximation (triangle approximation). As is shown in
the present paper (paper I), the PPM and the MEM agree
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completely and this seems to show the equivalence of the
PPM and the MEM, Nevertheless, in the triangle approx-
imation, these two methods show a minor but a definite
difference. The derivations in this paper are given in a
way to make the understanding of this difference clear.

II. THE MOST PROBABLE PATH IN THE PPM

Let us consider a homogeneous ferromagnetic Ising sys-
tem composed of N spins on a lattice. The Hamiltonian
of the system is as follows:

(2.1)

where o„(=+1) is the Ising spin on the nth site, J is the
exchange integral, (n, n') represents a nearest-neighbor
pair, and (u~ is the Zeeman energy. In the PPM, we de-
fine two kinds of variables, to be called the state and the
path variables, specified at a time instant t The. state
variables in the pair approximation are the fractionals
shown in Fig. 1. We use subscripts i =1 and —1 for up
and down spins along an external magnetic field, respec-
tively. The probability of appearance of an i spin at a lat-
tice site at time t is denoted by x;(t) and that of a
nearest-neighbor pair having a configuration (i,j) by

y;J (t). The x and y variables are connected by the geome-
trical relations
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FIG. 2. Path variables X;;(t,t+htI and Y;,;, (,t, t+ht) for
the Ising model in the pair approximation. Their arguments are

omitted here. The "Abbr. " column shows abbreviated notations

for path variables, and the P column shows the weight factors.

mi(t)= g ix;(t),
i =+1

m2(&) = — g ijy J(t),
2 ij =+1

(2.3)
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Along with the x and y variables, we introduce the vari-
ables to specify the macroscopic state of the homogeneous
system at time t, namely, the magnetization m, (r) per site
and the short-range order parameter mz(t), which are de-
fined as

where z is the coordination number of the lattice.
The path variables are defined in Fig. 2 in which

X, ; (t, t +b,r) describes the fraction of spins which is i at
and will change to i' at t+b, t, and YJ; J'(t, t+ht) is the

fraction of pairs which is (i,j) at time t and will change to
(i',j') at t+At We define . ht small enough so that at

most one of the second subscripts i' and j' is different

from the first subscripts i and j in the time span of b, t.
For later convenience we introduce abbreviated notations

X(i) and Y, (i) as in Fig. 2. Note that these variables in

which a spin makes a fiip in b, r are taken to be of the or-

der 0 (b,t) Since the path v.ariables are the joint probabil-

ity connecting the configurations at t and t+b, t, we can

project (by forming linear combinations) the path vari-

ables X and 7 to t and to t +At to obtain the state vari-

ables x;(t),y J(t} and x; (t+ht), y; J. (t+b, t), respectively.

Using the projections to t and 1+At, we can write the

change of the state variables defined by b,f(t)
=f(t + b, t) f (t) as follows:—

p+„(t ) 'I
b, x;(t}=X ;;—X;

~yj(')=(Y i, j+Y J,J}- (2.4)

FIG. 1. State variables x;(t) and y,J(t) for the homogeneous

Ising model. These indicate the probabilities of configurations
at time t for a point and a pair. The symbo1 P indicates the

weight factor.

—(Y,J. ,J+ Y;); J. ) (i,j =+1) .

In using the PPM, we ask how the system changes in At
when the state at t is given. In the present problem, since
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yt&(t) are given, we can choose Y, (i) (t =+1, s =I») as
the independent variables as is seen from the relations

gy change in 4t of the system

4E= g I2JzE[Yi(i) —Y2(i)]+2ppHNiX(i)}, (2.7)
Yii ii =yi (') 2Yl(

Y;,"=yt (t) [—Y2(i)+ Y2( —i)] (i,j =+1) .

i =+1
(2.5}

the second factor is taken to be

In the PPM of irreversible statistical mechanics, we
start with the basic variation function in the saine sense as
the free energy function is the basic variation function in
the CVM of equilibrium statistical mechanics. The basic
variation function of the PPM is the PPF, and represents
the probability that the path specified by the path vari-
ables occurs. ' The PPF is made of three factors. The
first one corresponds to the probability of occurrence of
unit kinetic process (for which there is no counter part in
the free energy function in the CVM):

9', = g (84t) ' '(1 84t) —", (2.6)
i =+1

where 8 is a spin-flip rate per unit time. The second fac-
tor depends on the energy of activation and is a gene«i-
zation of the Boltzmann factor. With the use of the ener-

H, =exp( 4E—/2k&T) . (2.8)

The third factor is the combinatorial factor corresponding
to the entropy in the equilibrium case. The state variables
in the combinatorial factor of the CVM are replaced by
the path variables in the corresponding approximation

' z/2
~point ~point

~pair

P;„,=g [(NX; )!],

zn —1

(2.9)

~pair = g [(&Y"' ')l] ~

(i,j ),(i'j, ')

The final form of the PPF, 9'(t, t +4t), is written in the
logarithmic form as

—ln&'(t, t +4,t) = (z —1)Q W(X; J ) —— g ~( Y, kt)
(i,j ),(k, I)

+ g IXi; ln(84t}+X;; ln(l —84t) —zK[Y, (i)—Y2(i)]—LiX(i)},
i =+1

(2.10)

Yi(i) =84t Yi;(t)e ' [A(i)]'

Yz(i)=84t Y;;(t)e ' [l(i)]'

and those for a single spin flip become

(2.11a)

where I{.=J/ktt T, L =it~/ktt T, and W(x) =x lnx —x.
We obtain the most probable path variables by differen-
tiating H(t, t+4t) with respect to the independent path
variables Y, (i) The m. ost probable values of the one
spin-flip pair variables are then derived as

4mi(t)=2(X i i
—Xi i)—:Ri(t)4t,

4m2(t)=2z g [Y2(i)—Y, (i)]—=Rz(t)4t,
i =+1

(2.13)

dm;(t}
=Rt(t) (i =+1) . (2.14)

where R i(t) and R2(t) are defined for later purposes. The
bar on m;(t)'s indicates the most probable path value.
Thus in the limit of 4t~O, the evolution equations for
the order parameters become

X;;(t)=84t x;(t)e ' [A(i)]' (i =+1), (2 1 ib) Note that from the following definition of G(t),

where the caret indicates the most probable path and A(i),
is a function representing the effect of environment de-
fined by

(2.12)

G(t)= g 8x;(t)e ' A;(i),
i =+1

we can derive the relations

R(t) 2aG(t) R() 2aG(t)
aL ' aK

(2.15)

(2.16)

The evolution equations in 4t for the most probable
values of the order parameters are written from Eqs. (2.3)
and (2.4) as

These equations for the most probable path are exactly the
same as those derived by the MEM as will be shown in
the Appendix.

III. THE FLUCTUATION DISTRIBUTION FUNCTION

In order to apply the system size expansion developed by van Kampen' to the PPF, we separate out the fluctuating
quantity from the most probable path and write

E;(i)= Y,(i)+v eg, (i) (i =+1, s =1,2}, (3.1)

where e= I/N is the smallness parameter of the system, and g, (i) is the deviation variable. The PPF is expanded around
the most probable path up to the second order ofj,(i ) as
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—ln&'(t, t+ht)= (z —1)g M(x;(t)) ——Q W(yl(t))+(z —1)
j E,J

z —1 Mi(&)+4(&)]' z [ki(i)]' [k(i }1'

Y, (i)+ Y2(i) Yi(i) Yq(i)
(3.2)

The PPF 9'(t, t+b, t) gives a probability distribution
function of fluctuation from the most probable path. It is
a product of two factors except for a multiplicative con-
stant factor:

I

we have the probability distribution function of the fluc-
tuation from the most probable path in ht as

g(Am;m, t)= C' exp — [b,m —hm(t)]
1

2eht
H(t, t+ht) g F(g, (i),g,(i)),

i =+1

with

F(gi(i), (2(i))

=C exp ——, g g, (i)[ D(i)] ~'g, (i)
s,s'=1, 2

(3.3)

(3.4)

X [R(t)]-'[bm —bm(t)]r

(3.10)

where C' is a normalization constant, and m is defined by
m=(mi, m2) and its transposed vector by m . The expli-
cit values of R„(t)are given by

Yi(i)

z —1

X(i)

z —1

X(i)

where C is a normalization constant and the matrix in Eq.
(3.4) is given by

Ril(t)ht =4[X(l)+X(2)],

Ri2(t)ht =4z g i[Y)(i) Yi(—i)]=R2i(t)ht, (3.11)

[D(i)] (3 &) R»(t)htz —1

X(i)

z —1

X(i)Y2(i)

The inverse matrix of that in Eq. (3.5) is then given by

=4z g X(i) 1+(z —1)

A
Yi (i) —Yi(i)

X(i )

2

z —1

X(i)

z —1

X(i)
It should be noted that we can show the relation

D(i)= z —1

X(i) Yi(i)

z —1

X(i)

8 G(t)
dL

O'G(t)
dKdL

a'G(t)
'R „(t) R „(t)

'

g G(t) R»(t) R»(t)
BK

(3.12)

From the general theory of Gaussian distribution, ' the
matrix (3.6) is also a correlation matrix defined by

(g](i)gi(~') } (gi(i)$2(~') }

where ( } denotes the average over the distribution func-
tion F(gi(i), gz(i) }. By noting the relations

am, (t) —am, (t)= —2~'"g t [g,(i)+g,(i)],

am, (t) —am, (t) = —2ze'" g [g,(i) —g,(i)],
(3.8)

and by using the variance matrix R whose elements are
defined as

IV. THE EVOLUTION OF FLUCTUATION

Since the PPF H(t, t+bt) essentially represents the
transition probability of the entire system from the state

[y J(t}I to [y; J'(t+At)I in bt, we can consider g(hm;mt)
as the transition probability that the system changes from
the state specified by m at t to the state m+6, m in ht.
In the Markovian process, the probability distribution
W(m, t+At) at time t+ht is connected to W(m, t) at t
through the above transition probability' by

(Wm, t +At) = J' d (bm)P(hm;m —bm, t) W(m —bm, t) .

(4.1)

eR„(t)ht

= ( [hm, (t) —bm, (t)][5m, (t) —hm, (t)] }

(s,s' = l, 2), (3.9)

By making use of the mathematical relation that

itj(hm;m —b m, t) W(m —Am, t)

=exp( —V bm)ir'j(bm;m, t) W(m, t), (4.2)
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we expand both sides of Eq. (4.1} with respect to b, t and
b,m to obtain, in the limit of b,t~0,

W(m, t) =Q(q, t), (4.5)

8 8' i3
(m, t) = —g [R,(t) W(m, t)]

Bt i Bm$

+-, e g [R„(t}W(m,t)] . (4.3)

m, =m, (t)+e'~ rt, (s =1,2), (4.4)

where m, (t) and m2(t) follow the evolution equations Eq.
(2.15). By changing independent variables from (m, t) to
(il, t) with the definition

This is the master equation for the order parameters m
correct up to 0(e). Note that the above equation is
correct enough to derive the evolution equations for the
fluctuation of the order parameters. '

In order to obtain the Fokker-Planck equation for the
fluctuation, we again separate the variables into two parts,

and by substituting Eq. (4.4) into (4.3), we obtain, in the
limit of g~0,

BQ(iI, t) 8 &~,(t)
i},Q(il, t)

Bm, (t)

B2
+ —, g [R„(t)Q(q,t}],

$ $' 9$9$
(4.6)

where s runs over 1 and 2, and R, (t) and R„(t) are in-
dependent of il, and functions of m, (t} only. This is the
Fokker-Planck equation governing the fluctuations of the
order parameters. Using this equation, we immediately
obtain equations for evolution of fluctuations:

d((ri, {t))) BR,(t)
((rt, (t) )) (s =1,2) (4.7)

Bm, (t)

d ((rt, (t)rJ, (t) ))
dt

M$(t) M, (t)
((g, (t)ilk(t) )) + (( rt, (t) ilk(t) )) +R„(t) {s,s'= l, 2),Bmk(t) t3mk(t)

(4.8)

where (( )) is now carried out over il, with respect to
Q(ri, t). These equations are exactly the same as those de-
rived from the MEM, which are given in the Appendix
and are thus also identical with those of Saito and Kubo. '

V. DISCUSSION

The PPF is a variational function with respect to the
path variables, which specify the change of state in b, t.
From the nature of the PPF, it contains information not
only on the most probable path but also on the fluctuation
away from it. In this paper, the equation for the fluctua-
tion is derived by the application of the system size expan-
sion method' to the PPF. Since the PPF essentially
represents the transition probability of the entire system
connecting the state at t and the state at t+ht, the
development of the system is determined through the PPF
on the basis of the assumption of the Markovian process.
The differential form of evolution of the system gives the
master equation. The Fokker-Planck equation for the
fluctuation of the order parameters is also derived in the
MEM with the application of the system size expansion to
the master equation. It is shown that this Fokker-Planck
equation is identical with that obtained by the MEM.
Thus the PPM gives the same evolution equations for the
average and for the Auctuation of the order parameters as
those obtained by the MEM in the pair approximation.
This result is particularly significant because it has been
considered that it is difficult to derive the evolution equa-
tions for the fluctuations by the PPM and because the re-
sults indicate that both PPM and the MEM are
equivalent. ' However, as is shown in the following pa-
per, ' the results of both the methods are not identical in
the triangle approximation, and this poses an interesting

question whether the disagreements between both methods
in the triangle approximation is intrinsic or not.
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APPENDIX:
THE MEM IN THE PAIR APPROXIMATION

Although the kinetic Ising model by the MEM has been
treated in the pair approximation, ' ' ' we deal with it
here again for the purpose of closely comparing it with
the PPM.

The master equation for the total magnetization M~
and the short-range order parameter M2 are given by

BP
dt

(M, t)= —J W(M M', t)P(M, t)dM'

+ J W(M' M;t)P(M', t)dM', (A 1)

where M=(Mi, Mz), and W(M~M';t) is the transition
probability per unit time at t from the state M to M'.
The variables M& and M2 are related to m& and n2 de-
fined in Eq. (2.3) by the definition M, =Km, . When a
spin with the state i changes its direction, the total mag-
netization changes by an amount hM i (i ) = —2i and
the total short-range order by r& fz (i, [j, I )=.

2i(j&+j2+— . +j,), because [j,=+1, s=1, . . . , zj
specifies the states of nearest-neighboring spins of the
center spin i We postulate th. at spin flips occur at each
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lattice point independently. Then the transition probabili-

ty can be written as
bE(i, Ij, j }

2ktt T
(A4)

W( M~M+ b M;t) =%to(m; b M(i, Ij, j ),t ) . (A2)

According to the coarse-graining method of the micro-
scopic master equation by van Baal, ' the transition prob-
ability to per spin is made of two parts. The first factor is
the Probability P, + i(ij i,j z, . . . „j„t) for the sPin cluster,
and the second factor is made of the energy change of the
system in contact with the heat reservoir. The first factor
ntx:ds a transformation. The probability that a center spin
and its nearest neighboring spins take a configuration
(i,j,,j z, . . . ,j,) can be written as

z y;, (t)
P +i(' Jl J2 J

, x;(t)
(A3)

This relation is, however, not prescribed in the MEM as
in the PPM, and the justification of its use is only that it
looks reasonable. We can also interpret this transforma-
tion as based on the superposition approximation in the
CVM. '9 Therefore, this is a key step in the comparison of
the MEM with the PPM. For the second factor, we look
at the energy change. When a center spin changes its
direction, the effect due to the heat reservoir is assumed to
be

z y;, (t) exp( K—ij, )

=8x;(t) exp( Li)—g x;(t)
(A5)

By substituting Eq. (A5) into (Al), we obtain the master
equation in the pair approximation

1 ap
(m, t) = —tr[to(m;bM(i, Ij, j ), t)P(m, t)]

+tr[ w(m ebM—(i, Ij, j );b M(i, Ij, j ),t)

XP(m —eh, M(i, Ij, j ), t }], (A6)

+i QJ, i, J and P(M, t) is rewritten in
terms of P(m, t). The Kramers-Moyal expansion is ob-
tained from Eq. (A6) as

where bE(i, [j, j ) is an energy increase of the z + 1 cluster
associated with the center spin flip. The transition proba-
bility to is then written as the product of Eqs. (A3) and
(A4) as

to(m;bM(i, Ij, j ),t)

1

(m, t)= g
l, =o l, =o

ll +12~0

)+li —i al) ali

1 tl ~ i i Ct t (m, t)P(m, t),
am ' am1 2

(A7)

where

Ci i (m, t) =tr[[~i(i)] '[b,Mz(i, tj, j )] '

Xto(m;bM(i, Ij, j ),t)]

X tr[to(m;bM(i, Ij, j ),t)] . (A8)

tr[to(m;bM(i, tj, j ), t )]=G(t), {A9)

The last equation is derived by the difference of the ener-

gy factor Eq. (A5). However, by noting that the following
relation ho1ds:

I

we find that Eq. (A7) leads to

ap ' a
(m, t) = —g [R,(t)P(m, t)]at,

~
am,

E a
[R„(t)P(m,t}]+O(e') .2.. . am, m,

(A 10)

Up to 0 (e},the above master equation is completely iden-
tical with Eq. (4.3) derived by the PPM. It is easily
shown that when the system size expansion is applied to
Eq. (A10) or (A7), the evolution equations for the average
and for the fluctuation of order parameters are identical
with those obtained in Sec. IV.
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