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Improvement in laser Doppler velocimetry by the use of time-interval photon statistics
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In this paper it is shown experimentally that with the use of a laser Doppler velocimeter, the fluid

velocity can be determined from the measurement of Qc($} [the squared cosine transform of the
time-interval probability, W(8}, between two consecutive photopulses] or from the measurement of
Qa(X} [the square-wave transform of W(8}]. By using a computer simulation method, the accura-

cy of these techniques is compared with the one of the usual intensity correlation techniques. It is

found that the measurement of Qc($) or Qii(X} provides more accurate results than the intensity

correlation technique. It is expected that the advantage of these techniques increases as the intensity

of the detected light beam decreases.

INTRODUCTION

During the last 20 years photon statistics has been suc-
cessfully used in experiments where a light beam with a
fluctuating intensity is obtained. ' In some experi-
ments' ' (e.g. , scattering experiments) the intensity fluc-
tuates at random. There are other experiments where in-
tensity fluctuations are deterministic (e.g., optical com-
munications and experiments in spectroscopy where a
periodic intensity is obtained ' ) or quasideterministic
(e.g., laser Doppler velocimetry experiments, ' where
periodic signals are obtained at random instants). Usually
the number of photocounts, n(t, T), in a time interval
(t, t+ T) is measured for a variety of values of t and the
normalized intensity correlation function g' '(r} is com-
puted for several values of the delay time r. As the inten-
sity of the analyzed light beam decreases, shot noise in-
creases and a larger error is involved in obtaining infor-
mation about the light beam from g'2'(r). However, for
small intensities the time interval 8 between two consecu-
tive photopulses can be measured with good accuracy.
Consequently, the time-interval probability W(8) is an
appropriate technique for very low intensities.

In particular, light beams with a periodic intensity can
be analyzed by this technique. " For a light beam whose
intensity is periodic with a period P, W(8) is a function
which oscillates with the same period. This is the reason
why a technique consisting of measuring the squared
cosine transform Qc(S) of W(8) was recently used to
analyze light beams with a square-wave intensity' and to
determine their period P. For values of S near rrlP the
transform Qc(S) passes through a sharp maximum. It
was found that, for small intensities, the value of P can be
obtained from this maximum with a relative error ep
which is smaller than the one involved in the determina-
tion of P from g' '(v. ). Moreover, the advantage increases

as the intensity of the light beam decreases. Later, a
simpler technique consisting of measuring the integral

Qa (X) of W(8)R (X,8), where R (X,8) is a square wave,
was studied.

For values of X near I/P the transform Qa(X) passes
through a sharp maximum that can be fitted to a
Lorentzian curve to obtain P. It was found that the
values of et involved in the determination of P from
Qc(S) or Qa(X) are similar, while the experimental
values of Qti(X) are obtained in a simpler way than the
experimental values of Qc(S).

Since the measurement of Qc(S) or Qa(X) have proved
to be advantageous inethods of analyzing periodically
modulated light beams of low intensity, we planned to use
these techniques for signal processing in laser Doppler
velocimetry (LDV) experiments where a low intensity is
obtained. The aim of this paper is to verify that the velo-
city in a differential Doppler system can be determined
from the measurement of Qc(S) or Qa(X), and compare
the accuracy of these methods with the one based on the
measurement of g' '(r).

THEORY

Let us consider a light beam with a small periodic in-
tensity whose period is P. In Ref. 13 the squared cosine
transform of the time-interval probability W(8) was de-
fined as

Qc(S)= f W(8}cos (S8}d8, (1)

which can also be expressed in terms of the cosine Fourier
transform as

r

Qc(S)= 2 1+ f W(8)cos(2$8)d8
L

This function can be obtained experimentally by measur-
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ing repeatedly the time interval 8; between two consecu-
tive photopulses and using the relation

Qc(S)=(1/Ns ) g cos (S8; )

Ng

=0.5+(1/2%s) g cos(2S8;) . (3)

1 when (4M —1)/4X (8& (4M + 1)/4X,
0 when (4M + 1 ) /4X (8 & (4M +3 ) /4X .

The values of Qz(X) can be obtained experimentally from
the measured values of 8; by the relation

Ng

Qx(X)=(1/Ns) g R(X,8;) (6)

in a very simple way because the values of R (X,8) are 0
or 1.

Let us consider a square-wave signal whose period is P.
For this signal Qc(S) passes through a maximum' for S
near n/P, and Qx(X) also passes through a maximum'~
for X near 1/P. In these maxima Qc and Q~ can be ac-
curately approximated' by I.orentzian curves. Thus,
once the experimental values for Qc or Qii near the max-
imum are obtained, the results can be fitted to a Lorentzi-
an curve (the height, width, and position of the maximum
being unknown) plus a background equal to 0.5.

In a LDV experiment with a differential Doppler sys-
tem two laser beams interfere with each other and pro-
duce a set of fringes. The fluid whose velocity is to be
measured passes through the fringes. If seeded particles
are carried by the fluid, as a particle crosses these fringes
the intensity of the scattered light oscillates with a period
P which is proportional to the inverse of the velocity U of
the particle. If the period P is determined, U can be ob-
tained.

Since for low intensities the period P of a square
wave' ' can be obtained more accurately from Qc(S) or

In Ref. 14 the square-wave transform Qii(X) of W(8)
was defined as

Qa(X)= J W(8)R(X,8)d8, (4)

where

Qs(X) than from g' '(r), we applied these techniques to
the determination of P in a LDV system where a stable
velocity is obtained.

EXPERIMENT

In order to show that Qc(S) and Qz(X) are useful

quantities in LDV, we used the experimental setup
schematized in Fig. 1. A differential Doppler system with

a 5-mW He-Ne laser was used to measure the velocity of a
natural seeded water flow in a Plexiglass tube. Forward-
scattered light was detected by a photomultiplier connect-
ed to a photon correlation system consisting of (Fig. 2) an
amplifier-discriminator, a real-time digital correlator, a
time-interval meter, and a computer that controlled the
correlator and time-interval meter.

Since each particle which crosses the fringes originates
scattered light whose intensity oscillates with a period P
(if the velocity of the fiuid does not change with time),

Qc(S) can be expected to pass through a maximum for S
near SM n/P a——nd Qq(X) to pass through a maximum
for X near Xir ——1/P. To verify this, the period P in our
experiment was determined by measuring g' '(r) (the usu-

al procedure), which must oscillate with a period equal to
P. To obtain a good signal the filter F (Fig. 1) was select-
ed to obtain a mean intensity I=10 photopulses/s and a
64-channel Malvern correlator was used to obtain g' '(r)
from 3)&10 samples of n(t, T) for T=3 ps. The value
obtained was P=31 ps, from which it was expected that
we should obtain S~ ——101342 s ' and X~ ——32258 s
Later, Qc(S) and Qx(X) were measured for low intensi-
ties and for values of S near S~ and X near XM. Since
the time-interval meter we used could only make 20 sam-
ples of 8 per second, we obtained Qc(S) and Qx (X) from
only 10 samples of 8 in order to avoid a large measure-
ment time. The results are shown in Figs. 3—6 for two
values of m=IP. It can be observed that Qc(S) and

Qii(X) behave as expected and that the values of S~ and

X~ are in good agreement with the expected ones, espe-
cially if the fact that the fiuid velocity was not steady in a
long time interval is taken into account. It can also be ob-
served that the values of Qc(S) and Qii(X) to the left of
the maxima are larger than the ones to the right. A simi-
lar behavior can be found if the expressions of Qc(S) and

Qii(X) for a square wave are analyzed. ' ' Finally, if the
half-widths of Qc(S)—0.5 and Qx(X) —0.5 (0.5 is the ex-
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FIG. 1. Experimental setup: S, beam-splitter plate; M, mirror, T, Plexiglass tube; D, diaphragm to block the straight laser light;
I, focusing lens; I', grey filter; PH, photomultiplier.
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FIG. 2. Photon correlation system: PH, photomultiplier; A-

D, amplifier-discriminator; TI, time-interval Ineter; CORR,
correlator; COM, computer to control CORR and TI.
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pected background of Qc and Qs) are estimated in Figs.
3—6, it is found that they are proportional to I as occurs
for square-wave signals. ' ' Furthermore, the relative
half-widths (the half-width divided by the position of the
maximum) of Qc(S) and Qz (X) for a fixed value of I are
similar (approximately equal to 0.2 for m=0. 3 and ap-
proximately equal to 0.35 for m =0.5).

Since the behavior of Qc(S) and Qz(X) in a LDV ex-
periment was found to be as expected, we can proceed to
study the accuracy of these techniques and compare it
with the one obtained when measuring g(2)(~). Since the
intensity scattered by a particle that crosses the fringes os-
cillates with a period P, we can study the relative error ez
involved in the determination of P when the velocity of
the fluid is constant. To do this the change in the fluid
velocity during the measurement time must be negligible.
Since the measurement time that corresponds to a series
of 10 samples of 8 (in our experimental setup) is about 8
min, and several series are required in order to obtain ez
from several measured values of P, the velocity instabili-
ties are not negligible during the total measurement time.
Since we did not have a faster time-interval meter, to
avoid this problem we decided to use a computer-
simulation method to obtain ep, as will be explained in
the next section.

STUDY OF THE ERRORS AND CONCLUSIONS

In differential LDV experiments low intensities are gen-
erally obtained when the number of seeded particles that
scatter laser light is so small that the mean distance be-
tween two consecutive particles is much larger than the
width of the set of interference fringes. In such a LDV

228 318 408

X {}0's-')
FIG. 4. Experimental results for Qa(X) obtained from 10

samples of the time interval 8, when I=9700 photopulses/s and
P=31 ps (%=IP=0.3).

experiment the scattered intensity from each particle' can
be expressed as a function of time as

I&(t) =Ijexp[ —2(t tJ ) l—r, ]

&( I 1+ Vcos[5+2n.(t t, )/P] J—,

where tj is the instant when the jth particle is at the

center of the fringes, r, is the time that the particle takes
to cross the radius of the laser beam, and V is the fringe
visibility.

To simulate values of tj we used an exponential
random-numb r generator. 5 The value of IJ were as-
sumed to be equal for all particles. We used the values
r, =10P, P=10 s, V=1, and m=0. 1. The mean time
interval between two consecutive particles was selected to
be long enough to ensure that there is only one particle in
the fringes. With these data the detected intensity I(t)
could be calculated as a function of time. To obtain
values of the time interval 8 between two consecutive pho-
topulses we simulated the instants when photopulses were
obtained when detecting I(t) with a photon-counting sys-
tem. This was achieved by dividing each period P into
subintervals of length b, «P. Consequently, the variation
of I(t) in a subinterval was negligible and a random-
number Poisson generator could be used to simulate the
number of detected photopulses in each subinterval.
Furthermore, if 5 is chosen so that Ih «1 the probabili-

Qc += 03
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FIG. 3. Experimental results for Qz(S) obtained from 10
samples of the time interval 8, when I=9700 photopulses/s and
P=31 ys (m =XP=0.3).
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FIG. 5. Experimental results for Qc(S) obtained from 10
samples of the time interval 8, when I=16100 photopulses/s
and P=31 ps (m =IP=0.5).
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FIG. 6. Experimental results for Qa(X} obtained from 10
samples of the time interval 8, when 7=16100 photopulses/s
and P=31 p,s (m =IP=0.5).
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FIG. 8. Simulated values of Qx(X} (0} and fitted Lorentzian

curve with a background equal to 0.5, for m =0.1.

ty of obtaining more than one photocount in a subinterval
is negligible and only zeros and ones will be obtained by
using the Poisson random-number generator. So, the dis-
tance between two consecutive ones give us a time interval
8. To simulate values of 8 with good precision we used
b, =3 x 10-'P.

~e simulated ten series of samples of 8 with the
above-mentioned data. In each series the values of 8 that
correspond to the passage of 2000 seeded particles
through the interference fringes were simulated and the
values of Qc(S) and Qtt(X) were obtained (for 36 values
of S and 36 values of X) by using Eqs. (3) and (6). To ob-

tain P from Qc(S) and Qtt(X) the peaks of these func-
tions were fitted to Lorentzian curves with a background
equal to 0.5, the other parameters (height, width, and po-
sition of the maximum) being unknown. Figures 7 and 8

show the results obtained in one of the ten simulated
series. It can be observed that the relative half-widths of
the two peaks are similar. Moreover, they are approxi-
mately equal to the corresponding ones for square-wave
signals' ' and nt =0.1 multiplied by 2.5. As occurs for
square-wave signals and nt =0.1, either in Qz and Qtt, no
rise appears to the left of the peak. The values of P were
obtained from the maxima of fitted Lorentzians by using
the relations SM m/P and XM ————1/P By using th. e ten

0.55

simulated series of values of Qc(S) and Q„(X), the corre-
sponding values of et were calculated.

To compare these errors with the ones involved in the
determination of P from the intensity correlation func-
tion, we simulated values for g' '(r) This .was made by a
program that counted the number n (t, T) of ones generat-
ed by the above-mentioned Poisson random-number gen-
erator in successive time intervals (t, t+T) and by using
the well-known relation

(1/N) g n(t;, T)n(t;+1T, T)

N
'2

(1/N) g n(t;, T)
i=1

l =1,2, . . . , 36 .

In this relation we used T =0.1P and a value of N that
corresponded to the passage of 2000 seeded particles
through the interference fringes. In each series the simu-
lated values of g' }(r) for 36 channels were fitted to the
well-known function'

g' '(~)=A exp( —2/t, ')[I+(V /2)cos(2m~/P)],

A being a constant to be fitted. From the values of P cor-
responding to the ten simulated series, ep was evaluated.

The results for et from Qc, Qa, and g' ' are shown in
Table I. It can be observed that the results froin Qc and

Qtt are similar, whereas the results from g' ' are less ac-
curate. This advantage of the techniques consisting of
measuring Qc or Qtt increases as I decreases. There are
two reasons which allow us to make this assertion. First,
the widths of Qc and Q}t are proportional to I (they de-
crease as I does), as was seen from experimental results,

0.50
~ ~ ~

~ ~ ~ ~

TABLE I. Values of ep when P is obtained from Qc(S},
Qii (X},or g'~'(r} under the same experimental conditions.

2500
1

3100
I

3700 Technique ep (%)
5 (10' s-')

FIG. 7. Simulated values of Qc(S} (0} and fitted Lorentzian
curve with a background equal to 0.5, for m =0.1.

Qc(S}
Qii (X}
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whereas the width of g (r) [see Eq (9)] does not d~p~nd

on I. Secondly, we can consider the fact that W(8) is an

oscillating probability, with a period P, which satisfies the
normalization relation

f"W(8)d 8=1 (10)

for all values of I. Bearing this in mind, it can be expect-
ed (as was verified for square-wave signals' ) that

Qc(SM)= f W(8)cos (tt8/P)d8

varies slowly as I varies. Thus, taking into account the
expression' for the variance of Qc(S),

Vargc(S) = (1/4Xs) [—1+4QC(S)—4QC(S) +Qc(2S)],

(12)

and the fact that the number of samples, Ns, of the time
interval 8 that can be obtained in a fixed measurement
time is proportional to I, we obtain that Vargz(Sst) is ap-
proximately roportional to I '. However, it is a well-

known result that for small intensities Varg' '(r) is pro-
portional to I . Therefore, as the value of I decreases,
noise in g'~'(r) increases more quickly than in Qc(S). A
similar behavior can be expected for gti(X} as occurs for
square-wave signals. '

Bearing the above considerations in mind, we can con-
clude that for low-intensity LDV experiments where the
velocity of a fiuid is studied, the measurement of gc(S)
or Q„(X}may well constitute a more reliable technique

than the usual intensity correlation technique. Further-
more, the measurement of Qtt(X) can be made in a
simpler way than the measurement of g' '(r). In addi-
tion, we think that the techniques based on the measure-
ment of Qc or Qtt can be improved. For one thing, if the
decay of W(8) as 8 increases is eliminated by using an ap-
propriate filter function, the width of its Fourier
transform must decrease. In this case the results obtained
from Qc and Qtt can be expected to improve. Further
improvement could be obtained by finding a function
which is more appropriate than a Lorentzian for fitting
theoretical and experimental values of Qc(S) or Qtt(X).

Finally, let us consider the fact that for small intensities
the widths of Qc(S) and Qs (X) can be made smaller than
the width of the Fourier transform of g' '(r}. Conse-
quently, we can expect to obtain a better resolution of ve-
locities in a turbulent flow by measuring Qc(S) or Qs(X)
than when measuring g' '(r).
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