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It is pointed out that for temperatures T ~ 0.5T„where T, is the critical temperature, the classi-

cal steady-state nucleation-rate formalism of Seel(".er and Daring predicts an approximate critical su-

persaturation ratio S~ (for the onset of nucleation) given by lnS„/0 -0.53(T, /T —1) 2. 0 is a
material-dependent quantity approximately equal to the excess surface entropy per molecule. For
most substances 0-2.0 and for associated liquids 0-1.5. The experimental data (for nucleation

from vapor to liquid) from diffusion chamber and nozzle beam studies are found to be consistent

with the above expression. The classical theory also predicts that for a supersaturation ratio S cor-

responding to constant J, lnS/lnS —1-lnJ/21nJ„where ln J, is a quantity evaluated at the criti-

cal point and is -72 for most materials. Expansion cloud-chamber data for nonane, toluene, and

water are also found to be consistent with these approximate scaling laws.

I. INTRODUCTION

In this paper we present an expression for the classical
Becker-Doring nucleation rate' J in terms of a slightly
modified temperature dependence, ( T, /T 1), and a—rela-
tively material-independent constant 1nJ„which is
evaluated at the critical point. The motivation has been to
develop an expression for J which can be simply com-
pared to experimental data at temperatures far below the
critical paint. Of particular interest is a numerical esti-
mate of the "critical" supersaturation S„correspanding
to the onset of nucleation at a given reduced temperature
T/T, . The scaling of the nucleation rate has been con-
sidered extensively' and, in particular, Binder has
given a scaled form for the (slightly modified) classical
nucleation rate near the critical point. The expression
presented here is not applicable near T, . It assumes a
(classical} treatment of the prefactor, and concentrates
rather on the material-dependent terms in the prefactor
and on the use of the above reduced-temperature function
to examine S„and factors in the free-energy barrier for
T« T, . The intent has been to cast the classical J into a
form useful for quick estimates of required supersatura-
tions, to point out factors which can be used to transform
data into relatively material-independent form, and to
suggest the ( T, /T 1) temperature —dependence for data
analysis far below T, .

Some time ago, 4'u, %'egener, and Stein demonstrated
the aproximate linear relationship between lnS„and
T using experimental data for SF6. However, the ex-
ploitation of a scaled or explicit temperature dependence
of lnS„ for T« T, was apparently not further pursued
until McGraw' examined a corresponding-states formal-
ism and demonstrated that the data for lnS„ fell into
identifiable groups of substances when plotted versus
T/T, . Motivated primarily by McGraw's results, we
derived for T« T, the approximation lnS,„-0.05

[Ao(T, /T —1)] ~ and noted that the experimental data
for lnS„when plotted versus (T, /T —1)3~ fell roughly
into two groups with slopes (proportional to Ao3~z) in the
ratio of 3 to 2." A =AD(T, /T 1) is the—coefficient of
n ~3 in the classical free energy of formation,
An ~s n lnS—, for the n molecule or atom cluster. This
surface-tension term is the origin of the (T, /T —1)
dependence for lnS—which we note is different from the
usual e=(1—T/T, ) dependence in critical-point formal-
isms. Rasmussen and Babu' ' made use of our abave
temperature-dependent form for lnS„and showed that
the slape of the experimental data for lnS, „, when plotted
versus ( T, /T —1) ~, is correlated with the Eotvos con-
stant. ' The explicit relationship between the slope and
the Eotvos constant was not given.

The "scaled supersaturation, " x =lnS/A ~z, from
which we in part extracted the above form for lnS„, is
identical in form to that of Binder and Stauffer,
lnS/(be), where P and 5 are the standard critical-point
exponents. " Near the critical point ( T, /T —1)-e, and
P5- 1.54. (For classical three-dimensional fluids
P5= —,'. ) In a field-theoretic model for near-critical-point
nucleation, Langer and Turski use a closely related quan-
tity, the "scaled supercooling" r=5T/(eT, ). The scaled
supersaturation (or the scaled supercooling) influences the
nucleation rate primarily via the so-called "energy of for-
mation" of the critically sized cluster: (xolx) =(ro/r)
The xo and vo are constants dependent on critical-point
amplitudes. In the classical theory, xo ——2/(3) ~~.

However, ro is less well defined for T « T, and not in-—
dependent of T. The classical nucleation rate J is propor-
tional to exp[ —(xo/x) ) and in the case that the kinetic
prefactor has only slight S and T dependence, the
(x/xo } is nearly constant for fixed J and leads to the ap-
proximate scaling law for lnS.

Classical nucleation theory and theories applicable near
the critical point differ primarily in the approximation of
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the kinetic prefactor which describes the growth of the
clusters subsequent to the nucleation event and before ob-
servation of macroscopic effects. ' In predicting
critical-point phenomena the prefactor must account for
diffusion-controlled growth and the vanishing of the dif-
fusion constant as T approaches T, . For T && T,
diffusion-controlled growth is not in general apphcable
and the rate of formation of the new phase is primarily
dictated by the birth (nucleation) of new phase embryos. '

However, in this low-temperature region the (classical) ki-
netic prefactor for vapor-to-liquid nucleation is propor-
tional to the equilibrium vapor pressure squared and ap-
pears to be highly temperature and material dependent.

It is the temperature dependence of the classical kinetic
prefactor which prompted Rassmussen and Babu' to
comment that a theoretical explanation for the observed
experimental agreement with the scaling law for lnS„
(Ref. 11) was lacking. We here present a method of cast-
ing the kinetic prefactor into an approximately material-
independent (and T/T, -dependent) form and show that
the classical theory predicts lnS„/Q ~ —0.53
(T, /T —1) ~ where Q is a material-dependent quantity
approximately equal to the excess surface entropy per
molecule. For most substances Q-2, while for associated
liquids Q-1.5 and reflects the reduced entropy of the
surface molecules. A modified scaling law for lnS corre-
sponding to a constant J/J, follows and we finally com-
ment on the consequences of assuming a term in the ener-

gy of formation which takes into account the translation
of the center of mass of the embryonic cluster. ' For sim-
plicity we consider no replacement factors. 's

The formalism for vapor-to-liquid nucleation is
presented in Sec. II and in Sec. III the results are com-
pared with experimental lnS„ for J-l, 10~, and 108

cm sec '. Comments and conclusions are in Sec. IV.

J=J,I(P/P, ) exp[ —(xo/x ) ],
where +=2,

I—[(4/3)/77~~2]t~3A ~~2(T /T)3~2(p /p)2~3

and

(2)

J, =(P, /h)(k, , lp, ) (P, /kT, A,, ) . (3)

The p, I', h, k, S, and k are the number density, pressure,
Planck's constant, Boltzmann's constant, super-
saturation ratio, and inverse thermal wave1ength cubed,
(2mmkT/h ) ~, respectively. The subscript c denotes
critical-point quantities. The form for the exponent,
(x, lx), follows from the classical free energy of
formation for the n atom or molecule cluster,

g (n) =An ~ nB, where B=lnS.— Classically, A is
equal to the surface tension (divided by kT) times the area
per surface molecule. From dg(n*)jdn =0, one readily
obtains the number of molecules in the critical cluster,

II. FORMALISM FOR J IN TERMS
OF CRITICAL-POINT QUANTITIES

The classical Becker-Doring theory' for the steady-state
homogeneous nucleation rate' ~0 (including the so-called
Zeldovitch factor ') can be written as follows:

+ lnI /ln( J, /J) I

—1+0.7aWO(T, /T —1)"/[2 ln(J, /J)]

(5a)

(5b)

for 0, 3 ( T/T& (0.5. For lnJ=0 50 1.13
+0.04(T, /T 1)". In o—btaining this approximation,

p, /p- —, and

ln(P, /Po) —Wo( T, /T —1)" (6)

are used. 8'o and g are approximately 7+2 and 1, respec-
tively, for most substances, and Wo can be roughly
represented by l. /kT„where 1. is the latent heat of va-

porization near the boiling point. While there is some
cancellation of the In(P, /Po) term by lnS and lnI in Eq.
(5a), lnI contributes less than 1.5% to 5p and the major
contribution to the approximation in Eq. (5b) comes from
ln(P, /Po). For substances (such as toluene) which have
relatively small values of Wo and large values of Q
(nonassociated liquids) there is a considerable cancellation
of ln(P, /Po) by lnS and the temperature dependence of 50
is weak. Finally, one can show that 1nJ, -72 to within
3% for most substances. For example, the values are
72.8, 74.7, 71.8, 70.8, and 73.7 for the substances ethanol,
water, toluene, nonane, and argon, respectively. Since the
square root of 1nJ, enters into the expression for 1nS„, a
3% error in 1nJ, produces a 1.S%%uo error in 1nS„. Using
lnJ, =72 the following approximate scaling laws result:

lnS„/Q -0.53(T, /T —1) ~ for J-1 cm sec

(7)

and

lnS —lnS, „[1+1nJ/(2 lnJ, )] (8)

n*=(2A/3B), and g(n*)=0.5n*B=(xo/x) . The
x, =2/(3)3~ .

If one assumes the form a=oo(T, —T) for the surface
tension (where cro is a material-dependent constant),
A =(36m. )'~ Q(T, /T —1). The Q=ao/kjp ~ can be in-

terpreted as an effective excess surface entropy per mole-
cule (in units of k) in the embryonic cluster. The bulk

liquid value for Q (the Eotvos constant'") is approximate-
ly 2 for most liquids. For associated liquids Q is smaller
( —1.5) and reflects the reduced excess entropy for surface
molecules. 2 The corresponding values of Ao are about 10
for ordinary substances and 7 for associated liquids. This
approximate material independence of Ao was noted when

calculating thermodynamic properties of microscopic
clusters using Monte Carlo methods and effective pair po-
tentials. In some preliminary work it was found that
Ao —10 for Lennard-Jones argon clusters~5 and A0-7. 5

for Rahman-Stillinger central-force (rigid-molecule) wa-

ter clusters. These values of Ao correspond to Q-2. 1

and 1.6 for (Lennard-Jones) argon and (rigid-molecule
central-force) water, respectively.

Usin~ Eqs. (1) and (2), the scaled supersaturation
InS/A ~ becomes

lnS/A ~ =x (lnJ, )
'~ 5

where

5O ——[ 1 —a[in(P, /Po ) —lnS]/ln( J, /J)
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for larger J of physical interest. The major deviations
from these approximate scaling laws occur at low tem-
peratures where (T, /T —1) is large (& 1.5). One can
show also that the critical cluster size (for onset of nu-
cleation) takes the form

(3/4~) n(in'/0) (T/T 1)
—n

—106(2/0) (T, /T —1)

In expansion chamber experiments it is often more con-
venient to use the supercooling. Equation (6} (with the
approximation ) =1}and Eq. (7) yield

5T'W /0 -053(T,/T —1) (10)

where

5 T'=(Ta/Tg, nal
—Tc/Tinitial)

It is interesting to consider the modification to Eq. (7}
when one includes the free energy associated with the

translation of the center of mass of the cluster. ' For sim-
plicity, replacement factors' are not considered. In this
case the right-hand side of Eq. (1) is multiplied by
(&MT/P)(n') exp (——', ) and one considers the n' to be
modified by the small ( —3%) correction factor,
[1+3/(2n'1nS)] -[1+(—,')(x/xc) ] . The resulting
J=J, is given by Eq. (1) with a= 1, I replaced by

[(4/3)/~ll2]1/339/4(x /x)9/2(T/T )

x(p, /p)'"~'-'"',
J, replaced by

J,'=P, (A,, /I', )/h,

(12)

(13)

and 5o replaced by 5o (a= 1, I =I', J,=J,'). Inclusion of
the center-of-mass translational free energy reduces by
one the power of P/P, in the prefactor of J,. This
softens the temperature dependence of the prefactor and
predicts a lnS„which is more nearly linear in

I
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FIG. 1. Natural logarithm of the threshold (J=1 cm sec ) supersaturation ratio 5„,divided by 0 from diffusion chamber

and nozzle beam experimental data. The data points are for toluene (Ref. 33) (E), nonane (Ref. 32) (&), ~ater (Ref. 28) (0),
n-butylbenzene (Ref. 33) {Q),sulfur hexafluoride(Ref. 9) (+ ), carbon tetrachloride (Ref. 34) {+,chloroform (Ref. 34) ( 0 ), ethanol
(Ref. 31) (Q), octane {Ref 33) (a), arg. on (Ref. 30) [taken from McGraw (Ref. 10), Fig. 1] {g),and acetic acid (Ref. 29) (4). The
dashed line is 0.53 (T,/T —1)3'2 from Eq. (7). The values used for 0 are (Ref. 12) 2.35 for nonane, octane, and n-butylbenzene; 1.5
for water and ethanol; and 2.0 for SF6. For the remaining substances the ideal gas value 2.12 is used (Ref. 14).
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(T, /T —1) ~ . In addition, lnJ,' is almost universally 86
and the prefactor for J, becomes less material dependent.
For example, for water, ethanol, toluene, nonane, and xe-
non the values of lnJ,' are 86.2, 86.1, 86.7, and 86.5,
respectively. The value for argon (84.4) is notably small-
er. The resulting scaling law (without replacement fac-
tors) is

lnS,', /A ~ =xo(lnJ,') '
50

-0.44( T, /T —1)

(14a)

(14b)

For J, »1, lnS' is related to lnS,', via Eq. (8) with
J,=J,'.

III. COMPARISON %VITH EXPERIMENTAL DATA

The approximations in Eqs. (7) and (8) serve as good
predictors for lnS over a range of nucleation rates. Figure
1 shows experimental homogeneous vapor-to-liquid data
for inS«/Q ~ for a number of substances, s 3 using
bulk values for Q. The data for lnS„conform to the
approximate scaling law in Eq. (7) rather well in spite of
the scatter in data and the approximation of Q by the

bulk value. In fact, the lnS„data appear to be more
linear in ( T, /T —1) ~ than the corrections to Eq. (7) [via
50, Eq. (Sb)] would indicate. The linearity of the data of
Katz et al. for toluene is particularly striking, and it is
noteworthy that altnost all of the Katz data ' fit this
linear dependence extremely well. In Fig. 2 is plotted theJ-10 cm /sec expansion cloud-chamber data of Mill-
er, Anderson, and Kassner for water ' and of Schmitt,
Adams, and Zalabsky for toluene and nonane. The ex-
pansion chamber data appear to be consistent with the
(T, /T —1) ~ temperature dependence for lnS/Q ~ as
predicted by Eqs. (7) and (8).

It is interesting to compare the experimental nonane
data for J-1 (Katz et al. ), J-10 (Schmitt et al. 3 ),
and J-10 (Wagner and Strey ) in a way which em-
phasizes the role of prefactor and exponent for J. The ex-
ponent

(xo/x) =(16m/3)(T, /T —1) /(lnS) Q

and if one uses Q=o/[kTp (T, /T —1)] the standard
classical model obtains. For most nonassociated liquids
the Q so calculated is stable with respect to T (in the

x

4g

x I

FIG. 2. lnS/0' for J—10 cm sec ' from the expansion chamber data for water (Refs. 35 and 36) {D),nonane (Ref. 38) ()& ),
and toluene (Ref. 37) (Q). The dashed line is the prediction from Eq. (8).



BARBARA N. HALE 33

range of T/T, of interest) to about 1%. The stability
of these values will depend somewhat on the choice of ex-
trapolation for o and p at low temperatures. In Fig. 3 is
plotted the log of the prefactor versus (xo/x) for these
data in the classical model. The three sets of data fall not
too far from the straight line —which is the prediction of
the classical model. The dashed lines above (below) the
solid hne indicate errors in J of 10 (10+ ). While the
Wagner and Strey data and the Katz et al. data appear to
be closer in magnitude to the classical model prediction,
the expansion chamber data of Schmitt et al. show a
more nearly linear relationship. The low-temperature
data correspond in general to smaller values of (xo/x)2.
Thus in Fig. 3 the high-temperature (expansion chamber)
data lie furthest from the solid line and the classical
model prediction.

In Fig. 4 is a comparison of the temperature depen-
dence of the log of the prefactor and (xo/x) for the three
sets of nonane data. For the diffusion chamber data it is
assumed that J= 1 cm s sec '. The prefactor has a
smooth linear dependence on ( T, /T —1). However, the
temperature dependence of (xo/x)z differs for the three

sets of data and none of the data appear to have quite the
"classical model" form. This could be in part the result
of the sensitivity of (xo/x) to the assumed temperature
dependence of lnPo and o. Both Schmitt et al . and
Wagner and Strey found major discrepancies in compar-
ing their data with the classical model at low tempera-
tures. For example, Schmitt et al. (using an equilibrium
vapor pressure different from the vapor pressure ' used
by Katz and Wagner and Strey) found that their data
disagreed with the classical model by factors of 10 in J at
low temperatures. On the other hand, Wagner and Strey
(using an expression for the surface tension ' different
from that used by Schmitt et al. and Katz ) found that
their data disagreed with the classical model by factors of
as much as 10 at low temperatures. As can be seen in
Fig. 3, the vapor pressure ' and surface tension formulas
used by Katz bring all the data into approximate mutual
agreement with the classical model. We note that this
does not imply that these particular formulas are without
problems. This dilemma emphasizes the need to sort out
competing temperature dependences of terms in (xo/x)2,
and to assume a valid equilibrium vapor pressure at low

() 50
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2(x /'x)

FIG. 3. ln[J, /J(P/P, ) I] vs the classical energy of formation, (xo/x)', for the nonane diffusion chamber data of Katz et aj.
{Ref. 32) ()& }; the nonane expansion chamber data of Schmitt et aI. (Ref. 38} where J-10 ( ~ };and the nonane expansion chamber
data of Wagner and Strey (Ref. 39) (D), where J-10 . The x =A /lnS is the scaled supersaturation. The solid line is the predic-
tion of the classical theory for J, and the lower (upper} dashed line indicates the range of data corresponding to Jx 10 ( J )(10 '). 0
is calculated from rr/[kTP ~'

( T, /T —1)],as prescribed by the classical model.
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FIG. 4. Classical model prefactor of J (open symbols) and (xo/x) (closed symbols) vs ( T, /T —1) for (a) the nonane J =10"data
of Schmitt et al. (Ref. 38) (ClS) and the J=10' data of %'agner and Strey (Ref. 39) (QA) and (b) the nonane J=1 data of Katz
et al. (Ref. 32) (Q$). The equilibrium vapor pressure and surface tension formulas as given by Katz (Ref. 32) are used for all the
data. The dashed lines guide the eye through the prefactor data points.
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temperature. Finally, it seems appropriate to note that
the expansion chamber data of Kassner, Miller, and An-
derson ' and of Schmitt er al. ' offer stringent tests
for the temperature dependence of the theory, and it is un-

fortunate that these data have been so long overlooked. It
is noted, however, that the nonane and toluene expansion
chamber data appear to give values of lnS which are
slightly smaller than the classical model would predict at
high temperatures. An approximate value of 0=2.35 can
be extracted from the Schmitt data by plotting the
ln(J/S ) versus (16m/3)(T, /T —1) /(lnS) . It is in-

teresting that this is the value of the Eotvos constant for
nonane cited by Rasmussen' and that if one uses
0=2.35 the data of Schmitt et al. agree with the classical
model to less than a factor of 10 at all temperatures.

Some comments on the scaling law in Eq. (14) are
relevant. The softened temperature dependence of the ki-
netic prefactor for J, [which predicts a more linear depen-
dence of lnS„on ( T, /T —1) ~ ] and the more nearly ma-
terial independence of lnJ,' merit some consideration.
However, it is well known that J, /J (without replacement
factors) is -10' and unless the corresponding 0 could be
increased by 15% the scaling law in Eq. (14) does not
agree with experiment.

IV. COMMENTS AND CONCLUSIONS

The expression for the classical Becker-Doring nu-
cleation rate presented here emphasizes the (T,/T —1)
dependence, the relatively material-independent quantity
lnJ„and the overall weak temperature dependence of the
prefactor for J when predicting lnS at T« T, . The scal-
ing law in Eq. (7) appears to describe the experimental
lnS„ for onset of nucleation rather well, and points out
the usefulness of 0 in characterizing critical supersatura-
tion values. An interpretation of 0 is the effective excess

entropy per surface molecule in the embryonic clusters.
The fact that the bulk value for this quantity is nearly 2
for most substances and reduced to about 1.5 for associat-
ed liquids provides a convenient rule of thumb for es-
timating critical supersaturations for a wide variety of
materials. The linearity of the data for lnS„[when plot-
ted versus (T, /T —1) ~ ] underscores the role of the —',
exponent for the An ~ surface energy contribution in the
classical energy of formation far below T, . Katz's to-
luene data and the cloud-chamber data ' for larger
nucleation rates (J—10 ) yield exponents for ( T, /T —1)
surprisingly close to 1.5. A comparison of the diffusion
chamber and expansion chamber nonane data (with J
ranging from 1 to 10 ) indicates that the classical model
does a credible job of predicting J. There does appear to
be, however, some anomalous temperature dependence in
the (xo/x) data. Related to this anomaly are uncertain-
ties in the low temperature dependence of the equilibrium
vapor pressure, which can generate apparent discrepancies
as large as 10 between data and the classical model. A
careful consideration of the competing temperature fac-
tors in (xq/x) appears to be in order. Finally, we note
the temperature functions considered here in predicting a
general form for lnS and suggest that (T, /T —1) might
be useful in analyzing phenomena far below the critical
temperature. A modified supercooling, ( T, /Tf T, /T;), —
and the equilibrium vapor pressure in the form In(P, /Po)
= Wo(T, /T —1)"appear to be interesting examples.
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