PHYSICAL REVIEW A

VOLUME 33, NUMBER 6

JUNE 1986

Fractal basin boundaries and intermittency in the driven damped pendulum

E. G. Gwinn and R. M. Westervelt
Division of Applied Sciences and Department of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 16 December 1985)

We numerically study intermittency associated with the coexistence of multiple attractors in the
damped, driven pendulum. For some ranges of the control parameters the basins of attraction for
attractors with positive and negative average angular velocities are intricately interwoven, and the
boundary between basins is a fractal set. We observe intrinsic intermittency due to a crisis, in which
two chaotic attractors collide with the fractal boundary that divides their basins of attraction. For
control parameters near the crisis, the fractal dimension of the basin boundaries approaches that of
the phase space, and a random external forcing torque easily induces extrinsic intermittency. Both
noise- and crisis-induced intermittency can produce power spectra S(w)« 1/w? with a=1, over

several decades in frequency .

I. INTRODUCTION

The driven, damped pendulum is a classic nonlinear
dynamical system which models many physical phenome-
na, including radio-frequency—driven Josephson junctions
and charge-density-wave transport.! Despite the apparent
simplicity of its equation of motion, the pendulum
displays a rich variety of nonlinear phenomena. The dif-
ferent types of steady states, or attractors, of the driven
pendulum and of rf-driven Josephson junctions and the
ranges of control parameters for which they occur have
been studied extensively in numerical and analog simula-
tions,' ~!® and to a lesser degree in experiments on Joseph-
son junctions.!’—2?

This work focuses on the origins of intermittency and
low-frequency noise in the driven, damped pendulum. In-
termittency occurs as qualitative changes in the state of a
system on time scales much longer than the usual charac-
teristic times. For example, hopping between different dc
voltage steps at frequencies orders of magnitude lower
than the resonant frequency is experimentally observed in
rf-driven Josephson junctions. In devices such as these,
intermittency causes poor noise performance, because the
long times between hops and the frequency dependence of
the power spectra prevent effective averaging.

Two categories of intermittency that have been previ-
ously identified and studied in simulations of the driven,
damped pendulum are Pomeau-Manneville®?* and noise-
induced intermittency.5?*?5 Pomeau-Manneville type-1
intermittency is associated with saddle-node bifurcations,
and typically produces a Lorentzian angular velocity
power spectrum S(@)=S,/(w?+772), where 7! is the
corner frequency.?® Pomeau-Manneville type-3 intermit-
tency is generated by trajectories that diverge slowly from
an unstable periodic orbit, and can yield a 1/f power spec-
trum.?*?627  Noise-induced intermittency is always of
concern in experiments on systems with multiple steady
states. It occurs when a system is knocked between dif-
ferent attractors by an external stochastic noise source.
An example is noise-induced hopping between different dc
voltage steps in an rf-driven Josephson junction.

In this paper we investigate the role of multiple basins
of attraction and their boundaries in the production of in-
termittency in the damped, driven pendulum. The extrin-
sic intermittency induced when external noise forces hop-
ping between attractors is sensitive to the arrangement of
the basins of attraction. The basin boundaries are also in-
volved in the production of intrinsic, crisis-induced hop-
ping between metastable basins of attraction when no
external noise is present.?* Both intrinsic and extrinsic in-
termittency can produce noise with a low-frequency spec-
trum S (w) that scales approximately as 1/w over several
decades in frequency . We find intermittency with a
1/w power spectrum over some ranges of the control pa-
rameters for which the basins of attraction are interwoven
on arbitrarily small length scales, and the basin boun-
daries are fractal sets.”* When present, this complicated
geometry causes extraordinary noise sensitivity.

II. NUMERICAL SIMULATIONS

In dimensionless form, the equation of motion for the
damped, driven pendulum is

d*0/dt*+(1/Q)d0/dt +sinf=T(z) ; (1
I'(t)=gcosp+bg(2),
de/dt =0, ,

where 6 is the angle of elevation of the pendulum, d6/dt
is the angular velocity, and Q is the quality factor. The
driving torque I'(z) is a superposition of a sinusoidal
torque with amplitude g, frequency w,, and phase
¢=wy4t, and an optional noise term 8g(¢) which is zero
unless stated otherwise. We omit a constant drive torque,
which would correspond to dc current bias in a Josephson
Jjunction. The torque is normalized so that I'=1 is the
torque necessary to hold the pendulum stationary at
6=m/2, the position of maximum restoring torque, and
the dimensionless frequency w; is normalized to the
pendulum’s small-amplitude resonant frequency.

Three control parameters determine the nature of the
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pendulum’s motion: the sinusoidal drive amplitude g, the
drive frequency w,, and the quality factor Q. The
dynamical variables which constitute the phase space for
the three-dimensional system of Eq. (1) are the pendulum
angle 0, the angular velocity d8/dt, and the drive phase
¢. We denote points in this phase space as (6,d6/dt,¢).

A digital minicomputer (either an Apollo DN-460 or a
Digital Equipment VAX-11/780) was employed to in-
tegrate Eq. (1) using a fourth-order Runge-Kutta algo-
rithm with double-precision arithmetic (15 significant di-
gits) and 300 time steps per drive cycle. Comparison of
the analytic and computed solutions for the linearized
form of Eq. (1) with zero damping and drive
(1/Q =g =0) gave a numerical precision of nine decimal
digits in one cycle. The computer time required for the
simulations reported below was substantial, approaching
100 CPU hours in some cases. Unlike electronic analogs,
digital computers have the advantage that the external
noise level 8g(¢) can be accurately controlled. We found
that noise due to slow drifts in electronic analogs induced
an unacceptable minimum level of extrinsic low-frequency
noise.

III. BASINS OF ATTRACTION
AND BASIN BOUNDARIES

Without an external driving force, I'(¢)=0, Eq. (1) de-
scribes the damped motion of a particle in the sinusoidal
potential well shown in Fig. 1(a). The particle’s possible
final states consist of stable equilibria (attractors) at the
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FIG. 1. The damped, undriven pendulum, Q =2. (a) Poten-
tial ¥'(0). (b) Basins of attraction, attractors, saddle points, and
stable and unstable manifolds of saddle points. Attractors are at
(—2m,0), (0,0, and (2m,0), and saddle points at (—37,0),
(—,0), (,0), and (3m,0). Stable and unstable manifolds of
saddle points are shown as heavy lines, with arrows to indicate
the direction of the flow. Alternate basins of attraction are
shaded.
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points 8=2nm, d6/dt =0, where n is an integer, and un-
stable equilibria (saddle points) at the points
0=(2n +1)m, d6/dt=0. Figure 1(b) shows portions
of the basins of attraction for attractors at
(6,d8/dt)=(2nm,0) for n=-3,—-2,...,2,3; alternate
basins are shaded. For example, all points in the gray re-
gion that crosses the center of Fig. 1(b) flow to the attrac-
tor at (0,0). Each basin is bounded by the sets of points
(6,d6/dt) that flow to the saddle points on either side of
the attractor as t— oo; these sets form the stable mani-
folds of the saddle points and are shown in Fig. 1(b) as the
lines which separate different basins of attraction. The
direction of the flow on the stable manifolds of the saddle
points is indicated in Fig. 1(b) by arrows. The sets of
points which flow to the saddle points as t— — o are
shown in Fig. 1(b) as lines which spiral out from the sad-
dle points and terminate at the point attractors. These
lines form the unstable manifold of the saddles, and the
flow along them is towards the attractor.

The addition of a sinusoidal drive torque I'(¢)
=g cos(wgt) to Eq. (1) increases the dimension of the
phase space from two to three; the new coordinate is the
phase ¢ =w,t of the drive. Integration of Eq. (1) for one
drive cycle defines an invertible map of a plane of con-
stant phase onto itself. Thus, the system’s dynamics can
be studied on Poincaré sections, which are planes of con-
stant drive phase ¢ (mod 27). For example, a periodic or-
bit with the same period as the sinusoidal drive torque ap-
pears as a fixed point on a Poincaré section. In all that
follows, we compute Poincaré sections at ¢=0, unless
stated otherwise; sections at other phases are not qualita-
tively different.

For small drive amplitudes g such that the magnitude
of the angular excursion in 6 is much less than 7, Poin-
caré sections of the attractors and their basins are similar
to Fig. 1(b). Each of the potential wells of Fig. 1(a) holds
a small attracting periodic orbit with period T =27/wy.
In Poincaré sections the attractors are single points, and
the boundaries that separate their basins are smooth
curves.

At larger drive amplitudes g for which the magnitude
of the angular excursion in 6 approaches or exceeds ,
symmetry breaking!!? produces pairs of attractors relat-
ed by the transformation 6— —6, d0/dt— —d8/dt,
¢—¢+m. These attractors remain distinct when 6 is in-
cremented by 2, unlike the attractors for small g, which
can be distinguished only by the number and direction of
flips the pendulum makes before reaching the steady state.
Symmetry breaking can create pairs of running modes,
which are attractors with nonzero average angular veloci-
ties: (d0/dt)=+(m/n)w,, where m and n are nonzero
integers. These attractors correspond to zero-current-bias
voltage steps in the resistively shunted Josephson junction,
for example.

In the following, we focus on ranges of the control pa-
rameters g, Q, and wy; which produce running modes, and
we distinguish between the basin of attraction for all at-
tractors with (d6/dt) >0 and the basin of attraction for
all attractors with (d6/dt) <0. The boundary that
separates these basins can be a fractal set with nonintegral
fractal dimension?* d. The fractal dimension (capacity) of
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a set is defined as

d =lim [InN (€)]/[In(1/e)] 2)

where N (¢) is the number of cubes of side € required to
cover the set.?*?® On Poincaré sections, basin boundaries
with d > 1 are fractal; d cannot exceed 2 since the sections
are two dimensional.

In nonlinear oscillators such as the pendulum, fractal
basin boundaries are typically formed by horseshoes, as
discussed by MacDonald et al.3° A horseshoe is an inver-
tible map that compresses, stretches, and folds a rectangle
into a strip with one or more horseshoe-shaped bends, as
illustrated schematically in Figs. 2(a)—2(c). Under the
map, which corresponds to integration of a rectangle of
initial conditions on a Poincaré section for an integral
number of drive cycles, the rectangle R in Fig. 2(a) is
compressed and stretched into an S-shaped strip, as illus-
trated in Fig. 2(b). The first image of the rectangle R is
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FIG. 2. Formation of a fractal basin boundary by a hor-
seshoe map. The nature of the map in regions A1 and A2 is un-
specified; the map is such that it forms an attractor in each of
these areas. (a) The initial rectangle R is bounded by the saddle
points P1 and P2. (b) Intermediate stage of the transformation
of R into an S-shaped strip. (c) The S-shaped area is the first
image of R under the map. (d) Basin structure determined by
applying the map to R three times. The basin of attraction for
the attractor in A1 shown as gray, the basin of attraction for the
attractor in A2 as black, and the fate of the white regions is not
yet determined.
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shown in Fig. 2(c) as the S-shaped area. The fixed points
P1 and P2 shown in Figs. 2(a)—2(c) are saddle points of
the map. The bends in the rectangle’s image in Fig. 2(c)
are mapped outside the original domain; thus, the region
R does not contain attractors.

The details of the map outside the rectangle R, which
is bounded by the saddle points P1 and P2, determine the
location and nature of attractors. These may be fixed
points, limit cycles, or chaotic attractors. If, in Fig. 2(a),
the form of the map in the rectangular regions A1 and 42
is such that each holds an attractor, the action of the
horseshoe map on R creates two basins of attraction that
are divided by a fractal boundary. This can be illustrated
by dividing R into the vertical strips S1, S2, S§3, Bl, and
B2, as shown in Fig. 2(a). On one iteration of the map,
B1 is mapped into the basin of attraction for the attractor
in A1, and B2 into the basin of attraction for the attractor
in A2; S1, S2, and S3 are mapped to horizontal strips, as
indicated in Fig. 2(c). Segments of each of the areas S1,
S2, and S3 now overlap the original positions of Bl and
B2. On the next iteration of the map, the parts of S1, S2,
and S3 which lie in the cross-hatched region will be sent
into A1, and the segments that lie in the gray area into
A2. If these regions were indicated in Fig. 2(a), they
would appear as two narrow vertical strips, compromising
a portion of each basin, in each of the areas S1, S2, and
S3. Thus, each iteration of the horseshoe map determines
the attractor to which a set of increasingly narrow vertical
strips will go. The basin structure determined by applying
the map to the rectangle R three times is shown in Fig.
2(d). The gray regions are mapped to the attractor in A1,
the black regions are mapped to the attractor in 42, and
the white regions are still undetermined. The stable mani-
folds of the two saddle points P1 and P2 form the
boundary of the basins of attraction. Ultimately, all of
the rectangle R, excluding a subset of measure zero, the
basin boundary, is mapped to the attractor in A1 or to the
attractor in A2. A cut across the basins of attraction in-
tersects the basin boundary in a Cantor set. The dimen-
sion of the basin boundary is 1+ d, the sum of the dimen-
sion 1 in the linear direction and the dimension d of the
fractal cross section. For a more detailed description of
the horseshoe map described above, see McDonald et al. 30
Guckenheimer and Holmes®' provide a thorough
mathematical treatment of horseshoes. Grebogi et al.’*3*
and McDonald et al.3%3* give several examples of maps
that exhibit fractal basin boundaries.

Figures 3(a)—3(c) show the basins of attraction for run-
ning modes in the driven, damped pendulum at drive
phase ¢ =0 for Q =2, wy =+, and three drive amplitudes:
g =1.46, 1.48, and 1.4954. The basin of attraction for
(d@/dt) >0 is shown as black, and the basin of attrac-
tion for (d@/dt) <0 as white. The basins are plotted
from 6= —2# to 27 to emphasize their periodic structure,
and Poincaré sections of the attractors are plotted from
6= —m to m. A small white region has been introduced
around the attractors in order to make them visible.

The basins of attraction are computed for a 128 X 128
grid of initial conditions (6,d6/dt,0) spanning 0 <0 <2
and —3.15<d6/dt <3.15. For each initial condition, we
discard an initial transient of at least 30 drive cycles; in



FIG. 3. Basins of attraction for Q =2, ws==. Basins for
attractors with positive average angular velocity are shown as
black, and for negative average angular velocity as white. At-
tractors are plotted from — to 7. (a) g =1.46. Attractors are
periodic. Calculated dimension of basin boundary is 1.63. (b)
g =1.48. Attractors are chaotic. Calculated dimension of basin
boundary is 1.88. (c) g =1.4954. Attractors are chaotic. Cal-
culated dimension of basin boundary is 1.97.

some cases, transients exceeding 100 cycles are required
for convergence to an attractor. The average velocity over
the following ten cycles was used to determine the assign-
ment of the initial condition to the corresponding basin of
attraction. Histograms of the average velocity computed
in this way displayed well-defined pairs of positive and
negative peaks, indicating that this procedure is valid.

In Fig. 3(a), computed for g =1.46, the attractors are a
pair of period-4 running modes. Two points from the
period-4 attractor with (d0/dt) = +wy lie at 0= —7/4,
d6/dt=2.2, and the other two points at O=w/3,
d0/dt=1.7. For the period-4 attractor with
(dB/dt) = —wy two points lie at §=0, d6/dt=1.1 (not
resolved), and two points at O=7/10, d0/dt~0.2. The
large-scale structure of the basins of attraction for these
periodic attractors resembles the undriven case illustrated
in Fig. 1(b), but on small scales the basins of Fig. 3(a) are
mixed in narrow zones that separate the large, solid re-
gions.

Figures 3(b) and 3(c) show the basins of attraction for
pairs of chaotic attractors. In Fig. 3(b), for g =1.48, the
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two bands of each of the attractors fall in approximately
the same positions as the pairs of points from the periodic
attractors described above, and have the same average an-
gular velocities. In Fig. 3(c), for g =1.4954, three bands
of the chaotic attractor with (d6/dt)=+%w, lie at

=-—37/4, dO/dt=1.5; at 0= —7/5, d6/dt=2.2; and
at 0=27/5, dO/dt=1.8. The three bands of the chaotic
attractor with (d@/dt)=—3w,; appear at 0=—m,
dO0/dt=1.0; at =0, dO/dt=1.1; and at 6=w/10,
d08/dt=0.3. Although the largest width of the basins de-
creases, and the degree of mixing increases from Fig. 3(a)
to Fig. 3(c), the structure of the basins is similar in all
three cases. For each drive amplitude, the basin boundary
is a fractal set formed by the stable manifolds of a pair of
saddle orbits with the same average angular velocity as
the attractors; the folded structure of the boundaries in
Fig. 3 is typical of nonlinear oscillators. Cuts taken per-
pendicular to the approximately diagonal basins of attrac-
tion intersect the basin boundary in a Cantor set, as in the
horseshoe map described above. In the full three-
dimensional phase space the boundaries of the basins of
attraction have the form of highly folded sheets that are
smooth in the direction corresponding to the drive phase
¢. In the direction normal to the sheets, they are spaced
in a Cantor-set structure, as illustrated in Fig. 3.

We compute the fractal dimension of the basin boun-
daries shown in Fig. 3 by a method developed by
Grassberger and Procaccia.® They show that a lower
bound for the fractal dimension of an attractor can be ob-
tained from the integral C(r) of the standard correlation
function:

N
C(r)= lim (I/N) 3 o(r—|x;—x; )|, (3
—® ij=1
where O is the Heaviside function, and the points x; are
drawn from a time series on the attractor. For small 7,
C(r) scales as r*. The exponent v characterizes the distri-
bution of probability on the attractor. When the distribu-
tion is constant, v=d, where d is the fractal dimension
defined in Eq. (2). In general, the distribution of probabil-
ity on attractors is not constant and therefore®> v<d. Be-
cause we locate the basins of attraction by direct search,
we have v=d for the fractal dimension d of the basin
boundary. We determine the basin boundary from data
such as in Fig. 3 by choosing the x; to lie halfway be-
tween all pairs of nearest neighbors on the grid which go
to different attractors. The points x; thus approximate
the basin boundary. We calculate d from the least-
squares fit to C(r)=ar? where a is a constant. The
computed fractal dimensions of the basin boundaries
shown in Figs. 3(a)—3(c) are, respectively, d =1.64, 1.88,
and 1.97. For spatially random white noise, d =2. Even
when the attractor is simple and periodic, the basins of at-
traction can be highly interwoven and the basin boundary
can be a fractal set, as shown in Fig. 3(a). As discussed
below, this fact can result in extraordinary sensitivity to

added external noise.

As discussed by Grebogi et al.,*? in systems with frac-
tal basin boundaries the predictability of final states given
uncertain initial conditions can increase very slowly as the
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uncertainty in the initial conditions is reduced. If the ini-
tial conditions are specified with error €, the fate of all
points within € of the basin boundary is uncertain. The
fractal f(€) of initial conditions in a D-dimensional phase
space for which the final state cannot be predicted with
certainty scales with € as®

fle)ael . 4)

When d approaches D, a large reduction in € produces lit-
tle improvement in predictive power. For d =1.64, as in
Fig. 3(a), a factor of 7 reduction in € reduces f by a factor
of 2, and for d =1.97, as in Fig. 3(c), decreasing € by 10
orders of magnitude only improves the predictability of fi-
nal states by a factor of 2.

Equation (4) provides an independent measure of the
fractal dimension d of the basin boundary which is very
useful when d is close to the dimension D of the space in
which it is embedded. To estimate f(e) for the driven
pendulum, we compute the final state for 500 randomly
chosen initial conditions (6,d0/dt,0) and for the sur-
rounding points (0—e€,d0/dt,0), (0+¢€,d0/dt0),
(6,d6/dt —€,0), and (0,d0/dt +¢€,0) with e=107>, 1074,
1073, and 102 If any one of the four surrounding
points does not converge to the same attractor as the
center point (6,d6/dt,0), this point is counted as uncer-
tain and contributes to f(€). The dimensions estimated in
this way for g =1.46, 1.48, and 1.4954 are, respectively,
1.61, 1.90, and 1.93, in reasonable agreement with the re-
sults above.

Fractal basin boundaries are common in the regions of
parameter space that support running modes. For drive
amplitudes ranging from g =1.3 to 1.5 at fixed quality
factor Q =2 and drive frequency wy=%, the boundary
dividing the basins of attraction for attractors with
(d0/dt)=+(m /n)wy is a fractal set in all of the cases
we have tested. To characterize this region of parameter
space we computed Figs. 4(a) and 4(b), which are phase
diagrams that indicate the steady-state behavior of the
pendulum for Q =2, over the range g =1.4—1.6, and
©043=0.60—0.70. The resolution of the figures is
Ag =0.02, Awy;=0.01 in Fig. 4(a), and Ag =0.002,
Awy=0.001 in Fig. 4(b). For each point (g,wy) on the
grid, the nature of the final state for the initial condition
(0,0,0) is indicated. In both Figs. 4(a) and 4(b), white re-
gions indicate periodic attractors with zero average angu-
lar velocity {d6/dt ) =0; cross-hatching denotes intermit-
tent changes in (d0/dt); vertical stripes indicate chaotic
attractors which are not intermittent, and which have
(d0/dt)=0; and horizontal stripes indicate periodic at-
tractors with (d@/dt)=tw,;. In Fig. 4(a), shading
denotes periodic final states with (d6/dt)=++w,, and
diagonal stripes indicate chaotic attractors with
(d6/dt)=*wy. The black regions in Fig. 4(b) indicate
periodic attractors with (d8/dt)=+2w,, and in the
gray regions, the final state for (0,0,0) is a chaotic attrac-
tor with (d6/dt)=++}w,.

In Figs. 4(a) and 4(b), all gray shaded, black, and hor-
izontally striped regions are hysteretic, because they con-
tain pairs of symmetry-related running modes, and the fi-
nal state is determined by the initial condition. In these
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regions, the basins of attraction for running modes with
(d6/dt)=(m/n)w, and for (d6/dt)=—(m/n)w, are
divided by a boundary which is fractal in all cases we
have investigated. When the dimension d of the basin
boundary is a large fraction of the dimension of the phase
space, extrinsic intermittency can be induced by small
amounts of external noise, as discussed below. Intrinsic
intermittency occurs in Figs. 4(a) and 4(b) between zones
with different average angular velocities. In both figures,
intermittent and phase-locked regions of parameter space
are interwoven on very small scales in a narrow transition
region between large areas that appear to contain only one
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FIG. 4. Phase diagrams centered on wy=2/3 and g, for
Q =2. In both (a) and (b), the final state of the initial condition
(0,0,0) is indicated by cross-hatching for intermittency, vertical
stripes for nonintermittent chaos with (d8/dt)=0, white for
periodic attractors with (d6/dt ) =0, and horizontal stripes for
periodic states with (d6/dt)=tw,;. (a) 0.60<w,; <0.70,
1.40<g < 1.60. Shading denotes periodic attractors with
(dB/dt)::t%wd, and diagonal stripes indicate chaotic attrac-
tors  with (d6/dt)=+wy. (b)  0.6625 <wy <0.6725,
1.49 <g <1.51.  Black denotes periodic attractors with
(dO/dt) =1%w4, and gray indicates chaotic attractors with
(d6/dty=+%0w,.
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type of behavior. This mixing of regions in parameter
space on very small scales to produce phase diagrams with
apparently fractal boundaries!! may reflect the fractal na-
ture of the boundaries of the basins of attraction for fixed
parameter values and variable initial conditions.

IV. INTERMITTENCY

We use the term ‘““intermittent” to describe the dynam-
ics of a system that spends long, irregular time intervals
in two or more qualitatively different states. A number of
different mechanisms produce this behavior,2%24:26:27,:36—43
Nonlinear dynamical systems differ from linear systems
in that they can have multiple steady states for the same
parameter values. [Extrinsic intermittency, which is
noise-induced hopping between different attractors, occurs
when a system with more than one attractor is coupled to
an external stochastic noise source. Intrinsic intermitten-
cy occurs in the absence of external noise, and is associat-
ed with bifurcations of nonlinear systems as parameter
values are varied: Pomeau-Manneville intermittency
occurs near the loss of stability of periodic attractors, and
crisis-induced intermittency occurs near crises in which
chaotic attractors lose stability. In previous work the
driven damped pendulum equations have been shown to
exhibit Pomeau-Manneville type-1 intermittency,!®
crisis-induced intermitt:ency,24 and noise-induced intermit-
tency.»2%2° Figure 5 uses one-dimensional maps to illus-
trate these types of intrinsic intermittency.

Pomeau-Manneville intermittency results from the loss
of stability of a periodic attractor to intermittent chaos
through a bifurcation,*®*” in which the nature of the flow
near the bifurcating orbit changes qualitatively as a con-
trol parameter is varied. Such bifurcations produce inter-
mittent trajectories that consist of long sequences of near-
ly periodic behavior, associated with motion near a desta-
bilized attractor, interrupted by chaotic bursts. As illus-
trated in Fig. 5(a), Pomeau-Manneville type-1 intermitten-
cy occurs near a saddle-node bifurcation in which a
periodic attractor and an unstable periodic orbit coalesce
and annihilate. Long intervals of nearly periodic behavior
occur when the trajectory passes through the constricted
region near the position of the stable-unstable pair of or-
bits at the bifurcation. Figure 5(a) shows a segment of a
typical trajectory passing through the bottleneck; after it
leaves this region it will move chaotically until another
portion of the map reinjects it into the constricted zone.

Trajectories that diverge slowly from an unstable
periodic orbit generate Pomeau-Manneville type-3 inter-
mittency, which occurs in maps such as the one shown in
Fig. 5(b). Trajectories started near the unstable fixed
point move away from it slowly if the map is tangent to
the diagonal at the fixed point as shown, producing long
intervals of nearly periodic behavior. Once out of the
neighborhood of the fixed point, trajectories move chaoti-
cally until injected close to it again.

Intermittency due to a crisis occurs in systems with
multiple attractors. A crisis is the collision of a chaotic
attractor with the boundary of its basin of attraction, and
can occur in two ways, as discussed by Grebogi et al.***
and McDonald et al.>* A boundary crisis destroys the at-
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tractor and its basin, resulting in long transients for initial
conditions near the destabilized attractor.*~*® An interi-
or crisis*** merges distinct chaotic attractors into a sin-
gle attractor on which trajectories move intermittently.?*
This intermittency consists of long intervals of chaotic
motion near the precrisis attractors, broken by brief ex-
cursions into new regions of the attractor added by the
crisis.

Figures 5(c) and 5(d) illustrate intermittency due to a
crisis in the logistic map. The unstable fixed point shown
in Fig. 5(c) as an open circle and its preimage on the op-
posite side of the parabolic map bound the basin of attrac-
tion for the chaotic attractor shown as a heavy black line.
Trajectories started in the interval, delimited by a dotted
box, remain in it for all time. At the crisis, the chaotic at-
tractor collides with the unstable fixed point. Figure 5(d)
shows the map just beyond the crisis. Trajectories are
confined for long times within the dotted box, and leave it
only when they fall within a small interval near the max-
imum of the map. For an interior crisis, orbits which es-
cape the destabilized attractor in this way flow to another,
similarly destabilized attractor. The intermittent attractor
consists of two or more “metastable attractors” and the
paths along which trajectories move between them. The
motion consists of long intervals of small-scale chaos near
the metastable attractors, interrupted by large-scale chaot-
ic bursts associated with hopping between them.

Extrinsic intermittency occurs in dynamical systems
with multiple attractors when external stochastic noise
pushes trajectories across basin boundaries, creating
noise-induced hopping between attractors. The distribu-
tion of lifetimes of the destabilized attractors is deter-
mined both by the effect of noise on the attractor, and on

n+1 n+1

Xn Xn

(a) Pomeau-Manneville Type 1 (b) Pomeau-Manneville Type 3

n+1 n+1

(c) just before crisis (d) just beyond crisis

FIG. 5. Illustration of three types of intrinsic intermittency
in a 1D quadratic map. Segments of the path of a typical tra-
jectory are indicated by arrows. (a) Pomeau-Manneville type-1
intermittency; (b) Pomeau-Manneville type-3 intermittency; (c)
map just before crisis; (d) crisis-induced intermittency.
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FIG. 6. Bifurcation diagram. The angular velocity is plotted
vs g at ¢ =0 for w,:% and Q =2.

the geometry of the boundaries of the basins of attraction.
As shown below, extrinsic intermittency is enhanced by
noise sensitivity of the attractor due to small negative
Lyapunov exponents, and by fractal basin boundaries.

An overview of a development of the attractors for the
damped, driven pendulum which produces both Pomeau-
Manneville type-1 intermittency and crisis-induced inter-
mittency is shown in the bifurcation diagram of Fig. 6.
To compute the figure, we locate two initial conditions
(6/d0/dt,0) which converge to the positive and negative
running modes for the drive amplitude g=1.45, for
Q=2 and wy=+. For each initial condition g is in-

creased adiabatically in increments Ag =1x10"* from
g =1.45 to 1.52. After each increment a transient of 50
drive cycles is allowed for convergence to an attractor.
The following 100 values of the angular velocity at drive
phase ¢ =0 are plotted in Fig. 6, and form the bifurcation
diagram. When the drive amplitude was decreased from
g =1.52, a small region just below g =1.4954 was found
where there are at least four attractors.

For drive amplitudes 1.4500 < g < 1.4917 in Fig. 6, the
pendulum is phase locked with average angular velocity
(d8/dt)=+w,;. Between g =1.4917 and 1.4919 the pen-
dulum is unlocked, and for 1.4920<g <1.4955 it is
locked again with (d6/dt)=+%w,;. From g=1.51 to
1.52 all attractors found have zero average angular ve-
locity. Pomeau-Manneville type-1 intermittency occurs
near the saddle-node bifurcation at 1.4919 <g < 1.4920
which creates a pair of period three attractors with
(d6/dt)=+%w,. These attractors undergo a series of
bifurcations which culminates in a period-doubling cas-
cade to chaos. At a critical value 1.4954 <g. < 1.4955,
the two chaotic attractors merge through a crisis into a
single attractor on which trajectories switch intermittently
between states with (d6/dt) = 3w, and — % w,.

The qualitative differences between Pomeau-Manneville
type-1, crisis-induced, and extrinsic intermittency are il-
lustrated in Fig. 7, which compares time records of the
angular velocity d6@/dt for a trajectory of each type.
Each record is 5000 drive cycles long and is strobed at
drive phase ¢=0. Figure 7(a) illustrates Pomeau-
Manneville type-1 intermittency for g just below the value
at which simultaneous saddle-node bifurcations produce
a pair of symmetry-related periodic attractors with

t (drive cycles)

5000

FIG. 7. Intermittent time series of the angular velocity d6/dt plotted once per drive cycle at =0 for Q =2, wy = % (a) Pomeau-
Manneville type-1 intermittency, g =1.491908; (b) crisis-induced intermittency, g =1.49546; (c) extrinsic intermittency, g =1.46,

o=0.20.
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(d0/dt)=+%w,. Long segments of nearly periodic
motion occur when the trajectory approaches the location
where the periodic attractors appear; these are interrupted
by chaotic bursts. Figure 7(b) shows an example of a
crisis-induced intermittent trajectory. Here two distinct
chaotic attractors with (d6/dt) = ++w, have merged via
an interior crisis to form a single attractor. Motion on
this object consists of long periods of small-scale chaos
near the precrisis attractors separated by very brief transi-
tions between them. An example of extrinsic intermitten-
cy is shown in Fig. 7(c), which was computed by adding a
random noise term 8g (¢) to the drive torque in Eq. (1) for
values of the control parameters g, Q, and wy which yield
a pair of periodic attractors with (d6/dt)=+tw, in the
absence of noise. As shown, the angular velocity switches
irregularly between two noisy bands, which correspond to
the two noise-free attractors.

Low-frequency noise is produced by the large changes
in amplitude of the angular velocity for the intermittent
trajectories in Fig. 7. We use the term low-frequency
noise to refer to broadband spectral features in the power
spectrum S(w) of d6/dt at frequencies far below the
lowest natural frequency in the linearized version of Eq.
(1). The noise power spectra associated with Pomeau-
]
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Manneville type-1 and -3 intermittency have been calcu-
lated; type 1 typically gives a Lorentzian spectrum,?® and
type 3 produces 1/f noise?>?6?” for certain choices of the
shape of the map near the unstable fixed point.

In the pendulum we observe hopping between states
with opposite average angular velocities. For crisis-
induced intermittency, the states are metastable attractors;
for extrinsic intermittency, the states are attractors that
have been destabilized by noise. If the lifetimes of the two
states and the hopping process are uncorrelated, and the
time that trajectories spend moving between states is
small, an intermittent variable such as d6/dt can be ap-
proximated by

d0/dt=Td6,/dt +(1-T)d6,/dt , (5)

where T'(t) is a telegraph signal that switches randomly
between 0 and 1, and between 1 and 0, with respective
rates 1/7, and 1/7,.%%7 The angular velocities for the two
parts of the trajectory that approach the noise-free or
metastable attractors are d6,/dt and d6,/dt.

With the assumption that d0,/dt, d6,/dt, and T (t) are
all uncorrelated, the spectrum S(w) of d6/dt can be
shown to be®4’

S(w)=4({d0,/dt) —(d0,/dt))/{(1\+1)[0?+(1/14+1/7)*]} +[7S (@) + T3S (@)] /(11 +72)?
+2[S1(@)+S3(0)]* 1 /{[@*+ (1 /74 1/7)* )1 +7))} , (6)

where S (@) and S,(w) are the power spectra for d6,/dt
and d6,/dt, and the symbol * denotes convolution. Typi-
cally, the power spectrum below the fundamental response
to the drive frequency of d6,/dt and d@,/dt is dominated
by the first term of Eq. (6), which is a Lorentzian with
corner frequency w,=1/7,+1/7,.

The low-frequency power spectra for uncorrelated hop-
ping between three or more attractors or metastable at-
tractors is the sum of the Lorentzian spectra associated
with hopping between pairs of states.** This superposi-
tion can produce a power-law spectrum S(w)«<1/w¢%
with 0<a <2, over a limited frequency range. When
more than three attractors are present, the distribution of
characteristic lifetimes determines a. The superposition
of a set of Lorentzian spectra with a log-normal distribu-
tion of lifetimes produces a good approximation to a 1/w
spectrum over a wide range of frequencies.*

V. CRISIS-INDUCED INTERMITTENCY

Figure 8 shows an example of a crisis for the damped,
driven pendulum in which a chaotic attractor intersects
the basin boundary. Here part of the Poincaré sections
computed at zero drive phase ¢ =0 is shown for values of
the drive amplitude just below, at, and just above the
value at which the crisis occurs:** 1.4954 <g. < 1.4955.
The part of the Poincaré section shown is one segment of
the three-banded chaotic attractor with (d@/dt)
= —%wd; two points from a period-6 saddle orbit which
lies on the basin boundary are shown as open circles. As

I

g is increased to g. in Fig. 8, the chaotic attractor ap-
proaches the saddle orbit and collides with it at g =g.. A
collision between the symmetry-related saddle orbit and
attractor with opposite average angular velocity
(d8/dt)=%wy occurs simultaneously. Following the
crisis, these chaotic attractors merge to form a single un-

FIG. 8. Development of a crisis. In (a) g =1.495450, and in
(b) g =1.495457. Both (a) and (b) show a detail of a Poincaré
section at ¢=0 of the chaotic three-banded attractor with
(dO/dt)=— %wd, and two points from a period-6 saddle orbit
with (d0/dt)=— %wd that lies on the basin boundary. (c) Two
points from a period-6 saddle orbit with (d6/dt )= — 4w, and
the part of the intermittent attractor formed by the crisis that

falls within the same phase space area as in (a) and (b), for
g =1.495460.
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locked intermittent attractor, a small piece of which is
shown in Fig. 8(c), for g > g..

A Poincaré section of the entire attractor at ¢=0 is
shown in Fig. 9 just beyond the crisis; it is a folded struc-
ture which includes the two precrisis attractors. The re-
petitive folding evident in Fig. 9 is produced by
horseshoes in the dynamics on the attractor. Just beyond
the crisis, the steady-state trajectories consist of long in-
tervals of chaotic motion near the precrisis attractors, bro-
ken by brief excursions through the regions of the attrac-
tor which connect these metastable zones. Figure 7(b) il-
lustrates this behavior in a long-time series of the angular
velocity strobed at ¢ =0.

Histograms of the distribution of angular velocity on
the unlocked attractor at ¢=0 are shown in Figs.
10(a)—10(c) for g just below, just above, and well beyond
g.- In Fig. 10(a), just before the crisis, the leftmost three
bands in the distribution correspond to the three bands of
the chaotic attractor with (d6/dt)=—2w,, and the
three bands on the right of the figure correspond to the at-
tractor with (d6/dt)=+w,. In Fig. 10(b), just beyond
the crisis, the velocity distribution near the destabilized
attractors is practically unchanged from Fig. 10(a). The
crisis has added regions of low probability that connect
the bands associated with the separate running modes.
Well beyond the crisis, in Fig. 10(c), remnants of the
bands corresponding to the positive and negative running
modes are still evident, but the structure of the attractor
has changed substantially. Previously forbidden ranges of
angular velocity are more probable than in Fig. 10(b).

The velocity distribution for all three cases in Fig. 10 is
quite complex; it is neither Gaussian nor unimodal, and is
apparently not a differentiable curve. The many spikes
shown are produced by repetitive folding in the dynamics
associated with the presence of horseshoes. Each fold
produces a peak in the velocity distribution; a similar ef-
fect occurs for the probability distribution of a sine wave.
The stretching and folding process is illustrated in Fig.
11, which shows Poincaré sections of the attractor for
g =1.4955 as the drive phase increases from ¢ =0 in Fig.
11(a) to ¢=3#/5 in Fig. 11(d). This folding process is re-
peated twice each drive cycle; the iterative process of fold-
ing and compression as time evolves covers the entire at-
tractor with creases on arbitrarily small size scales.

T T

- 6 m

FIG. 9. Intermittent attractor created by a crisis, g =1.4955,
Q =2a Wq = %
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FIG. 10. Histograms of the angular velocity for Q =2,
wg=23. (a) g =1.49545; (b) g =1.49546; (c) g =1.500000.

dé e = (b)
at | - ——_ g
eV
. g
// e
( - (c)
T = e
\\__/// -
s
— (d)
(0] 9 2m

FIG. 11. Development of folds with drive phase ¢ in the in-
termittent attractor for g =1.4955, Q =2, w, =%. (a) ¢ =0; (b)
¢=m/5; (c) p=2m/5; (d) d=37/10.
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The crisis changes the distribution of probability on the
attractor more dramatically than the distribution of the
angular velocity. To approximate the probability distribu-
tion, we divide the area 0 <8 <27, —3 <d0/dt <3 on the
Poincaré section at ¢=0 into a 5000X 2500 grid, and
count the number of times a trajectory of 200000 cycles
visits each box. For g <g,, below the crisis, trajectories of
100000 cycles on each of the two chaotic attractors are
used. The relative probability, or relative visitation fre-
quency, p; of each box is equal to the fraction of the total
number of points in the trajectory that fall within the box:
pi=n;/n, where n is the total number of drive cycles.
The average recurrence time for box i is 1/p; drive cycles.
The distribution N(p) of the probability is proportional to
the number of boxes with probability p.

Figure 12 shows histograms of the weighted distribu-
tion pN (p) versus p, where the probability p and probabil-
ity distribution N (p) are computed as described above, for
three values of drive amplitude: Fig. 12(a), g below g, ;
Fig. 12(b), g just greater than g.; and Fig. 12(c), g well
above g.. The weighted distribution pN (p) is the total
probability contained in boxes with relative visitation fre-
quency p. If the probability distribution on the attractor
were nearly uniform, N (p) and pN (p) would have a single
narrow peak at the average value of p.

(a)

001 |

pN(p)

Q005

(b)

003
pN(p)
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(c)

Q10

pN(p)
0.05+

.
bt

MM " .

T T T T
10 10 103 10
P

FIG. 12. pN(p), the total probability contained in boxes with
relative probability p, is plotted vs p for Q =2, w, =%. (a)
g =1.49545; (b) g =1.49546; (c) g =1.50000.
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As shown in Fig. 12, the actual distribution is much
more complex and evolves rapidly as g increases through
the crisis. For g just below g. in Fig. 12(a), the weighted
distribution pN (p) on the two separate chaotic attractors
consists of two parts: coherent spikes at high p which
contain a large fraction of the total probability, and a
broad peak at moderate values of p which corresponds to
diffuse motion connecting the parts of the attractors asso-
ciated with the spikes. Following the crisis at g =g. the
previously distinct attractors are connected by relatively
improbable strands. In Fig. 12(b), for g slightly greater
than g, this is reflected as an increase in pN (p) at low p,
corresponding to long recurrence times, and a decrease in
the coherent structure at large p. In Fig. 12(c), well
beyond the crisis, the coherent spikes at large p have near-
ly disappeared, and the distribution of probability on the
attractor is smoother and shifted to low p.

The power spectrum S(w) of the angular velocity for
intrinsic intermittency in the driven damped pendulum is
typically Lorentzian, as shown in Fig. 13(b), computed for
g=1.50. This can be understood empirically (but not
precisely) by using the two-state random-hopping model
described above, where the two states are the two destabi-
lized running modes and chaotic fluctuations play the role
of noise. Just above the crisis, however, the power spec-
trum S(w) has an approximate 1/w dependence over
more than two decades in frequency, as shown in Fig.
13(a). Although trajectories on the attractor switch errati-
cally between well-defined positive and negative running
modes, as shown in Fig. 7(b), the two-state random-
hopping model given above in Eq. (5), in which the proba-
bility per unit time of leaving either state is constant, is
apparently inapplicable. Recent work®® has shown that a
narrow 1/w region appears in the power spectrum for
crisis-induced intermittency in the one-dimensional quad-
ratic map. This narrow 1/w region is attributed to a su-

00 )

Power Spectrum Sg‘z(w/wd)

I ] A
0.0l 0.l |

w/wy

o
o
=

FIG. 13. Angular velocity power spectra of intrinsically in-
termittent trajectories for Q =2, wy= % Dashed lines have log-
arithmic slope —1 and —2. (a) g =1.4955; (b) g =1.5000.
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FIG. 14. Extrinsically intermittent attractors created by adding Gaussian noise with standard deviation o to Eq. (1) for Q =2,
w¢=—§- are shown in (a)—(c); the corresponding noise-free attractors are shown in (d)—(f). (a) g =1.3000, 0 =0.3500; (b) g =1.4800,

0=0.3500; (c) g =1.4954, 0=0.0100; (d) g =1.3000; (e) g =1.4800; () g =1.4954.

perposition of two Lorentzian spectra and extends over
approximately one-half decade in frequency. In Fig. 13,
the 1/w dependence extends over at least two decades in
frequency, and cannot be explained by the superposition
of only'two Lorentzian spectra. Empirically, we find that
1/ power spectra occur when the path between different
metastable attractors is very complex; in this case the
power spectrum may be described by the superposition of
many Lorentzians.*® The crisis-induced intermittency dis-
cussed here is similar in some respects to noise-induced
intermittency discussed below. Metastable “basins of at-
traction” persist at drive amplitudes just beyond the crisis
at g.. The lifetimes of the destabilized running modes are
relatively long, and the computed metastable basins close-
ly resemble Fig. 3(c).

VI. EXTRINSIC INTERMITTENCY

In the absence of external noise, the lifetimes of
separate stable running modes of the driven damped pen-
dulum are infinite. In any real physical system, external
noise is always present, and will eventually cause transi-
tions between previously stable attractors. As the noise
level increases the lifetime of the attractors will decrease.
We study the influence of external noise on the driven,
damped pendulum by adding a random torque 8g(t) to
the right-hand side of the equation of motion in Eq. (1).
Because the amplitude distribution of physical noise
sources is usually Gaussian, we add at each integration
time step a torque &g (z) that is a random number drawn
from a normal distribution with standard deviation o.
This noise torque may be regarded as the average of a
physical noise source over a time interval equal to the
time step At = /100 (300 time steps per drive cycle).

The noise-induced hopping rate and power spectrum
are determined both by the effect of noise on the attrac-
tors and by the geometry of the basins of attraction. The
influence of external noise on the attractor for the running
modes described previously is illustrated in Fig. 14, which
shows pairs of noise-free and noise-broadened Poincaré
sections of the attractor for three different drive ampli-
tudes. In all cases noise broadens the attractor asymme-

trically along directions for which compression is weakest,
producing an object which strongly resembles the intrinsi-
cally chaotic attractor in Fig. 9. Figure 14(d) shows the
noise-free attractors at g =1.30, and Fig. 14(a) the attrac-
tor for the same drive amplitude when Gaussian noise
with standard deviation 0=0.35 is added. The noise-free
attractors are periodic with (d6/dt) = *wy, as shown in
Fig. 14(d). The noise-broadened attractor shown in Fig.
14(a) is elongated along the directions for which the flow
toward the attractor is least strongly contracting. Trajec-
tories move erratically between long periods of nearly
phase-locked behavior with (d6/dt)=+tw,. The parts of
the attractor in Fig. 14(a) that correspond to this motion
are the dark regions at the top for {(d8/dt)=w, and the
dark segments at the bottom for (d6/dt)= —wy. Hop-
ping between these modes takes place when the broadened
attractor intersects the boundary of the basin of attrac-
tion, along the thin filaments that connect the dark re-
gions.

The influence of external noise on chaotic attractors is
illustrated in Figs. 14(b) and 14(c), which show Poincaré
sections of the chaotic running modes for g =1.48 and
1.4954, respectively, which were discussed above. As
shown, external noise tends to spread the attractors along
the directions in which the flow is expanding, producing
an object which strongly resembles the unlocked intermit-
tent attractor. The basins of attraction for g =1.48 are
shown in Fig. 3(b); the basin boundaries are highly folded
with fractal dimension d =1.88. The noise-free chaotic
attractors for this drive amplitude shown in Fig. 14(e) ap-
proach the basin boundary more closely than the periodic
attractors in Fig. 14(d), and hopping between attractors is
more easily induced by external noise. In Fig. 14(f), for
g =1.4954, just below the crisis at g., the dimension of
the basin boundary is close to 2, and the separation be-
tween the attractors and the basin boundaries is extremely
small. In this case intermittency is induced by a very
small noise level and produces the attractor shown in Fig.
14(c) for 0=0.01. This noise-broadened attractor is prac-
tically identical to the intrinsically intermittent attractor
shown in Fig. 9.

Far from the crisis, the attractors and the basin boun-
dary are separated by a finite distance, and the dimension
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FIG. 15. Angular velocity power spectra of extrinsically in-
termittent trajectories for Q =2, wy= % Dashed lines have log-
arithmic slope of —1 and —2. (a) g =1.4954, 0 =0.0100; (b)
g =1.4600, o =0.2000.

of the basin boundary is substantially less than 2. The
noise level required to produce extrinsic intermittency on
accessible time scales is large enough to smear histograms
of the angle @ and the angular velocity d6/dt into distri-
butions with smooth peaks near each of the noise-free at-
tractors. In this situation, it is reasonable to adopt the
model for random hopping between two states described
above. The observed angular velocity power spectra far
from the crisis are Lorentzian, with a corner frequency
that decreases with the noise level o. Figure 15(b) shows a
representative spectrum computed for g=1.46 and
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o0=0.20. However, near the crisis the small noise level re-
quired to induce intermittency produces probability distri-
butions similar to the intrinsic case which yields 1/w
noise. Just below the crisis, noise-induced intermittency
also produces an approximate 1/ spectrum S(w) as
shown in Fig. 15(a), computed for g =1.4954 and
0=0.01. The mechanisms that produce this frequency
dependence are unclear, but are empirically associated
with the highly divided geometry of the basins of attrac-
tion near the crisis, as discussed above.

VII. CONCLUSIONS

The driven, damped pendulum is a classic example of a
driven nonlinear oscillator, and its behavior is representa-
tive of a large class of systems. We have studied the in-
fluence of crises and of fractal boundaries of the basins of
attraction on both intrinsic and noise-induced intermitten-
cy in the driven, damped pendulum. Fractal basin boun-
daries with large fractal dimension produce extraordinary
sensitivity to external noise, and interior crises induce in-
trinsic intermittency. Extrinsic and crisis-induced inter-
mittency can be difficult to distinguish from power spec-
tra alone. For both cases, the velocity power spectra are
typically Lorentzian, but are found to be 1/w when the
fractal dimension of the basin boundary approaches the
dimension of the phase space, and near an interior crisis.
The actual behavior observed in experiments on pendula
and rf-driven Josephson junctions will be determined by
the values of the operating parameters and the extrinsic
noise level.
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FIG. 1. The damped, undriven pendulum, Q =2. (a) Poten-
tial ¥(0). (b) Basins of attraction, attractors, saddle points, and
stable and unstable manifolds of saddle points. Attractors are at
(=2m,0), (0,0), and (27,0), and saddle points at (—3,0),
(—,0), (,0), and (3,0). Stable and unstable manifolds of
saddle points are shown as heavy lines, with arrows to indicate
the direction of the flow. Alternate basins of attraction are
shaded.
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FIG. 2. Formation of a fractal basin boundary by a hor-
seshoe map. The nature of the map in regions A1 and A2 is un-
specified; the map is such that it forms an attractor in each of
these areas. (a) The initial rectangle R is bounded by the saddle
points Pl and P2. (b) Intermediate stage of the transformation
of R into an S-shaped strip. (c) The S-shaped area is the first
image of R under the map. (d) Basin structure determined by
applying the map to R three times. The basin of attraction for
the attractor in 41 shown as gray, the basin of attraction for the
attractor in A2 as black, and the fate of the white regions is not
yet determined.




FIG. 3. Basins of attraction for Q =2, 0J¢=%- Basins for

attractors with positive average angular velocity are shown as
black, and for negative average angular velocity as white. At-
tractors are plotted from — to 7. (a) g =1.46. Attractors are
periodic. Calculated dimension of basin boundary is 1.63. (b)
g =1.48. Attractors are chaotic. Calculated dimension of basin
boundary is 1.88. (c) g =1.4954. Attractors are chaotic. Cal-
culated dimension of basin boundary is 1.97.
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FIG. 4. Phase diagrams centered on w;=2/3 and g, for
@ =2. In both (a) and (b), the final state of the initial condition
(0,0,0) is indicated by cross-hatching for intermittency, vertical
stripes for nonintermittent chaos with (d6/dt) =0, white for
periodic attractors with (d6/dt ) =0, and horizontal stripes for
periodic states with (d@0/dt)=1w,. (a) 0.60<wy<0.70,
1.40 <g <1.60. Shading denotes periodic attractors with
(dO/dt)= i%md, and diagonal stripes indicate chaotic attrac-
tors with {(d6/dt)=1wy. (b) 0.6625<w, <0.6725,
1.49<g <1.51. Black denotes periodic attractors with
<d9/dt>=i—:3’-cod, and gray indicates chaotic attractors with

(do/dt)=+t%w,.
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FIG. 6. Bifurcation diagram. The angular velocity is plotted
vs g at ¢=0 for rod:% and Q =2.



