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Applicability of Hamilton's equations in the quantum soliton problem
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We test the validity of Hamilton-equation methods for determining the time evolution of trial
state vectors in quantum mechanics. Given a trial state vector, we are able to construct a differen-
tial operator under which a scalar Hamilton function must be invariant. State vectors composed of
single-particle states, coherent-state products, and mixed single-particle states and coherent-state
products are considered explicitly. In the latter category, we consider state vectors of the form pro-
posed by Davydov in his treatment of the quantum soliton problem. %e find that Davydov's wave
vector, as determined by the Hamilton-equation method, is not a solution of the Schrodinger equa-
tion for the Frohlich Hamiltonian except under very restrictive circumstances. The theoretical justi-
fication for a number of conclusions about soliton transport in Frohlich-type systems is thus called
into question.

I. INTRODUCTION

In recent years the problem of energy transport in bio-
logical rnacromolecules has been referred to as a "crisis"
owing to the fact that estimates of lifetimes for molecular
excitations based on linear dynamics are too short to be
reconciled with known features of the biological processes
to which they contribute. ' A resolution of the problem
was proposed by Davydov, who suggested that the disper-
sion responsible for the short lifetime of an excitation
might be offset by a focusing of the excitation through the
nonlinear character of the interatomic forces (e.g., as may
arise from hydrogen bonding in polypeptides}. 2 ~ It is
possible that nonlinear interactions may stabilize excita-
tions, resulting in solitary waves known as solitons. Soli-
ton mechanisms have been proposed in a number of ma-
cromolecular processes, ranging from the dynamics of a-
helix proteinsz and solid-state analogs of polypeptides '

to the function of myosine molecules during muscle con-
traction and that of DNA during protein synthesis.
Many such roblems may be modeled by the Frolich
Hamiltonian, applied by Davydov to resolve the bioener-
getic crisis. The result of Davydov s analysis is a non-
linear Schrodinger equation whose soliton solution is well
known.

The prevalent interpretation of the microscopic charac-
ter of the soliton in this context relies heavily on the prop-
erties of coherent states. Since their introduction by
Glauber, coherent states have proven to be a natural
language in which to approach a number of many-boson
problems, most notably those posed by the photons of the
electromagnetic field. Both pure coherent states and dis-
tribution functions over the complex phase plane have be-
come standard tools of quantum optics. ' The coherent-
state formalism may be profitably applied to the study of

phonons in condensed matter, " though with somewhat
less scope.

In the study of quasiparticle transport in deformable
media, certain coherent-state products have been found to
describe the dynamic organization of vibrational normal
modes which results in the development of a persistent de-
formation of the medium about the region occupied by an
immobile perturbing particle. ' Attempts such as
Davydov's have been made to address the more general
case of a mobile perturbing particle by seeking solutions
of the Schrodinger equation of a particular form and
determining the time evolution of the wave function by
extremum principles. Coherent states have played a cen-
tral role in such generalizations, which often regard
wave function parameters as generalized coordinates and
apply the classical Hamiltonian equations to determine
their evolution. ' In such an approach a set of Ham-
ilton equations for the mode amplitudes supplants the sin-
gle Schrodinger equation for the state vector.

Solutions of the Schrodinger equation are often sought
in the form of (a) single-particle states, (b) coherent-state
products, or (c} mixtures of single-particle states and
coherent-state products. We consider each of these forms
in Secs. II, III, and IV, respectively. The premises on
which the Hamilton-equation approach is based impose
specific constraints that must be satisfied by the Hamil-
tonian of a system in order for the approach to be con-
sistent with the Schrodinger equation approach. In Secs.
II—IV, we construct such consistency conditions explicit-
ly.

In Sec. III we consider, among others, an effective two-
body Hamiltonian which has been used to obtain non-
linear SchrMinger equations13 14 and we show that the
nonlinear Schrodinger equations resulting from
Hamilton's equations in this case are not consistent with
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II. SINGLE-PARTICLE STATES

In this section we consider only single-particle states,
which we denote by ~%'(t)). These are defined to have
the form

e(t)) = y 1j'r (t)a ~0) (2.1)

the Schrodinger equation.
In Sec. IV, we consider the specific difficulties encoun-

tered in the polaron/soliton problem employing the
Frohlich Hamiltonian. We demonstrate that the
Hamilton-equation propagation of the state vector pro-
posed by Davydov is, in general, inconsistent with the
Schrodinger equation.

In the following discussion we are concerned with
dynamics and dynamical constraints. Constant contribu-
tions to the total energy are neglected below; that is, we
ignore the scalar terms remaining after normal-ordering
second-quantized Hamiltonian operators.

a"'[y(t),q'(r) },(t)= ai~.'(t}
ifnj (r) = a'"[it(t),g'(r) }

(2.6a}

(2.6b)

constitute an alternative method for determining the form
of

~
%(t)), provided our interpretation is consistent with

the actual formal structure of the dynamics. For the
one-body Hamiltonians we consider here, Eqs. (2.6} are
entirely equivalent to Eqs. (2.4) and hence to the
Schrodinger equation.

Anticipating that more complex Hamiltonians may not
admit such direct conclusions, we now illustrate a distinct
line of reasoning, which, while weaker in its result, is of
wider applicability. We begin with the assumption that
the state vector

~
%(t}) is a solution of the Schrodinger

equation; that is, that (2.2) is valid. We left multiply (2.2)
with the bra vector (ql(t) ~, yielding

iA g tt„'(t)f„(r)=H"'[g(t), g'(t) } . (2.7)

in which a creates a particle in the state labeled by m,
(t} is a time-dependent c number, and

~
0) is the parti-

cle vacuum. The Schrodinger equation for this state may
be written

iA
~

%(t))—=ill ijI (t)at ~0) =H ~%(r)),
dk

(2.2)

where H is the system Hamiltonian operator. Since we
are considerin only single-particle states, only the one-
body parts H " of number-conserving Hamiltonians are
relevant. These have the form

(2.3)
m, n

where the H"„' are the single-particle matrix elements of
the Hamiltonian. Left multiplying (2.2) with the bra vec-
tor (m

~

=(O~a andsetting (0(a a[~0)=5 „,weob-
tain the set of scalar equations for the wave-function ex-
pansion coefficients in the chosen basis

ikey (t)= gH"„'f„(t}, (2.4a)

iAijI (t)= —yH"„'lg(t) . (2.4b)

Though dependent on the choice of basis, the complete set
of equations (2.4) is collectively equivalent to the
Schrodinger equation (2.2).

As an alternative procedure, let us first form the expec-
tation value of the Hamiltonian operator in the state
under consideration. Denoting the set of expansion coef-
ficients by [g(t),g~(t) j, we have

0'"[f(r),f'(r)}=(+(r) ~H"'~ %(r))

= g H"„'g' (t)f.(r) . (2.5)
m, n

If we interpret P„(i) as a generalized coordinate and
i Snab(r) as the corresponding generalized momentum with
respect to the Hamilton function H"'[P(t), P*(t)j, then
the Hamilton equations

Now we assume that the Hamilton equations (2.6) are also
valid, whereupon the time derivatives in (2.7) may be re-
placed by the corresponding momentum derivatives of the
scalar Hamiltonian function H'"[f(t),g'(t)}. The result
is a differential invariance condition

g it„'(&), &"'[g(&),g'(&) }ay„'(t)

=H'"[g(i), f'(r) }, (2.8)

which H'"[g(t},g'(t} j must satisfy if both (2.2) and (2.6)
are to be valid. Obviously, the complex conjugate condi-
tion with g„'(i)~g„(t) must also hold. Both conditions
are satisfied for the form of the Hamiltonian and state
vector we have considered, so no internal inconsistency is
revealed in this simple case, as expected.

The condition (2.8) on the form of the Hamiltonian re-
sults from the requirement that two different methods for
determining the same set of dynamical quantities be con-
sistent with one another. Generalizations of this differen-
tial invariance condition can be developed under quite
general circumstances since its development depends only
on the assumptions that the state vector

~
%(t) ) is a solu-

tion of the Schrodinger equation, and that the parameters
bearing the time dependence in

~
%(t) ) may be considered

as generalized coordinates with respect to the scalar Ham-
ilton function H"'[P(t), g'(t) }. Although the only con-
clusion of such a condition is the negative one which fol-
lows when the condition is violated, that conclusion is of
considerable importance. We find in Secs. III and IV that
the relevant conditions are violated in common applica-
tions of the Hamilton-equation approach in the study of
quantum solitons.

III. COHERENT-STATE PRODUCTS

Throughout this section we will be concerned with a
particular kind of state vector or wave function, and with
the determination of this state vector's time evolution by
methods grounded in the equations of motion for opera-
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I
A(t)&= ltzi(t)& I&2(t)& I&K(t)&

wherein
~
a„(t)) is a pure coherent state defined by

i a„(t)) =exp[ ——,
'

i
n„(t)

i ]exp[a„(t)tt„] i 0) .

(3.1)

(3.2)

The complex scalar a„(t) is the coherent-state amplitude,
which may take on all values in the complex plane. The
product state

~

A(t) ) may be defined by the property that

tors. This involves frequent interchanges between the
Schrodinger and Heisenberg pictures of the quantum evo-

lution of a dynamical system. For clarity, we consistently
indicate the picture in use by the quantities on which time
dependence is displayed; thus, a„~ A(t) ) is understood to
indicate the use of the Schrodinger picture, while

a„(t)
~

A ) is understood to indicate the use of the Heisen-
berg picture. We let I a,a j denote the set
Iai, ai, . . . , aN, a~} of creation and annihilation opera-
tors appearing in the Hamiltonian operator H Ia,a j of a
given system. We consider state vectors

~

A(t)) defined
by

H I a(t),a'(t) j for which the classical Hamilton equations
(3.5) are solvable. The procedure outlined above is attrac-
tive as a means of determining particular solutions of the
Schrodinger equation corresponding to the less-tractable
Heisenberg equations of motion for the operators
Ia(t), a (t) j. We find, however, that for most Hamiltoni-
ans the vectors

~
A(t) ) so determined are not solutions of

the corresponding Schrodinger equation, due to the ex-
istence of a constraint on the form of the Hamilton func-
tion 8 Ia(t), a'(t) j.

Consider the Schrodinger equation for the state vector
i
A(t))

iA ~A(t))=H ~A(t)) .d
dt

Inserting into (3.6) the form of
~

A(t) ) given by (3.1) and
(3.2) and carrying out the differentiation with respect to
time, we find

ih'g I
——,

' [tz„'(t)a„(t)+a„'(t)a„(t)]

a„
~

A (t)) =a„(t)
~
A (t)) (3.3) +a„(t)a„j

~

A(t)) =H
~
A(t) ) . (3.7)

for all of the a„. The expectation value of a Hamiltonian
operator H I a,at j in the state

~

A(t) & is therefore a real
scalar function HIa(t), a'(t) j of all the a„(t) and their
complex conjugates. We presume that our starting Ham-
iltonian operator is in normal ordered form so that there
is no ambiguity in the relationship between HI a,a j and
H Itz(t), at(t) j.

The following relationships between commutators of
the Hamiltonian operator and derivatives of the scalar
Hamilton function follow from the properties of the
coherent state

~
A(t)):

&A I[ u( ),t~( )]tIA&=(A(t) ~[u„,&]~A(t)&

Left multiplying (3.7) with the bra vector (A(t) ~, we ob-
tain the scalar relationship

,'i A g—[a„'(t)a„(t)—a„'(t)a„(t)]=H ( a(t), a"( t) j .

(3.8)

Using the Hamilton equations (3.5) to eliminate the time
derivatives in (3.8), we obtain an invariance condition on
the Hamilton function,

a„(t) +a„'(t), H I a(t),a'(t) jBa„'(t)

H Ia(t),a'(t) j,Ba„'(t)

(A
i [a„(t),H(t)]

i
A ) =(A(t)

I [a„,H] I
A(t) )

H I a(t),a'(t) j .
a„ t

(3.4a)

(3.4b)

=J„exp( —i8„) + (3.10)

=H I a(t),a'(t) j . (3.9)

This condition may be cast in a simpler from by
transforming to the "action-angle" variables" defined bya„:Jl'~ ex—p(i8„), for which the partial derivative opera-
tors take the form

Applying these relations to the expectation value of the
corresponding Heisenberg equations of motion for the
creation and annihilation operators yields

whereupon the condition (3.9) becomes

i%a„(t)=, H Ia(t),a'(t) j,Ba„'(t)
(3.5a) g J„(t) HI J(t),0(t) j =I t J(t),5(t) j . (3.11)

iw„(t)= H I a(t),a'(t) j,Ba„ t
(3.5b)

where we have used the fact that ( A
~
a„(t)

~

A )
=d(A

~
a„(t)

~
A )!dt=a„(t). The relations (3.5) are the

classical Hamilton equations for generalized coordinates
a„(t) and momenta iirxt„'(t) with respect to a Hamiltonian
function HIa(t), a*(t)j, and follow without approxima-
tion directly from the definition of coherent-state

~

A (t) ),
the Heisenberg equations of motion, and Bose commuta-
tion relations for the operators ta(t), a (t)j. The set of
coherent-state indices I a(t),a'(t) j, and therefore

~

A (t) ),
may be determined for any Hamilton function

The requirement that the Hamilton function be invariant
under the action of a specific differential operator strong-
ly limits the class of Hamiltonians admitting the state
vectors

~
A(t)) as solutions of their Schrodinger equa-

tions. The invariant Hamilton functions H IJ,8 j satisfy-
ing (3.11) have the form

HI J,5}= g f (@i,&i, . . . , &v)J) 'Ji ' ' ' ' Jn

(3.12)

wherein the functions f are arbitrary real functions of
the phases only and the x; are real numbers subject to
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the restriction that x ~+& 2+ ' +& ~=l.
The scalar Hamilton function to which the invariance

condition is applied is derived from a Hamiltonian opera-
tor represented in a given basis. A Hamiltonian operator
admitting coherent-state Schrodinger solutions in a given
basis may not admit solutions of the same form construct-
ed in another basis and vice versa, even if the bases are re-
lated by a canonical transformation. This observation un-
derscores the fact that what is being tested by the condi-
tion (3.11}is the admissibility of a class of trial state vec-
tors having a specified form, the form being represented
in a basis-specific way.

Hamiltonians used to describe unperturbed excitons or
vibrons often take forms which yield Hamilton functions
satisfying condition (3.11). The Hamiltonian for pure
Frenkel excitons is often represented as

Hex g Emamam + g Vmnaman (3.13)
PN 78, N

in which am (am) creates (annihilates) an exciton in the
site state labeled by rn. Forming (A

I
H,„ I

A ) and mak-
ing the transformation to action-angle variables yields

H,„IJS]= gE J

+ g V „(J J„)'~ exp[ —i(5 —0„)] .

Such two-body operators have appeared in effective Ham-
iltonians obtained as approximations to the Frohlich
Hamiltonian' ' to be discussed in Sec. IV. When
transformed into the action-angle representation, 0' '

takes the form

H"'I J,e] = g H,,"„',(J,J,J,J,)'"

X exp[ i—(5i+5; 8k—8t—)) . (3.19)

The degree of the action polynomial is 2, not 1 as required
for H' 'I J,SI to satisfy the invariance condition. Since
the Hamilton equations (3.3) are exact for the coherent
states, the necessary conclusion is that the Schrodinger
equation for a Hamiltonian containing the tioo body -in-
teraction H' ' does not admit pure coherent state p-roducts
as solutions

If H' ' (or its continuum analog) is added to the Hamil-
tonian of an otherwise free particle, the Hamilton equa-
tions for the coherent-state amplitudes are of the non-
linear Schrodinger type. The violation of the invariance
condition implies that these nonlinear equations for the
coherent-state amplitudes do not describe the quantum
evolution of a system with two-body interactions.

m, n

(3.14}
IV. MIXED SINGLE-PARTICLE STATES

AND COHERENT-STATE PRODUCTS

Since the degree of the action polynomial is unity (degree
2 in the square roots of the action variables), (3.11) is sa-
tisfied.

The Hamilton for pure vibrons is sometimes written'

H~ib= +%con(bnb»+ —,
' )+ QLmn:(bm+bm)(b»+bn):

A state vector of mixed single-particle —coherent-state
character has played a central role in the theory of soli-
tons in deformable molecular chains. First introduced by
Davydov, state vectors of the form

ID«}&—= y0 (t}a I0& IP (t)& IP «}&

+ gL „(b b„+b b„+b„b +b b„}. (3.16)

Forming (A
I H„;b I

A ) and making the transformation to
action-angle variables yields

H„;b t J,5]= Q i}i'»J„

+4+L „(J J„)'~ cos8 cos5„. (3.17)

Again, the degree of the action polynomial is unity, so
that (3.11) is satisfied.

For an example of a Hamiltonian violating the condi-
tion (3.11) one need look no farther than the general two-
body interaction

H = g Hjkiaj a; akat(2) (2)

ij,k, j
(3.18)

(3.15)

in which b„(b„)creates (annihilates) a quantum of vibra-
tional energy in a molecular mode labeled by n Casting.
H„;b into explicit normal-ordered form as indicated by

: and neglecting the zero-point energy gives

H„;b g fico„b„b„——

e. . .
I
P„(t))

The operator a~ creates an exciton in the site state labeled
by m, and b& creates a phonon with the wave vector q.
The exciton component of the proposed state vector is
clearly a single-particle state, while the phonon com-
ponent is a product of coherent states in each phonon
mode.

As in previous sections we may proceed to develop a
differential invarianee condition on the scalar Hamilton
function without specific reference to the form of the
Hamiltonian of interest. We assume

I
D(t)) satisfies the

Schrodinger equation

i A
I
D(t) ) =H—

I
D(t) ) .

d
dt

(4.3)

Explicitly differentiating the proposed form of
I
D(t))

with respect to time and left multiplying (4.3) with the bra
vector (D(t)

I yields

(4.1)

are sought as solutions of the Schrodinger equation,
wherein

I pq (t) ) is a pure coherent state defined by

IPq (t)):—exP[ ——,
'

IPq (t)
I ]exP[Pq (t)bq] I0) . (4.2)
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iR gg„'(t)g„(t)
n

+ —, y y„'(t)y, (t)[pq„(t)pq„(t) p—q„(t)pq„(t)]

=(D(t) iH iD(t)} . (4.4)

(4.5a)

i+ (t)= (D(t) ~H ~D(t)},
~ t

(4.5b)

ifiP, (r)=, (D(t)
~

H
~

D(t) ),
Bpq~(t)

l Ap (t')= (D(f) ~H ~D(t)} ~

qm t

(4.5c)

(4.5d)

Using Eqs. (4.5} to eliminate the time derivatives in (4.4),
we obtain the following differential invariance condition
for (D(t}

/

H
/
D(t) }:

, + —, gp. p. p.. . +pq.
n n q, n qn Pqn

g(D /H /D) =(D fH /D) . (4.6}

We are now in a position to test the internal consistency
of the Hamilton-equation approach as applied to the
Frohlich-type Hamiltonian

H g V~ a a + glcoqbq~bq
rn, n

+ QXq Acoq(bq+b q)at a
q, m

(4.7)

for which we require the expectation value
(D(t) iH iD(t)):

(D
~

H
~

D ) = g V „f'g„+g fm P„'f„P'„P„
m, n q, ll

+QXq A q(P,
' +P, )P'f

q, m

(4.8}

Denoting the differential operator in (4.6) by &, we find
on applying N to the Hamilton function (4.8) that

& (D { H { D }= (,D
~

H
~

D }+y %co,P,'„P,„(y„'tP„)'
q, N

+ —,
' g Xq ~q(Pq +P q

)(f' g )' .
q, m

(4.9)

Clearly, in general &(D ~H ~D}&(D ~H ~D). We
find, therefore, that the application of the Hamilton equa-
tions (4.5) for the evaluation of the parameters {p(t),p(t) I

results in a vector
~

D(t) } which is not a solution of the

Now assuming that Hamilton's equations may be applied
to determine the time dependence of the wave-function
parameters, we have

Schrodinger equation for the Hamiltonian (4.7), in con-
tradiction of the original premise. Thus, in the general
case the parameters {g(t),p(t) J solving the equations (4.5)
do not describe the actual quantum evolution. This con-
clusion follows directly from the form of the Hamiltonian
and the form assumed for

~

D(t) ) and is thus independent
of any technical approximations which may be required to
solve the Hamilton equations (4.5) in practice.

The general inequivalence found in (4.9) serves to illus-
trate how the invariance condition may at once both guide
and mislead. There exists at least one class of solutions

I pq (t),f (t)I for which the condition is satisfied, name-

ly, {pq (t),f (t)I ={ Xq,—f (t)I. The state vectors

~

D(t)) to which such solutions correspond are precisely
the single-polaron states. ' These states do, in fact, solve
the Schrodinger equation with the Hamiltonian (4.7), but
only in the V „=0 limit. This serves to underscore the
assertion made throughout this paper that the invariance
condition provides only negative information. [It is worth
noting that an alternate form of

~

D(t) }used by Davydov
in Refs. 2 and 4 in which the dePendence of Pq~ (t) on the
site index m is neglected also results in a violation of an
invariance condition, though all quantities entering the
condition must be redefined. ]

V. CONCLUSION

In this paper we have shown how manipulations of a
system Hamiltonian can provide (negative) information
about the solutions of the corresponding Schrodinger
equation. These results are motivated by a method often
used for analyzing the evolution of a quantum system in
which the classical Hamilton equations are used to
describe the time dependence of parameters appearing ex-
plicitly in a trial state vector. Given a trial state vector, it
proves possible to construct an invariance condition which
is a necessary (but not sufficient) condition for the set of
Hamilton equations to be equivalent to the Schrodinger
equation. The differential operator and scalar Hamilton
function are simply constructed without any knowledge,
exact or approximate, of the solutions of the Schrodinger
equation.

We have illustrated the use of the differential invari-
ance condition for trial state vectors consisting of single-
particle states, coherent-state products, and mixed single-
particle and coherent-state products. The construction of
an invariance condition is not limited to such states, but
may be carried out whenever state-vector parameters are
assumed to satisfy the classical, Hamilton equations.

In the course of our illustration, we showed that the
form of the state vector assumed by Davydov in his appli-
cation of the Hamilton-equation method to the Frohlich
Hamiltonian leads to a violation of the associated invari-
ance condition except under very restrictive cir-
cumstances. The implication is that the wave vectors

~
D(t)} produced by the Hamilton-equation method are

not solutions of the Schrodinger equation for the Frohlich
Hamiltonian. Care must be taken not to overinterpret this
result. Our result does not indicate that the Frohlich
Hamiltonian does not admit soliton excitations. If such
excitations exist, however, our result indicates that their
state vectors are not of the form

~

D(t) } determined by
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Hamilton's equations.
Unfortunately, the differential invariance condition we

have derived does not provide a measure of the deviation
of Hamilton-equation solutions from corresponding
Schrodinger-equation solutions having the same initial
form. An extensive examination of this difficulty is
presented in the following paper and will be further con-
sidered elsewhere. '
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