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The spatially inhomogeneous distribution of the light intensity and of the excitation density is in-
vestigated for systems showing cavityless optical bistability due to increasing absorption. The for-
mation and motion of spatial kink structures is analyzed in detail within a rate-equation approach.
Analytical estimates for the kink formation process are presented and compared to numerical re-

sults.

I. INTRODUCTION

Many semiconductor materials exhibit strong optical
nonlinearities, which are interesting in themselves from a
basic physics viewpoint and which, moreover, may even
be used in the future for all-optical data-processing de-
vices.! The physical origin of most of these dispersive or
absorptive nonlinearities is the creation of electron-hole
pairs which modify the optical properties. At elevated
densities of electron-hole pairs, a very effective screening
of the Coulomb interaction takes place, which, e.g., causes
the vanishing of the exciton resonances (Mott transition).
Furthermore, the single-particle energies are renormalized
due to electron and hole exchange, correlation, and band-
filling effects.?

In the present paper, we consider the case of an
excitation-induced absorption. This may be caused, e.g.,
by the broadening of bound-exciton lines® or by the reduc-
tion of the semiconductor band gap due to single-particle
energy renormalization by free carriers*® or by thermal
phonons.® Induced-absorption optical bistability due to
these mechanisms has been observed and analyzed in some
detail3—® Many aspects of the phenomena are, however,
quite general and occur also in other nonlinear materials.’
In the present paper, we concentrate on the electronic
band-gap reduction.

The microscopic details of our model have been
described elsewhere,* so we only repeat the most impor-
tant features. If the frequency of the exciting laser is
tuned slightly below the lowest exciton resonance, one has
only a weak one-photon absorption in the Urbach tail or a
weak two-photon absorption in the band. Nevertheless,
by these processes some electron-hole pairs are created.
With increasing pair density, many-particle renormaliza-
tion effects cause the band edge to shift to lower energies.
At a certain density the band edge passes the laser fre-
quency and hence, the absorption increases strongly. This
increase continues until at high electron-hole-pair densi-
ties band-state filling becomes important. The absorption
decreases again and vanishes when the chemical potential
approaches the excitation frequency (bleaching). In Fig. 1
we plot as an example the absorption coefficient calculat-
ed for the direct-gap semiconductor CdS.*?’ We show the
density regime for which the absorption increases, i.e., for
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which self-induced absorption due to band-gap reduction
takes place.

When the increase of the absorption is strong enough,
as in Fig. 1, there is a possibility for optical bistability.
The self-induced absorptive bistability differs considerably
from the usual absorptive bistability. A most important
feature is that no cavity is needed. Recently, Koch
et al.*® predicted spatial kink structures in the density
profile and a corresponding sawtooth structure in the
transmitted intensity when the system was excited with a
pulse. Experimentally, this was confirmed by Gibbs
et al.% in a sample with thermal nonlinearity. Induced-
absorption bistability has been discussed as a first-order
phase transition in a nonequilibrium system®° and the
density kinks have to be regarded in this context as a real-
ization of two-phase spatial coexistence of regions with
high and low electron-hole-pair densities.

In the present paper, we analyze theoretically both
steady-state and dynamical properties of the kink struc-
tures. The results show that the dynamics of kink forma-
tion and of the almost discontinuous propagation cannot
be described by steady-state properties. The sawteeth in
the transmitted intensity are genuine dynamical features.
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FIG. 1. Absorption coefficient a as function of the electron-
hole-pair density N. Result of a microscopic calculation (Ref. 4)
for CdS at a frequency below the energetically lowest exciton
resonance.
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In Sec. II we introduce our model and discuss its gen-
eral mathematical properties. The physical results ob-
tained are direct consequences of these properties. The
stationary solutions are analyzed in Sec. III. The origin of
the kink is explained and the stability of the position of
the kink is studied. In Sec. IV the dynamics are investi-
gated. Using a simple absorption model the formation of
the kink is studied numerically. In a limiting case, analyt-
ic estimates are obtained and compared to the numerical
results. In Sec. V we briefly summarize our results.

II. THE MODEL

We describe the properties of the system by simple rate
equations.® The rate of change of the density of electron-
hole pairs in the bulk is equal to the number of photons
absorbed per unit time minus the interband spontaneous
recombination rate. The simplest possible local equation
is

9 a(N(z,t))
o N(z,t)= P
where a is the absorption coefficient, I the intensity, #iw
the energy of the photons, and 7 the electron-hole-pair
recombination time. If the band-gap shrinkage is caused
by heating, Eq. (1) for the free-carrier density N is re-
placed by a corresponding equation for the temperature
T(z,t). This equation has the same structure; the loss
term is due to transverse thermal diffusion.® It is possible
to insert in Eq. (1) a longitudinal diffusion term.* In the
present paper, however, we restrict ourselves to the case
without diffusion. This limit is realized approximately,
for example, in semiconductor microcrystallite filters.®
The intensity is taken to follow Beer’s law. No disper-
sive or propagation effects are taken into account. Hence,
we have
2 Han=—alN @) (1) . @)
oz
Our goal is to describe the response of the system to pulse
excitation. The pulse shape of the incident light enters as
a boundary condition for I(z,¢) at the front end (z =0) of
the crystal. With a pregiven pulse shape I(t) we have

I(z=0,t)=1y(1) . (3)

I(z,t)—N(z,t) /1, (1)

Equation (2) can be formally integrated and we obtain
Ien=Iwexp [~ [aN @0z | . @)

This formula shows that in our model the intensity fol-
lows immediately the changes in the pulse shape I,(¢) and
in the density N. Physically it is clear that the intensity
at z is not dependent on the local density but on the com-
plete density profile in front of the position z. The fact
that a is positive (no gain) manifests itself in the
mathematical property that I is a monotonically decreas-
ing function of z. An additional important property of
I(z,¢) is that it is continuous for every z >0 at all times ¢.
However, its derivative may be discontinuous.

The density N does not respond immediately to tem-
poral changes because AN /3t is finite. If the absorption is

nearly constant and the input intensity varies slowly, the
recombination time 7 characterizes the response time of
the density. In Eq. (1) z appears only parametrically.
Therefore, it allows solutions for N which are discontinu-
ous at some value of z, while the intensity I(z,¢) has to be
continuous. When Eq. (4) is inserted into (1), we obtain
the equation

3 _a(N(z1)
N @0 =5 2 g0
xexp |~ [ a(N(z',0)dz’
— N0/ (5)

This is a nonlocal differential-integral equation for N.

Typical for the nonlinear problems is that the solutions
are highly dependent on initial conditions. We use the ini-
tial condition

N(z,t=0)=0. (6)

The increasing part of the pulse in general causes a
response which is different from that caused by the de-
creasing part.

III. KINK STRUCTURE IN THE STEADY STATE

The existence of the kink structure obtained by Koch
et al.*® can be qualitatively understood by studying the
steady-state properties of the model. We assume that the
absorption follows the general features shown in Fig. 1.
In the steady state the time derivative of N is zero and we
assume the input intensity to be constant. Then, the equa-
tions are

a(N(z))

S [@=N)/r=0, @
%(;z“)=_auv(z)>1(z>, 1(0)=1I, . ®

The density is in a local equilibrium with the local intensi-
ty. The intensity profile is determined by the density pro-
file according to (8).

We define the critical intensities I, and I,, with
I, >1,, as the limiting values for which Eq. (7) has two
solutions. For the absorption coefficient in Fig. 1 there
are exactly two such values. Writing (7) in the form

am="21y ©)

T I
graphical inspection shows that the critical intensities are
those for which the straight line [right-hand side of (9)] is
a tangent to a(N) at some point (see Fig. 2). The corre-
sponding critical densities N, and N, satisfy the equation

d
dN

N
a(N)

=0. (10)

If the input intensity is larger than I, the steady-state
solution at the front face of the crystal is the solution with
high absorption (upper bistable branch). The intensity de-
creases fast because of this high absorption. Hence, at
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FIG. 2. (a) Geometrical solution of the stationary equation
(1) (schematically). I, and I, are the critical densities for the
occurrence of optical bistability, N, and N, are the correspond-
ing density values. (b) Stationary solution for the density N as
function of the intensity I (schematically).

some point in the crystal the intensity falls below I,.
Behind this point the steady-state solution follows the
lower bistable branch. Somewhere in the crystal, where
the intensity is between I, and I, there is a discontinuous
jump, called a kink, in the density profile.

An integration of Egs. (7) and (8) gives the integral

1 N _dx
a(N) No xalx)

The constant N is arbitrary but fixed and the integration

constant C is to be determined by the input intensity and

the continuity of the intensity. When f(N) is known, for-
mula (11) can be locally inverted to yield

N@z)=f"4z-0). (12)

=C+f(N). (11)

Hence, the constant C and thus the initial intensity I,
only sets the origin of the curve but do not change its
overall shape. The shape is exclusively determined by the
properties of the absorption coefficient. A unique inver-
sion of (12) is, however, not possible over the whole range
of N since the function f(N) is not monotonic in N. In
Fig. 3 a model absorption'” is used to plot the general
features of f(N).

The inversion must be made separately between the suc-
cessive zeros of df /dN. By using (11) and (12) we obtain
the condition for the zeros in the form

d |_N ‘:o. (13)

dN | a(N)

Hence, the zeros equal the critical densities N, and N,
(see Fig. 2). When [I(z) is solved from (7) and (11) it is
also multivalued as a function of z. In Fig. 4 this is plot-
ted for the model absorption.!® It is clear that the
mathematical solution (11) as such cannot describe the
physically acceptable solution if the multivalued region
lies inside the crystal. However, from the mathematical
solution one obtains one physical solution by matching
the intensities at the intersection point z =Z. This resem-
bles the generalized Maxwell construction in the theory of
first-order phase transitions. One may also obtain other
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FIG. 3. Spatial variation of the density; stationary solution of
Eq. (1) using the model absorption (Ref. 10) discussed in the
text. The critical densities N, and N, correspond to the turning
points of the curve, the part with positive slope is unstable.

stationary solutions of the differential equation (5), in
which the point of discontinuity, i.e., the kink position,
may be anywhere in the range of z in which the intensity
varies between the critical values I, and I,. In the ther-
modynamic sense one would characterize these solutions
as metastable states. They are, however, important to
understand the dynamical properties of the system, as will
become clear in the following sections. The density
branch between N, and N, (Fig. 3) is unstable and must
be excluded from the physical steady-state solution. The
solution in the front part of the crystal corresponds to the
upper bistable branch. In the following, we will denote
this part of the density profile as the “upper-branch solu-
tion,” Ny, and the remainder as the “lower-branch solu-
tion,” N, respectively. The upper branch solution is
fixed by the boundary condition at the crystal front face
(z =0). The range of the possible positions of the density
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FIG. 4. Spatial profile of the intensity corresponding to the
density shown in Fig. 3.
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kink is bounded by the positions of the critical intensities
I, and I, which are determined by the integrals

In(1,/Io)=— [ a(Ny(z')dz’
and (14)
In(1,/Iy)=— fo’a(NU(z'))dz'.

Since I, >, we have z; <z,. Equations (14) show that
both z, and z, which bound z, depend on the actual value
of the input intensity, whereas the range z, —z, does not.
In general, the integration constant of the lower-branch
solution is different from that of the upper-branch solu-
tion. The matching condition of the two branches at the
kink position can be set in the form

Nylz,) — Np(z)
a(Ny(z.))  a(Np(z.))

(15)

This is a direct consequence of the requirement that the
intensity is continuous at z =z,. In Fig. 5 we show a typi-
cal matched solution. A very important feature is that for
z, >z,, the intensity immediately behind the kink is below
the critical value I, for switchup. Consequently, the den-
sity is below N,. This stabilizes the position of the kink.
To analyze this stability, we investigate the response of
the density profile to a small change of the input intensi-
ty. Therefore, we assume that a kink has already been
formed at the position z, which is larger than z,. Hence
I(z,)<I, and N(z,+6z)<N,. After this situation has
been established, the intensity is suddenly increased to a
value T,, which, however, is supposed to allow still a
steady-state profile I(z) with a value I(z,) <I,. In other
words, the change of the input intensity is such that local-
ly, at the kink position z, it does not exceed the bistable
]

3 _a(N(z1)
atSN(Z,t)— 'ﬁw" "IO

We expand linearly to obtain

B SN (z,)~—A2)SN (1)

ot
~ L0706 [ WeN G ndz (7
where
= da

’ N —_— =

a'(N) aN |, _x
and

Mz)=1/7—E N 70y

A(z) is strictly positive because of the condition I(z,) <1,.
We show in the Appendix that the solution of (17) decays
to zero faster than

—A .t 12
Me mme2(}’tz) ,

a(N(z2))

exp{— foza(N(z',t))dz’ ————""Tyexp

NA (a)
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FIG. 5. (a) Kink structure in the density profile. This solu-
tion is obtained from the mathematical steady-state solution
(Fig. 3) by choosing a kink position z. <z,. The density for
z <z, follows the upper bistable branch. The profile for z >z,
is obtained from the following two conditions. (i) N <N, i.e.,
the density in the region behind the kink follows the lower bi-
stable branch. (ii) The intensity is continuous at z =z.. These
conditions restrict the possible values for z. to a well-defined in-
terval. (b) The intensity profile (matched solution) correspond-
ing to N (z) shown in (a).

regime. We will show that under these conditions the
kink position remains fixed and the density distribution
relaxes to a steady-state kink profile N(z) corresponding
to the increased intensity ;. We denote the actual profile
by N(z,t) and investigate whether the difference

8N (z,1)=N(z,t)—N(z)

tends to decrease or to increase with time. Because of the
small change of the input intensity, we assume 8N (z,?) to
be small; however, we do not assume N (z,?) initially to be
in any steady state. Rewriting Eq. (5) in terms of 8N
yields

~ [ Rz |-

ON(z,t)
#iw T '

[

where A, is the minimum value of A(z) and M and P are
constants defined in the Appendix.

Thus, N(z,t1)—>N(z) for increasing times. This means
that for sufficiently small changes of the input intensity
the kink position stays fixed and the density varies locally
according to the upper bistable branch for z <z, or ac-
cording to the lower bistable branch for z > z_, respective-
ly. The kink starts to be formed at a new position only
when it is no longer possible to have a kink at z, or,
equivalently, when I(z.) becomes larger than I,. This
stability of the kink position largely influences the
dynamical properties of the system.

IV. THE DYNAMICS OF THE KINK FORMATION

If the input intensity varies in time the steady-state
description fails to explain the details of kink formation
and the propagation process. The main reason is that the
response time of the system to a change of the intensity is
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of the order of the electron-hole-pair lifetime 7. Hence, if
the intensity is changing continuously, the system cannot
be in equilibrium with the instantaneous value of the in-
tensity. For simplicity, we assume the input intensity to
rise linearly

Iy(t)=1t , (18)

and the absorption coefficient to be nearly constant for
the lower branch. Inserting these conditions into (7) and
(5) we obtain

a(0) =

%N(z,t)z 2O fre 05N (z,0)/r (19)
and
I(z,t)=Tte ~*07 (20)

As mentioned earlier, the intensity reacts without delay to
the changes of both the input intensity and the density.
When (19) is solved we find the density in the form

N(z,t)= aﬁ(g)rfe-“‘O’Z(t—T+Te-'/f). 1)

After the transient time period we see that N at time ¢ is
in a “steady state” with the intensity at the time ¢ —7,

a(0)r
fiw

Hence, when the intensity at the front end reaches the
critical switchup value N,, the density is still not critical.
Consequently, the absorption is still low and therefore the
critical intensity can be reached in a wide region with the
extension Az,

N(z,t)= I(z,t —7) witht>>7. (22)

Az:——l——ln 2—1——1—7- (23)

a(0) T

I

before the system even starts to decrease the local intensi-
ty by increasing the density and thus the absorption.

If the rise time of the input intensity is much longer
than the electron-hole-pair lifetime 7, we can take 7 as an
expansion parameter. Integrating (1) yields

s vy a(N(z,t —1"))

NGn= [ dre 2 e —) . 24)

For t >>7 we expand in 7 and obtain

a(N(z,t —71))

N(z,t)~
(z,t) Tio

Izt —)r[14+0()] .  (25)

This equation is a generalization of the result (22). It is
valid when a and I, are both slowly changing functions
of their arguments.

We demonstrate that this analysis is already able to
describe the essential features of the kink-formation pro-
cess. Since we could not solve the dynamical problem
with any physically realistic absorption coefficients, we
employed numerical methods. To keep the following
analysis as transparent as possible, we use a simple model
absorption, which, however, contains all essential features.
It consists of two absorption levels which are connected
by a linear slope

ar, N <N,
Ay —ap
N,—N,
ay, N, <N .

a(N)= jar + (N —-N,;), N;<N <N, (26)

The slope of the linearly increasing part of the absorption
profile turns out to be important for the dynamics of the
kink-propagation mechanism, as will be explained in Sec.
IV B. Note, however, that because of the instability of the
stationary solution corresponding to that linearly increas-
ing part of a(N), it does not influence the steady state.

In the model under discussion, the parameters charac-
terizing the dynamics are ay /a; and N,/N,. They are
defined by fitting Eq. (26) to the microscopically calculat-
ed absorption plotted in Fig. 1. Mathematically, we see
that the expression (26) does not allow bistability for too
flat slopes of the intermediate section of a(N). One may
define a critical slope, which separates bistability from
monostability. It is given by

(aH/aL)—l _

N,/N,—1

or (27)
ay N,
arp _Nt .

Near this limit, i.e., for weak bistability, the approximate
equation (25) can be used.

A. Numerical calculations for the model
absorption coefficient

To gain insight into the dynamics of the kink formation
in the regime where the process is fast, we numerically in-
tegrate Egs. (1) and (2) using the absorption model (26).
As a result, we plot in Fig. 6(a) the density profile for six
evenly spaced times f;. The scaled switchup density
N,=1 is reached at t,. The difference between the
respective profiles at ¢, and ¢, is so small that they are
not resolved as different curves in Fig. 6(a). The complete
scenario in Fig. 6 shows that the kink is actually not run-
ning into the crystal but the density is increasing over a
certain spatial region. After the switching process has
started, the density has increased to the critical value N,
in a time which is considerably smaller than = after N,
has been reached. This observation will be utilized in our
subsequent analytical analysis (Sec. IV B). Moreover, the
place of the kink z, is stabilized long before the complete
profile has been established. The density just behind the
kink first rises but then drops to a value below the one
which was reached at this point before the kink formation
started. In Fig. 6(b), the switchingup of an additional
layer of the crystal is shown for the same parameters.
The kink at the second position is formed almost as if the
edge of the kink in the first position would serve as a sta-
tionary boundary. The stages of the kink formation in the
second position are a repetition of the ones in the first po-
sition.
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FIG. 6. (a) Formation of a density kink. The different curves
correspond to the indicated time instants t;, t;,,=t;+7. The
parameters of the absorption, Eq. (26), are ay/a;=35.0 and
N,/N,=4.0. The incident intensity is assumed to rise linearly
according to Io(t)=1,(z/507). (b) Buildup of the density kink
at the second position. The times are T;, T; 4 =T;+7.

In Fig. 7 we present the intensity profiles I(z) which
correspond to the density variations plotted in Fig. 6(a).
One observes a sharp bending of I(z) exactly at the posi-
tion of the kink in N(z). A comparison of Figs. 6(a) and
7 shows a drop of the local intensity in a large fraction of
the crystal. This drop sets in immediately after the densi-
ty begins to switchup (z>1t,). For a sufficiently fast de-
crease of the intensity, the right-hand side of Eq. (1) be-
comes negative, causing also a decrease of the local densi-
ty. Therefore, in the region behind the kink, the density
drops even though it had already exceeded the switchup

o 107

FIG. 7. Temporal development of the intensity profile corre-
sponding to the formation of the density kink shown in Fig.
6(a). The times are the same as in Fig. 6(a).
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FIG. 8. Position of the critical intensity I, (solid line) and of
the critical density N, (dashed line) as function of time for a
linearly increasing incident intensity, Io(2)=1,(t/507). The pa-
rameters of the absorption coefficient, Eq. (26), are
ay/a; =35.0and N,/N,=4.0.

value N,. This decrease of both the local density and the
local intensity behind the kink leads to a stabilization of
the kink position. In order for the kink to expand deeper
into the crystal, the input intensity has to increase suffi-
ciently so that the local intensity behind the kink position
again reaches the switchup value I,. This causes a pro-
nounced delay and prevents a continuous kink movement.

This scenario is also shown in Fig. 8. Here, we plot as
function of time the position where the intensity equals
the critical switchup value I, together with the position
where the density has the critical value N, (or changes
from larger than N, to smaller than N, if a kink already
exists). The delay between the curves shows that the sys-
tem is not in a steady state. The peaks (shootover) to be
seen in Fig. 8 before the stationary values are reached in-
dicate that the system is unstable in a wider region than
that which finally stays in the upper branch. A short mo-
ment of instability does not guarantee switching due to
the finite response time of the density. A detailed investi-
gation shows that the shootover of the position of the
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FIG. 9. Transmitted intensity as function of time for an in-
cident intensity, Io(#)=1,(z/507). The numerical solution of
Egs. (1) and (4) is plotted as a solid line, the solution of (4) and
the approximate Eq. (25) are shown as a dashed line.
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switchup density N, becomes less pronounced for smaller
ratios of the parameters N, /N,.

In Fig. 9 we compare the intensity transmitted through
a crystal obtained from the approximation (25) with that
determined by a numerical integration of the full Egs. (1)
and (4). We plot the transmitted intensity versus time for
a linearly rising input intensity Io(z)=¢/50 (in the units
of Fig. 9). A sawtooth structure in I(t) is obtained, as al-
ready reported in Ref. 4(b) from a numerical analysis us-
ing the microscopic absorption coefficient for CdS. Each
sawtooth corresponds to one cycle of the stepwise kink
propagation. It can be seen that the analytical results ob-
tained from Eq. (25) are in reasonable agreement with the
solutions of the full transport equations. A drawback of
the formula (25) is that one still has to perform a numeri-
cal iteration. However, its merits are that it exhibits the
delay of the density explicitly.

B. Analytic estimates

Guided by the numerical results, we can obtain some
simple analytic estimates for the kink properties. To keep
the discussion as transparent as possible, we again use the
idealized model absorption (26). First, we compute the
kink position z.. We denote by ?, the time at which the
intensity at the front face of the crystal reaches the
switchup value,

I(z =O,lo):IT .

The previous analysis has shown that it is a good approxi-
mation to assume the density to follow the intensity with
a time delay 7,

N(Z—:O,tlzto-‘-T):NT .

The time interval t, —t,, which is needed to fix the place
of the kink at z, is approximated by the time in which the
density at the front face of the crystal switches from N,
to N,

N(z=0,t,)=N,

This assumption is justified by the observation that once
the absorption has locally reached the upper-branch value
ay, the intensity behind this region starts to decrease and
the position of the switchup density N, cannot move
deeper into the crystal (compare Fig. 8). Only the front
part of the crystal z <z, becomes destabilized and
switches to the upper bistable branch. Thus, the kink po-
sition z, is determined through the condition that for
t =t, the density at z =z, is just N,,

Ir(t,—7) —a;z,
—e

N (ze,t2) =N =a(N (z) —

Ir(t,—7) —a;z,
o
where Egs. (18), (20), and (22) have been used. Approxi-
mating a(N) by a; in (28) restricts our treatment to the
situation in_which the switching interval 1, —1t, <.
Eliminating I through the relation I1y=1, and using

~ay (28)

apl.t
=T
we obtain
1 H—7 1 L—7—1 1 L—4
z.=—1In ~—— =
ap to ar to a I
(29)

During the switching process, the absorption at the front
face of the crystal (z=0) changes from a(z=0,
t=t;)=a; to a(z=0,t=t,)=ay along the linearly in-
creasing part (26)

ag —ag

“=ety TN,
i 1

(N—N,)=AN +B .

Using this relation, we can rewrite Eq. (1) at z =0

Sa
at

Al(z=0,t) 1

ot+£ . (30)
T

#iw T

With I(z =0,t)=1,(t)=1It and integrating (30) from ¢, to
t,, we obtain

272 t =272
ag=age’"? B Tzdfea“2 -, 31
T 1
where
_ 1 d Al
=t ——— an a=
! ! 2ar 2%&”0

Approximating 72—7;~2to(T—7;), we can evaluate the
integral in (31). The result for the switching interval is
N,/N,—1 (ay/a; —1)*+N,/N,—1

th—t= 1
2T Ja —1 N,/N,—1

(32)

Hence, ¢, —t, is independent of t,. Inserting (32) into
(29) we see that

zo g . (33)

In Fig. 10, the numerical values of z, are plotted versus
ay/a; for N, /N,=2.0 and three different intensity rise
times. For comparison, the values for the estimate (29)
with (32) are also shown. One sees from Fig. 10 that the
estimate is quite good for ay/a; >10. It breaks down
for small ratios ay /ay , i.e., when the slope of the absorp-
tion (26) gets smaller. A systematic analysis shows that
the approximate result overestimates the kink position if
N,/N, is increased. This failure can be readily under-
stood since the increase of N,/N, causes an increase of
the rise time ¢, —¢; of the density, Eq. (32), hence oppos-
ing our original assumption that the switching time must
be smaller than .

Besides the estimate for the kink position, it is also in-
teresting to have an approximate relation between the
time and distance of two successive kink-propagation
steps. We assume, that at a given time the density profile
exhibits a kink which is in a steady state with the momen-
tary intensity. The kink at the new position deeper within
the crystal starts to be formed when the local density
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FIG. 10. Kink length as function of the absorption ratio
ay/a; for a linearly rising incident intensity Io(¢)=1,(¢/t,).
The other parameters are N,/N,=2.0 and (a) ¢, =207, (b)
t, =507, (c) t,=1007. The comparison is between the numerical
result (solid lines) and the analytic approximation, Eq. (29)
(dashed lines).

behind the existing kink reaches the switchup value, i.e.,
N(z;+6z)=N,. We denote by N,y the upper-branch
value of the density corresponding to the switchup inten-

sity I,. This value is realized in the crystal at the position
immediately before the kink
N(z,—82z)=N
Using Eq. (11), we obtain
- 1 _ 1 _ Niu » 1
" a[N(0),] alNy) NO, ™ xa(x) ’

where z, , is the position of the kink after the nth propa-
gation and N (0), is the density at the crystal front face
(z=0) at the moment ¢, when the kink starts to be
formed at the n +1 position. The difference z., ,1—2z. ,
is given by

1 1
z —Z = —
et T a[N(0)s 4] a[N(0),]
N, . 1
+ N(0), dx xa(x)
D Y ()P
T ay N(0), ’
where we have used the model absorption (26). Using (22)
and (18), we obtain
z _z __1_1 tn-H_'T _l_tn+l-‘tn
en+l on ay tn—T —aH l,, ’

for t, .1 —t, <<t, and t, >>7. This relation again shows
the direct connection of the kink propagation length
Zen4+1—2c,n, With the duration of the switching process
Ly y1—ty-

V. SUMMARY

We presented a discussion of spatial and temporal as-
pects of the coexistence between regions of high and low
excitation density in increasing-absorption optical bistabil-
ity. The formation of a density kink is analyzed and the
numerically observed stability of the kink position is in-
vestigated analytically. The propagation dynamics of the
kink is shown to be a genuine dynamical property of the
system which cannot be explained exclusively by the
steady-state properties. Analytical approximations are ob-
tained which are compared to the full numerical results.
We find good agreement for the kink length and a simple
estimate for the kink position.
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APPENDIX

In this appendix we show some mathematical details of
the proof that the solution of (17) approaches zero when
time tends towards infinity. Inserting into (17)

N(z)
T

8N (z,t)= e M (z1), (A1)

we obtain for y the differential equation
—_ f ’( I

X eMA=MY (27, 1)dz (A2)
Imposing to (A2) the initial condition

l

ay z,

y(z,t =0)=yo(2) ,

we can integrate (A2) from zero to t.
Volterra-type integral equation

f f N(z)

We obtain the

y(z,t)=yol(z

Xe[*")""”'”"y(z',t')dz'dz'. (A3)
We assume that the initial condition and the product
a’(z)—-—N(Z)
-

are bounded. Hence,

a'(z) <P, (A4)

|yo(z) ] <Q and Nq('Z)
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where Q and P are positive constants.

From the general theory of Volterra equations'! it fol-
lows that the solution of (A3) is given in the form of a
series

y(z,t)= i y™ze)
n=0

(AS)

which always converges for the type of kernel functions in
our problem. The terms y'™ are calculated iteratively us-
ing the following procedure:

yOz,0)=yo(2),

, (A6)
yED(g = — f0’ fora’(z')N—(Tz—)e[“‘"“‘"]"
Xy ™(z',t")dt'dz" .
|
Nz )

n+l)|

<P"tlQ fo" fo’e[Mz>—7uz'>]x'eWZ"—lminJ

Thus, (A7) is true also for n +1 and subsequently for all
n > 1. Using the result (A7) we obtain for |8N(z,t)| the
upper-bound estimate

(z)

| 8N ( z,t)|< e M y(z t);<N "‘Ely"’\
N(z) _aex S (Pzt)" | (M2)—A_ ]t
S____.__e 1+ ‘min .
T Q [ ln§1 (n !)2 e

(A8)

The sum on the right-hand side of (A8) is convergent and
can be given in terms of the zeroth-order Bessel function
with an imaginary argument I,(x). We obtain

In tln

The solution (A1) can be estimated using (AS5) and (A6).
We show that

[M2) = Al (22)"
(n1)?

For the proof of (A7) we use the method of complete in-
duction. First, for | ‘| we have

1)| f f

z t I\t ) ar
SPQ fo fo e[Mz)—-Mz )]t dz'dt SPQe

|y ™(z,0)| <P"Qe forn>1.

e[l(z)——k(z’)]x' !y(O) | dz'dt’

,(Z,)N(z )
T

[Alz)—A t

minllyy
(A7)

Hence, (A7) is true for n =1. Now, we assume it to be
valid for n and obtain for | y*+!|

[A(Z)—}\.(Z')]t' jy(n) ’dz‘dt’

M=, )t zn+l htl

, n+1 T
~ydzdi' <P Qe' (m+1)! (n41)0 "

|
|8N(z,t)| <

~N(—Z)Q{e_“z"+e —nin? [Io(zW/Pzt )— 1]} .
(A9)
The asymptotic behavior of Iy(x) is exponential,
1
Io(x)~ \/;e" when x — o . (A10)

Inserting this, we obtain for large time periods

|8N (z,1) | <Me ™~ "mn'e2VPa |

where M is a positive constant.
wards infinity

| 8N (z,1)

Hence, when ¢ tends to-
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