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A Lie-group-theoretical approach to the analysis of interferometers is presented. Conventional in-

terferometers such as the Mach-Zehnder and Fabry-Perot can be characterized by SU{2). %e intro-

duce a class of interferometers characterized by SU(1,1). These interferometers employ active ele-

ments such as four-wave mixers or degenerate-parametric amplifiers in their construction. Both the
SU(2) and SU(1,1) interferometers can in principle achieve a phase sensitivity hP approaching 1/X,
where E is the total number of quanta entering the interferometer, provided that the light entering
the input ports is prepared in a suitable quantum state. SU{1,1) interferometers can achieve this sen-

sitivity with fe~er optical elements.

I. INTRODUCTION

In a conventional interferometer such as the Mach-
Zehnder depicted in Fig. 1 light is fed into one of the in-

put ports. The light beam is split into two beams which
propagate along different paths and suffer a phase shift
relative to each other of P. The light beams are combined
and interfere with each other at a second beam splitter.
The relative phase shift P can be determined by measuring
the position of the interference fringes in the output
beams. Such an interferometer can achieve a phase sensi-
tivity

1bP= ~,
where N is the total number of photons that have passed
through the interferometer during the measurement time.
Caves has pointed out that by feeding suitably construct-
ed squeezed states into both input ports of the interfero-
meter the phase sensitivity can approach

(1.2)

Bondurant and Shapiro '" and Ni have also investigated
the use of squeezed states in increasing interferometer sen-
sitivity.

The interferometers considered by Caves and Bon-
durant and Shapiro3' were primarily passive lossless de-
vices with two input ports and two output ports. %'e will
show that the group SU(2) naturally characterizes such in-
terferometers and present group-theoretical arguments in-
dicating the ultimate sensitivity that can be achieved by
such devices. We will then introduce a class of active
lossless interferometers characterized by the group
SU(1,1). In these devices the interference arises not from
recombining light beams via beam splitters, but from the
phase-sensitive response of active elements such as
degenerate-parainetric amplifiers and four-wave mixers.
In contrast to SU(2) interferometers, SU(1,1) interferome-
ters can achieve a phase sensitivity of 1/N with only vac-
uum fluctuations entering the input ports and coherent

light pumping the active devices. SU(1,1) interferometers
can achieve a phase sensitivity of 1/N with fewer optical
elements than the SU(2) interferometers and hence present
a more practical way of doing sensitive interferometry,
once sufficiently low-noise parametric amplifiers or four-
wave mixers become available.

II. SU{2) CHARACTERIZATION
OF PASSIVE LOSSLESS DEVICES

WITH TWO INPUT AND TWO OUTPUT PORTS

lJ„=——(a ia2 —a2a& ), (2.2)

J,= —,(a ia i
—a2a2),

(2.3)

The operators (2.2) satisfy the commutation relations for

In this section the connection between a linear lossless
passive device having two input ports and two output
ports and the group SU(2) is presented. Since SU(2) is
equivalent to the rotation group in three dimensions, this
will allow one to visualize the operations of beam splitters
and phase shifters as rotations in 3-space. This insight
will be exploited in the next section to discuss the perfor-
mance of the Mach-Zehnder interferometer.

Let a i and a2 denote the annihilation operators for two
light beams which may be, for example, the two light
beams entering a beam splitter or the two light beams
leaving a beam splitter. These operators and their Hermi-
tian conjugates satisfy the boson commutation relations:

[a;,a, ]=[a;,a, ]=0,
(2.1)

[a;,a, ]=5;, ,

where i and j take on the values 1 and 2. One can intro-
duce the Hermitian operators

JX 2 (ala2+a2al )
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the Lie algebra of SU(2):

[J„,J»]=iJ, ,
e~"Be ~"=8+([A,B]++[A [A 8]]+

2f
(2.11)

[J», J,]=iJ„,
[J„J„]=iJ» .

(2.4)

The Casimir invariant for this group, using (2.2) and (2.3),
can be put into the form

J =——+1N
2 2

(2.5)

~ r

~ 1 t U11 U12 ~ 1 i

~2 out U21 U22 ~2 in
(2.6)

Since the creation and annihilation operators for the two
input beams and the two output beams must satisfy (2.1)
the matrix

in fact, N itself commutes with all the operators of (2.2).
Why one should want to characterize a lossless passive

device with two input ports and two output ports with the
operators (2.2) and (2.3) will now be explained. Let a I;„
and ai;„denote the annihilation operators for the light
entering the two input ports and similarly let ai,„, and
a2,„, denote the annihilation operators for two light
beams leaving the two output ports. The scattering ma-
trix for the device will have the form

One can alternatively work in a Schrodinger picture where
the operators J„, Jz, and J, remain unchanged but the
state vector, after interacting with the beain splitter, be-
comes

(out)=e ' " ~in), (2.12)

cos— —sin—
2 2

(2.13)
sin—

2
cos 2.

At radio frequencies devices with the scattering matrix
Eq. (2.8) and Eq. (2.13) would be distinguished, respix;-
tively, as 90' and 180' couplers. The scattering matrix Eq.
(2.13) transforms J according to

where
~
in) is the state vector for the light before it has

interacted with the beam splitter. Throughout this paper
we will hop back and forth between the Heisenberg pic-
ture where J is rotated while the state vector remains
fixed and the Schrodinger picture where J remains fixed
depending on which picture is most convenient for the
discussion at hand.

Another realizable scattering matrix for a beam splitter
1S

U12

U» U22
(2.7)

acos—
2

a—i sin—
2

must be unitary. Such a transformation will in general
transform J„,J», and J, among themselves.

How J=(J„,J», J, ) transforms under U will now be
determined for some common optical elements.

Consider a beam splitter with the scattering matrix

Jy

Jg
, out

cosP 0 sinP Jx

0 1 0 Jy
—slilP 0 cosP J

in

(2.14)

J„
Jy
J

out

J„
py

X —iPJ
e (2.15)

This transformation represents a rotation of J about the y
axis by an angle p. This transformation can be written as

U= a—i sin—
2

a
cos 2.

This transformation will transform J according to

(2.8)
Hence in the Schrodinger picture where J remains fixed
the state vector for the light after interacting with the
beam splitter is

0 0
~out)=e

' ' ~in) . (2.16)

J,
out

0
0 sina cosa J

in

cosa —sina J~ (2.9)
How J transforms under a phase shift or change in op-

tical path length is now determined. Let light beams 1

and 2 incur a phase shift yi and y2, respectively. The uni-
tary matrix associated with this process is

That is, the abstract angular momentum vectors are rotat-
ed about the x axis by an angle a. This transformation
can be expressed in the form

e'' 0

0 ~2 (2.17)

J„
Jy
J

out

J„
Jy
J,

—i aJ„
e (2 10) Under this transformation J transforms as

cos(y2 —y I ) —slil(yp —y I ) 0 J
where the angular momentum operators on the right-hand
side are evaluated for the input beams a I;„and a2;„. The
equivalence of (2.9) and (2.10) can be checked using the
operator identity

Jg
out

sin(y2 y1) co—s(y2 —
y I ) 0 J»

0 0 1 J,
(2.18)

This represents a rotation about the z axis by the angle
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J,
L

(2.19}

Hence in the Schrodinger picture this represents a
transformation of the incoming state vector

~
in) accord-

ing to

~out)=e
' ' ' *(in) .

It is worth noting that under the full transformation Eq.
(2.17) the incoming state transforms as

i (y &+y2)N/2 —i (y2- y &
)J

~

out} =e ' ' e ' ' '~in) but since jib com-
t'(y)+y2)N/2

mutes with J the operator e ' ' gives rise to phase
factors which do not contribute to the expectation values
or moments of number-conserving operators such as J
and X. In fact, it is the insensitivity of photodetectors

I ~y, +y, iNi2
(photon counters) to the extra phase e ' ' that
allows one to fully characterize an interferometer by the
SU(2) transformations described above. It has now been
shown that the transformations the beam splitters and
phase shifters perform on the two incoming light beams
can be visualized as rotations of the vector J. Further,
since the operator (a iai or a2a2) characterizing the num-

ber of photons counted by a photodetector placed in one
of the light beams can be expressed in terms of the opera-
tor X and J„interferometry can be visualized as the pro-
cess of measuring rotations of J. The operators giving
rise to the mode transformations of Eqs. (2.12},(2.16), and
(2.20) have also been recently discussed by Schumaker in
Ref. 6 where they are referred to as two-mode mixing
operators.

y2 —yi corresponding to the relative phase shift between

the two light beams. This transformation can be ex-

pressed as

depicted in Fig. l. It consists of two 50-50 beam splitters
Sl and S2. The relative phase shift $=((tz —P, is mea-
sured by observing the interference fringes in the light
leaving S2. Here, as depicted in Fig. 1, the case mi11 be
considered where the photodetector is placed in each of
the two output beams a]o„t and a20gt By counting the
number of photoelectrons generated by each detector, D,
and D2, separately, one measures the operators
jtIi ——a i,«a»«and E2 ——a20«a20«From Eqs. (2.2) and
(2.3) one sees that this is equivalent to measuring both
X.„, and Jg,„,.

A geometrical picture of the operation of the inter-
ferometer will now be developed. For definiteness the
beam splitters Sl and S2 will be chosen to have scattering
matrices of the form (2.8). For a 50-50 beam
splitter u must take on the value n./2 or rr/2. —For the
beam splitter Sl we take a=+n/2, f.or the beam splitter
S2 we take a= —n/2. Let

~

in) denote the state vector
for the light in the two light beams entering the inter-
ferometer. From Eq. (2.12) the state

~
P) of the light

z

% ~~

I

I
t I

I
I

tI

III. THE MACH-ZEHNDER INTERFEROMETER

The formalism of the last section will now be applied to
the Mach-Zehnder interferometer. This interferometer is

2

2 Out

Cl

02 in

FIG. 1. A Mach-Zehnder interferometer. Light entering one
of the two input ports a&;„or a2;„ is split into two beams by
beam splitter Sl. The two light beams bl and b2 accumulate a
phase shift ((i~ and P2, respectively, before entering beam splitter
S2. The photons leaving the interferometer are counted by
detectors D1 and D2.

(c)

FIG. 2. A rotation-group picture of the performance of a
Mach-Zehnder interferometer. %'hen light enters only one input
port of the interferometer the input state has the form

~ j, m)=
~ j,j) in a fictitious (J„,J~,J,) space and can be

represented by a cone centered along the z axis with height j (a).
The first beam splitter performs a —~/2 rotation about the x
axis. The cone now lies along the y axis (b). The phase shifts
accumulated by the two light beams in the interferometer corre-
spond to a rotation —P about the z axis (c). The second beam
splitter performs a m/2 rotation about the x axis (d). Since I, is
proportional to the difference in the number of photons counted
by the two photodetectors in the interferometer output beam the
interferometer can resolve states whose overall rotation is suffi-
ciently far from the z axis so that on average the J, measured
will differ from j by one. In order for this to be the case the
cone must be rotated by approximately the width of its base
which is V j. Hence the minimum detectable p is of order
I/O j.
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upon leaving the Sl is

(3.1)

which amounts to a rotation of the state vector about the
x axis by an amount —m /2. This is depicted in Figs. 2(a)
and 2(b) where for definiteness

~

in) was chosen to be the
state

~ j,m = j&, that is, J lies on the circle surrounding
the base of the cone in Fig. 2(a). With a —n./2 rotation
about the x axis this cone now lies along the y axis.

Upon reaching the input ports of 82 one light beam ci
has undergone a phase shift of Pi while the other c2 has
undergone a phase shift (()z. Thus, from Eq. {2.19), upon
arriving at S2 the light is in the state

~

f'&:

—i(i2 —i &)J~ —i(~/2)Jx
~

(3.2)

Hence, as depicted in Fig. 2(c), the phase shift rotates the
state vector about the z axis by an amount

The second beam splitter rotates the state vector
~

g'&

about the x axis by an amount m/2. The state vector

~

out & for the light leaving the interferometer is thus

i(~/2 Jx —i($2 —Pt)Jz —i(W/2)J»=e xe 'e " inj .

From this, using (2.5) one concludes

j(j+1)=——+1
2 2

(3.5)

or

J=2 (3.6)

that is,
~

in) was an eigenstate of J .
The other variable measured, J„allows one to infer

what the value of P was. In particular,

As shown in Fig. 2(d}, the net result of this sequence of
rotations is a rotation of the initial state vector about the

y axis by an amount P.
As pointed out earlier, by placing photodetectors in

both of the output beams one can measure both N (the to-
tal number of photons passing through the interferometer)
and J, (the difference in the number of photons arriving
at each detector divided by 2). Because N commutes with
J it by itself gives one no useful information about P. It
does, however, give one useful information about

~
in), in

particular the total number of photoelectrons n counted
after the light has passed through the interferometer tells
one that

~
in & was in an eigenstate of N:

(3.4)

i(n/2 Jx if' I(e 2)J» i(m/2)J» —i'~ —i(n/2 Jx(out J, outj=(in e xe 'e J,e xe 'e " inj . (3.7)

One can show From (3.6) and (3.11) one concludes that the incoming
light beam was in an eigenstate of

~ j,m &

i (~/2 )&z iPjg —i (~/2 )J» i ( ~/2 )Ix —i PJ, —i ( ~/2 )&»e xe 'e "Je xe 'e
~
in) = ~j =n/Z, m =n/2& . (3.12)

= —(sing)J, +(cosg)J, . (3.8)

& J, & =&out
i J, i

out&

= —sing&i"
I
J

I
'n&+cosP&in

) J, (
in& (3.9)

(J,'& = (out i J,' i
out &

=sin'y&in
[ J,' [ in&

—sing~(in
~

J J +JJ
~

in&

+cos P(in
~
J,

~

in & . (3.10)

To proceed further one nexls additional information on

~

in). Let us suppose the interferometer is operated in the
usual manner where light enters the interferometer only
along one of the input beam paths, say ai. Then from the
total number of photons n counted by Dl and D2 one
knows that there mere n photons in the incoming light
beam. Hence

~
in) is an eigenstate of J,:

Hence the incoming light is in the eigenstate that was de-
picted in Fig. 2.

Intuitively the smallest P that can be measured is one
where the cones of Fig. 2(d} do not appreciably overlap.
The distance from the apex of one of the cones to a point
on the circle of the cone's base is the square root of the
eigenvalue of J or v'j(j+ I). The distance from the
apex of one of the cones to the center of its base is the
eigenvalue of J, or j. Hence the radius of the base of one
of the cones is [j(j+I)—j ]' =~j. The minimum
detectable p is thus of order p;„=j '~, and since from
Eq. (3.12)j=n/2,

—1/2P;„=n (3.13)

Hence the sensitivity of an interferometer operated in the
mode where light enters only one of the two input ports
has a sensitivity that goes as the square root of the num-
ber of photons passing through the interferometer.

Equation (3.13) is now made more rigorous by a direct
calculation from Eq. {3.9) and Eq. (3.10). For the state
(3.12) the mean value of J, is

J,
~

in) =—
~

in) .
2

(3.11) J,=—cosP .
2

(3.14)
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The mean-square fluctuation (M, ) about this value is

(M} =J —Jsing�.

(3.15)

The mean-square noise in P is thus

(hJ, )(&p)'=
QJ il

(3.16}

IV. THE FASRY-PEROT INTERFEROMETER

Hence the rms fluctuation of P due to photon noise goes
as n-'",

(3.17}

in agreement with the intuitive argument based on Fig. 2.
We will refer to (3.17) as the "standard noise limit" for an
interferometer.

Note that no assumption was made about the quantum
statistics of the source of light entering the interferometer.
The total number of photons n entering the interferometer
completely characterizes the ultimate sensitivity that can
be achieved with an interferometer in which light is fed
into only one input port. If instead of using photodetec-
tors in both output ports and measuring N and J, one
chooses to use only one photodetector or to measure only
J„ then one is throwing away information. In this case
knowledge about the photon statistics of the source be-
comes important. For this situation the performance of
the interferometer will generally degrade although for
some particular values of Pi —((}z the n' phase sensitivi-
ty can still be achieved.

As will be pointed out in Sec. V, the sensitivity of an in-
terferometer can be dramatically improved if photons are
allowed to enter both input ports provided the photons are
prepared in the right quantum state.

b&
——cos( —,

' p)a„„+isin( ,
' p)bi, —

azoU,
——+i sin( —,

' P)a ];„+c»(—,'P)bi,
(4.1)

and for the mirror M2

a i,„,——cos( —,p)c i i sin—( —,
' p)a2;„,

c2 —— i sin( —,
'—p)c i +cos( —,

' p)a2;„.
(4.2)

In writing (4.1) and (4.2) it has been assumed that both
mirrors have the same transmission coefficient

T=cos ( —,'p) . (4.3)

The phase shift 8 sustained by the light as it propagates
between the two mirrors is given by

Ci=8 6

bz ——e' c2.i8
(4.4)

Equations (4.1)—(4.4) can be solved to obtain a&,„„az,„,
in terms of a i;„and az,„. One finds

A Fabry-Perot interferometer is depicted in Fig. 3(a). It
consists of semitransparent mirrors Ml and M2. This in-
terferometer measures the phase shift P suffered by light
as it propagates from one mirror to the other. This device
has two input ports a&;„and az;„, and two output ports
a(,„, and a2,„,. Although a),„and a2,„, and a2;„and
a &,„, are collinear they can be separated with optical cir-
culators as shown in Fig. 3(b). In this manner one can
place photodetectors in both beams a ),„, and a2,„,
without obstructing the light injected into a&;„or aq;„.
Hence one is allowed to measure N and J, for the two
output beams.

An analysis of the Fabry-Perot interferometer is now
carried out. The mirrors M1 and M2 will be taken to
have scattering matrices of the form Eq. (2.8), In particu-
lar for the mirror Ml we take

In the last section a geometrical picture of the operation
of the Mach-Zehnder interferometer was presented in
terms of rotations of the operators (J„J~,J,) defined by
Eq. (2.2). Photodetectors placed in the output beam of the
interferometer measure the operator J,. A relative phase
shift between two optical beams produces a rotation of J
about the z axis, see Eq. (2.19). A measurement of J„
however, is only sensitive to rotations in a plane contain-
ing the z axis. The function of the two 50-50 beam spli-
tters is thus to convert a rotation about the z axis into a
rotation in a plane containing the z axis. For the particu-
lar set of beam splitters chosen in the last section this cor-
responds to a net rotation in the x-z plane as depicted in
Fig. 2.

The Fabry-Perot interferometer, by employing semi-
transparent mirrors, also con~erts a rotation about the x
axis into a rotation lying in a plane containing the z axis.
One can also take advantage of the multiple passes of the
light between the two mirrors to enhance the sensitivity of
the interferometer, but at the expense of the
interferometer's bandwidth. Here expressions are ob-
tained for the phase sensitivity of a Fabry-Perot.

Ol bi o(out

O2 out O2 In

(a)

O& out

out

(b)
FIG. 3. A Fabry-Perot interferometer. The device (a) con-

sists of two semitransparent mirrors Ml and M2. The light
propagating between M1 and M2 suffers a one-may phase shift
8. In {b}circulators C have been placed behind the mirrors to
physically separate the incoming and outgoing light beams. It is
evident that the Fabry-Perot interferometer has two input ports
and two output ports.
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&iou~

a20gg

P —V ~tin
or in terms of the transmission coefficient T for the mir-

(4 5) rors

where
dp
d8

4(1—T)'/
T

(4.15)

cos ( —,
' p)e'

1 —sin ( —,'P)e '

i sin( z P)(e ' —1)

1 —sin ( —,'P)e 'e

(4.6)

min = TAP

4(1—T)'" (4.16)

Hence the smallest rms fluctuations in b,8 achieved by a
Fabry-Perot is

The scattering matrix of Eq. (4.5) is unitary. Using Eq.
(2.2) one can determine how J transforms under this uni-
tary transformation. One finds

J„
out

where

cosP 0 sinP

0 1 0 Jy
—sinP 0 cosP

lQ

(4.7)

sinp =p' v+ v']u .
(4.8)

So the Fabry-Perot interferometer, for the mirrors chosen,
performs a rotation of J about the y axis. Hence, follow-
ing the same line of reasoning as in the last section, if
light enters the Fabry-Perot in only one input port the ul-
timate phase sensitivity hp is given by

For mirrors with a small transmission coefficient T, and
using (4.9)

T
~8min — ] /24n

(4.17)

Hence, as with the Mach-Zehnder, the sensivity of the in-
terferometer scales as n '/ where n is the total number
of photons entering the interferometer. As with the
derivation of (3.17), Eq. (4.17) is based on the assumption
that light enters only one port of the interferometer.

In the next section it is shown that the sensitivity of an
interferometer can be greatly enhanced if light, prepared
in a suitable quantum state, is allowed to enter both ports
of the interferometer. Although the arguments will be ap-
plied to the Mach-Zehnder, with the tools developed in
this section, they can be applied to the Fabry-Perot inter-
ferometer as well.

n
—1/2 (4.9)

In order to determine what this implies for the ultimate
phase sensitivity 58 one needs to evaluate ~dp/18~.
With Eq. (4.6},Eq. (4.8) becomes

cos ( —,
'
P) —4sin ( —,

' P}sin 8
(4.10)

cos ( —,
' p)+4 sin'( —,

' p)sin'8
cosp=

4cos ( —,
' P)sin(-,' P)sin8

a]lip = +
cos ( —,P)+4sin ( —,'P)sin 8

and thus P is given by

(4.11)

p=arctan
4cos ( —,'P)sin( —,

' P)sin8

cos ( —,'P) —4sin ( —,P)sin28
(4.12)

Differentiating this equation with respect to 8 one obtains

4cos ( —,
'

P)sin( —,
' P)cos8

cos ( —,P)+4sin ( —,'P)sin 8
(4.13)

dp
d8

4
~

sin( —,
' p}

~

cos ( —,'p)
(4.14)

The Fabry-Perot is most sensitive for those angles 8 for
which ~dP/18~ is maximized. From Eq. (4.13) one sees
that the sensitivity is greatest when

~

cos8
~

= 1 and
sinP=O. So

V. SURPASSING THE STANDARD NOISE LIMIT

In the last two sections it was shown that an inter-
ferometer can be regarded as a device which performs ro-
tations on the operators (J„J~,J,) defined by Eq. (2.2).
Photodetectors placed in the output beam of the inter-
ferometer measure the operator J,. Hence the overall ro-
tation must lie in a plane containing the z axis. For the
choice of beam splitters used in the Mach-Zehnder of Sec.
III and the mirrors used in the Fabry-Perot of Sec. IV this
rotation was in the x-z plane. [See Eqs. (3.8) and (4.7)].

For the Mach-Zehnder the sequence of rotations per-
formed is depicted in Fig. 2. A cone was used to
represent a J, eigenstate. Based on how such an object
transforms under the rotations performed by the inter-
ferometer a minimum detectable phase shift of order
n ' was derived. As will be shown, a J, eigenstate is
not the optimum eigenstate for interferometry. In partic-
ular, by forming a linear superposition of J, eigenstates
near m =0, one might imagine constructing a squashed
cone or "fan-shaped" state lying in the x-y plane as de-
picted in Fig. 4(a). Such a state constructed from a super-
position of J, eigenstates near m =1 would have an ex-
tent along the z axis of order unity. Figure 4 indicates
how such a geometrical object would transform under the
rotations performed by the interferometer. Since the ex-
tent of the state along the z axis is —I and the distance
from the origin to the edge of the cone is —j, Fig. 4(d)
would indicate that the minimal detectable p is p;„-1/j.
Or, from Eq. (3.6},
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(~,)'= —,
' [j(j+1)—1],

(b J~) = —,'[j(j+1)——,'] .
(5.7)

Equations (5.5) and (5.7) indicate that the state is oriented
along the x axis and is very broad along the x and y axes.
This state could thus be represented by a geometrical ob-
ject similar to that depicted in Fig. 4(a). One can also
show that

[b) (in
~
J„J,

~

in&= —,'[j(j+1)]'~
and consequently

(in
~
J,J,+J,J,

~

in) = —,
' [j(j+1}]'

(5.8)

The rms fluctuations in P for this state will now be
determined. Substituting Eqs. (5.3} and (5.5) into Eq.
(3.9), J„half the mean differenced photocurrent, is given
by

J,= ——,[j(j+1)]'~sing+ —,cosp . (5.10)

Substituting Eqs. (5.6) and (5.9) into Eq. (3.10) one has

FIG. 4. The performance of a Mach-Zehnder interferometer
in which an input state, of length j when depicted in the
(J„,J~,J,}space, is a flattened cone whose width along the z axis
is of order unity. The sequence of rotations performed by the
interferometer is the same as that of Fig. 2. In contrast to the
state depicted in Fig. 2, an overall rotation P-1/j can be
resolved with the state depicted here.

J, = —,
' [j(j+1)——,

'
]sin p+ —,cos p .

The mean-square fluctuation in J, is then

(bJ, ) = ,
' [j(j+1—)—1]sin p+ —,'cos p .

The mean-square fluctuation in P is given by

(&((})'=
(bJ, )'

(5.1 1)

(5.12)

(5.13)

P;„-I jn . (5.1)

~
j,0&+

~ 1 1

2 2

From this equation one can immediately show

(5.2)

Hence, by choosing the appropriate incoming state
~
in),

an interferometer's sensitivity can be greatly improved
over the n '~ sensitivity of Eq. (3.17) or Eq. (4.9).

The above discussion is now made rigorous by explicitly
exhibiting a state with the properties described above.
Consider the state

or

[j(j + 1)—1]sin p+ cos~p

[ [j(j+ 1)]'~ cos((}+sing I
'

This quantity has its minimum value when sing =0, then

(5.14)

(&p)';„= . .
1

(5.15)
J J+1

or in terms of the number of photons passing through the
interferometer, since j= n /2,

(in
(
Jk

~

in & = —,
' . (5.3) (&p)';„=

n n+2 (5.16)

Hence this state lies close to the x-y plane and has a
mean-square height of order unity,

(5.4)

Hence when the state Eq. (5.2) is fed into the input ports
of an interferometer a minimum rms fluctuation b,Pm;„ in
the phase of order n ' can be achieved:

It is also straightforward to show that

(in
~
J„in& = —,

' [J(J+1)]'",
(in

( Jy
~

in) =0,

(in
~
J»

~

in&= —,'[j(j+1)——,'],
(in

~ Jz ~
in) = —,

' [j(j+1)—i ] .

So the mean-square uncertainties in J„and J~ are

(5.5)

(5.6}

2
~4min-

n
(5.17)

This maximum sensitivity is however achieved only at
particular values of P satisfying sing =0. For other values
of P the sensitivity of the interferometer is degraded.
Since /=Pi —$2, Pi may be tracked as a function of time
with the precision Eq. (5.17) by controlling $2 with a feed-
back loop which maintains Pi —P2 at zero. The error sig-
nal for this loop is the differenced photodetector current
2J, . The use of feedback loops with be further discussed
in Sec. VII.
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A state
I
in) which allows an interferometer to achieve

phase uncertainty of order n ' has now been presented.
How one prepares light in such a state, or a state similar
to it, is the topic of the next section. Here we simply
point out some properties of the state

I
in) of Eq. (5.2). It

is a superposition of the states
I j,O) and

I j,l). For the
state

I j,O), X has the eigenvalue n =2j and J, has the
eigenvalue m =0. Equations (2.2} and (2.3) allow one to
recognize this state as one in which exactly j photons
enter each of the two input ports of the interferometer.
For the state

I j, l), N has the eigenvalue n =2j and J,
has the eigenvalue m =1. This state can be recognized as
one in which exactly j+1 photons enter the input port
a1;„while exactly j —1 photons enter the input port a2;„.

VI. THE T%'0-MODE FOUR-%'AVE MIXER

In the last section it was shown that the sensitivity of
an interferometer could be greatly improved provided one
could prepare the light delivered to the input ports of the
interferometer in a state which consists of a superposition
of two states, one in which exactly j photons enter each of
the two input ports in the interferometer and a state in
which j+1 photons enter one port while j—1 photons
enter the other port. In this section it is shown that states
similar to this can be generated with two-mode four-wave
mixers. For the analysis of such a device it will be con-
venient to introduce a set of operators whose commuta-
tion relations are those for the generators of the group
SU(1,1}.

In particular we introduce the Hermitian operators

K„=—,
' (a la z+a laz),1

a 1 out S11 S12 a 1 in
t = S2 out 21 22 a 2 in

L

(6.7)

Both backward degenerate four-wave mixing in which
two counter propagating pump beams pass through the
nonlinear medium, and forward four-wave mixing, in
which the pump beam propagates in only one direction
through the nonlinear medium, perform mode transforma-
tions'4 of the form (6.7). Since the incoming and outgoing
creation and annihilation operators lnust satisfy (2.1), the
following restrictions are placed on the S;J'

S11S21——S12S22

From these relationships one can show

(6.&)

(6.9)

where J, is given in Eq. (2.2). In fact, the operator J,
commutes with all the E;.

There has been a considerable amount of theoretical
work, beginning with Yuen and Shapiro, ' on four-wave
mixers as possible sources of squeezed states. The reader
is directed to Reid and Walls" and references therein for
work that has been done on four-wave mixers. For the
purposes of this paper, a four-wave mixer will be regarded
as a device with two input ports a1;„,a2;„and two output
ports al,„„az,„, which performs the mode transforma-
tion of the form' '

K = ——(a,az —a, az),

K, = —,
' (a',a, +aza z ) .

(6.1) The phases of the S;~ are controlled by the pump phase.
How the operators (6.1) transform under the scattering

matrix (6.7)

The commutation relations for these operators,

[K~,Ey ]= iKg, —

[Ky,Kg ]=iK„, (6.2)

[Kg,K ]=i',
can be recognized as those belonging to the group '
SU(1,1). It is also useful to introduce the raising and
lowering operators

S11 S12
S21 S22

L

(6.10)

cosh( —,
'
P) e ' sinh( —,

'
P)

e'ssinh( —,
'
P) cosh( —,

'
P)

(6.11}

will now be determined for some particular examples. A
possible realization of S is

E+ ——E„+iX~ =a 1a 2,
E =K„—iK~ =a1a2

which satisfy the commutation relations

[K,K+ ]=2K, ,

[K„K+]= +K+ .

The Casimir invariant E is

(6.3)

(6.4)

where 5 is controlled by the phase of the pump light rela-
tive to some master clock and p is related to the refiectivi-
ty R of the four-wave mixer (when it is used as a phase-
con]ugatlng mirror) via slllll ( p p) =R.

VA.en the pump phase is set such that 5=m./2 Eq.
(6.11) becomes

cosh( —,
' P) i sinh( —,

' P—)

(6.5) i sinh( —,
'
P) cosh( —,P)

(6.12)

which upon the substitution of Eq. (6.1) becomes

K =Jg(Jg+1),
Under this transformation, the vector K.=(K,E~,K, )
transforms as
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E„ 1 0 0 Ex

K» = 0 coshP sinhP K»

0 sinhP coshP
out in

(6.13) Ey

E,
out

E
—i($)+$2)K i(p j +$2)K=e Ey e (6.22}

which represents a Lorentz boost along the y axis, where z
transforms as time. This transformation can be expressed
in the form

~

out&=e' '+ " '
~

in& . (6.23)

In the Schrodinger picture the state vector is transformed
as

E„
Ey
E,

E„
i PK„ —iPKX (6.14) The transformation (6.11) can be factorized into the

Equivalently, in the Schrodinger picture where K remains
fixed the state vector transforms as

cosh( —,
'
P)

cosh( —,
'
P) e 'ssinh( —,

'
P)

S(5)S(P)S(—5)= e'sinh —,
'

~out)=e "~in) . (6.15)
(6.24)

When the pump phase is set at 5=0, the scattering matrix
(6.11) becomes

where

cosh( —,
'
P) sinh( —,

'
P)

sinh( —,
'
P) cosh( —,

' P)

Ey

E,
, out

coshP 0
0 1

sinhP 0

sinhP Kx

0 Ey
coshP

in

Under this transformation K transforms as

(6.16)

(6.17)

—i5 0
S(5)=

cosh( —,
'
P) sinh( —,

'
P)

S(P)= 1

sinh( —,P) cosh( —,P)

i5 0
S( —5)=

()

(6.25)

(6.26)

(6.27}

This transformation has the form of a Lorentz boost
along the x axis and can be expressed in the form

E„ E„
(6.18)

E, E,

In the Schrodinger picture the state vector is transformed
as

From (6.20) the transformation S(—5) can be recognized
as a rotation about the z axis by an angle —5. S(P)
represents a Lorentz boost along the x axis, and S(5)
represents a rotation about the z axis by the angle 5. The
product of transformations Eq. (6.24) thus represent a
Lorentz transformation along a direction making an angle
5 with respect to the x axis. Hence, in the Schrodinger
picture, after the incoming light

~

in) has passed through
a four-wave mixer, it will be in the state

~out)=e»~in) . (6.19)

—i5K iPK i5K
~out)=e 'e "e *~in) . (6.28)

The operators performing the transformations of Eqs.
(6.15}and (6.19) are two-mode squeeze operators. ' '

At this point it will be useful to determine how K
transforms when the two input light beams sustain phase
shifts. Letting ai;„undergo a phase shift of Pi and a2;„
undergo a phase shift of Pz, then

i/i
e

0 e
—i')2 (6.20)

Under this transformation, K transforms as
T

K„cos(Pi+$2) sin(Pi+$2) 0 K„

K» = —sin(P, +$2) cos(Pi+/&) 0 K»

E, 0 0 1 E,
(6.21)

which can be recognized as a rotation about the z axis by
an angle P= —(Pi+$2). This transformation may be ex-
pressed as

It has now been demonstrated that a four-wave mixer
performs Lorentz transformations on the vector K, the
direction of the Lorentz boost being determined by the
pump phase which is at the experimenter's control. Since
J, commutes with K, it remains unchanged under the
transformations performed by the four-wave mixer.
From Eq. (2.2) one sees that this invariant is equal to half
the difference in the number of photons entering the input
port of the four-wave mixer. This invariant has been not-
ed by Graham~5 and Rejd and Walls.

Let us now consider the case when no light enters the
input ports of the four-wave mixer. The state delivered to
the output is then given by Eq. (6.28) where

~

in) is the
vacuum state

~

0).
The probability amplitude that n j photons will appear

in the output beam a&,„t and n2 photons in the beam

about &S

—i5K iPK i5K
( &, n~no2ut) = (ni, n2

~

e 'e 'e '
~

0), (6.29)

where the state
~

n i,n 2 ) is
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nl t n2(ai.„,) (a2...}
I
ni, n2)= Io

ni!n2!
(6.30)

n] photons and the beam a2,„, n2 photons is thus

P ( n „n2 ) =5„„,sech ( —,
'
P)[tanh ( —,

'
P) ]

' . (6.41)

From (6.1) one sees that K, can be put in the form

K, = —,(N i +N2+ 1), (6.31)

From this equation one sees that P(ni, n2} is zero if
ni+n2. For the vacuum state one has

i5K ~ i(5/2)(n(+n2+1)
e * n, , n, &=e

So Eq. (6.29) simplifies to
—i{5/2){n&+n2), , iPK„,(n„n, I

out) =e

(6.33)

(6.34)

where X~ ——a ~p„tQ]p~t and X2:Q2tpgta2p„t are the number
operators for output beams 1 and 2, respectively. With
this equation it is readily apparent that

z Io) i5/2IO) (6.32)

and

(6.42)

Since J, is an invariant for the four-wave mixing process,
when there are n] photons in beam 1 there must be n]
photons in the second beam as well, that is, the photons
are emitted in correlated pairs. These photons are in fact
more highly correlated than allowed classically. ' '

From (6.41) the mean (n) and the mean-square (n )
number of photons emitted by the four-wave mixer can be
computed:

(n) = g (ni+n2}P(ni, n2)
n&n2

In order to simplify things further we make use of the
identity9

=2sinh ( —,
' P), (6.43)

exp(rK+ ~*K —) =exp tanh
I
~ K+

7

(n )= y (ni+n2) P(ni, n2)
fl )52

=4[sinh2( —,
' p)cosh ( —,

' p)+sinh ( —,
' p)] . (6.44)

X exp[ —2(ln cosh
I
~

I K, ]
The mean-square fluctuation in n is rather large:

+exp tanhIrI K
1 so

(i((,n) =4sinh ( —,'P)cosh ( —,'P) (6.45)

X exp[i tanh( ,
' p)K ] . —

From (6.3) K =aia2, hence

exp[i tanh( —,
' P)K ] I

0) =
I
0) .

(6.36)

(6.37)

Making use of Eq. (6.31}one has

exp[ —21n cosh( —,P)K, ] I
0) =sech( —,P} I

0) . (6.38)

Finally, using (6.3)

exp[i tanh(Y'p)K+]
I

0& = g [i tanh(Y'»]"
I

n n &

n=0

(6.39)

where
I

n, n ) is defined by (6.30).
Collecting the results, Eq. (6.34), (6.37), (6.38), and

(6.39), one has
—i{5/2){nl +n2)(ni, n2

I
out) =5„,„e

(6.35)

iPK„
Hence, noting (6.1) and (6.3), e ' can be put into the
orm

e i' =exp[i tanh( —,
' p)K+ ]exp[ —2 ln cosh( —,

' p)K, ]

f2

I2 o&= '"
Io)

2
(6.47)

is fed into the input ports, that is, if two photons are
forced to enter the input port a „„ofthe four-wave mixer,
then the eigenvalue m for J, is I. If one thus measures a
total of n photons leaving the four-wave mixer one can
infer that the light leaving the four-wave mixer is in the
state

I j,1) where again j=n/2.
If now the light entering the input port is a superposi-

tion of a vacuum state and the
I
2,0) state of Eq. (6.47),

(b,n)

(n &'
=coth ( —,P) & 1 .

Hence the light emitted is super-Poissonian but ap-
proaches Poissonian as P becomes large.

We are now in a position to argue that a four-wave
mixer can generate states similar to the one described in
the last section, Eq. (5.2). The case when no photons
enter the input port of the four-wave mixer has already
bmn discussed. The eigenvalue m of J, is 0. Hence if a
total of n photons were measured coming out of the four-
wave mixer one can infer that the light leaving the four-
wave mixer was in the state

I j,o) where, from Eq. (2.5),
j= /n2

If instead the state

X sech( ,
'
p) [i ta—nh( —,

' p)] ' . (6.40)

The pmbability P(n i,n2) that the beam a(,«will contain I
in) =

I
0)+

I
2,0),1 1

2 2
(6.48}
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then upon measuring n photons leaving the four-wave
mixer all one can infer is that the state leaving the four-
mixer is in a superposition of the states

~ j,0) and
~ j, l).

Hence a four-wave mixer can generate states of the form
(5.2) provided the state (6.48) is fed into its input.

From a practical point of view the state Eq. (6.48) may
be hard to generate. It would be more practical to attenu-
ate laser light until on average there is one photon per unit
coherence time propagating along the beam. The input
state generated by feeding this coherent state into the in-

put port a„„ofthe four-wave mixer will have a strong
overlap with states

~

n „nz ) only when n, is small and nz
is D. Consequently, (J, ) and hJ, for the light fed into
the four-wave mixer will still be of order unity. Such
light when passed through the four-wave mixer should
still produce "fan-shaped" states that will allow an inter-
ferometer to reach a phase sensitivity bP of order 1/n.
Interferometry, using the light coming from a four-wave
mixer fed with coherent states, will be discussed in detail
in the next section.

VII. ACHIEVING A PHASE SENSITIVITY OF 1/X

The device to be considered in this section is depicted in
Fig. 5. It consists of a Mach-Zehnder interferometer
whose input ports are fed by the output beams b& and bz
of a four-wave mixer. The four-wave mixing medium is
pumped with a laser. Part of the laser light is split off of
the main beam phase shifted, attenuated and then fed into
the input port a

&
of the four-wave mixer. The other input

port a2 is terminated with a cold blackbody absorber so
that no light enters the four-wave mixer from this port
The pump light's phase is controlled with the phase
shifter 5.

Letting a
&

and az denote the creation operators for the
light beams fed into the input ports of the four-wave
mixer, the state vector for this light

~
a) is defined by

a& a =a a (7.1)

az ~a)=0, (7.2)

J,= —,
' (a &a&

—ozaz) .

One can readily show

(7.3)

(7.4)

and

(hJ, ) = —, /a/ (7.5)

For
~

a
~

of order unity such a state will lie near the x-y
plane and have a spread along the z axis of order unity.

In order to compute the expectation values of J„and J»
at the output of the four-wave mixer it is necessary to ex-
press J„and J„ in terms of the operators a~ and az.
Again we choose the scattering matrix for the four-wave
mixer to be given by Eq. (6.11),

cos( —,
' p)

bz e' sinh( —,
'
P)

e ' sinh( —,'P) a&

cosh( —,
' P) u 2

(7 6)

Using this transformation, the output J„and J» expressed
in terms of the input creation and annihilation operators
are

J, = —,
' cos5sinhp(a &a, +a&a&+azaz+azaz)

——sin5sinhp(a &a ~
—a~a~+~z~z —&zuz)

4
+ —,'coshp(a )az+uz~)),

1J = — cos5 sin—hp(a ~a &

—a
~
a

~
—& z& z +&za z )

——„sm5 smhp(a ~a ~ +a ~at —aza z
—&z&z )

1 ~ ~

(7.7)

that is,
~
a) is a coherent state for a

~
and a vacuum state

for a2.
Since J, is an invariant under the transformation (6.7)

performed by the four-wave mixer, its expectation values
can be computed at the input port,

FIG. 5. A method by which the state depicted in Fig. 4 can
be generated and fed into an interferometer. The state is gen-
erated via a degenerate four-wave mixer (FWM) pumped via a
laser. A small fraction of the pump light is split off of the
pump beam, phase shifted by 8, attenuated by A and then fed
into one of the F%'M inputs, al. The input port a2 is terminat-
ed with a cold blackbody absorber 8. The two output ports bl
and b2 of the four-wave mixer are fed into the input ports of the
Mach-Zehnder interferometer. 5 is a phase shifter for the pump
light before it enters F%M1.

——coshP(a~az —&za~) .
l

2

The expectation values of J, and J» for the state
I
~~

can now be readily evaluated. Writing

(7.8)

a= [a [e-"
one has

(~
~
J„~~ ) = —,

'
~

a
~

sinhpcos(28 —5),
(a

) J» (
a) = —,

' )a (
sinhpsin(28 —5)

(7.10)

(~„)'=(&J» )'

(sinh p+ —, )+ —,sinh p .z

2

One also has

(7.11)

The mean-square fluctuation in J„and J~ is independent

of/ and 5:



BERNARD YURKE, S. L. McCALL, AND JOHN R. KLAUDER 33

(u i J,J,+JJ„ i
a)

a 2

( ~a
~

+1)sinhPcos(28 —5) .
2

(7.12)

Since from Eq. (3.8) J„„„measured at the output of the
interferometer, is

(7.22)(gyp (
I
+

I
+1)

)
a

(
[(X+I) —(

(
a

(

—1) ]
This expression can be optimized for ~a

~
holding N

fixed. One finds that for large N (bP) is smallest when

~

a
~

is close to 1, hence

J„„,= —(sing)J, +(cos4)J, , (7.13)
2

N
(7.23}

a 2

(M„„,) = sin PsinhiPS out

sing cosP sinhP cos(28 —5)
2

+—sin P sinh P+i (7.15)

The mean-square phase uncertainty b,P can be evaluated
via

one can now evaluate

(J„„,) = ——,
'

~

a
~

sing sinhP cos(28 —5)+ —,
'

~

a
~

cosP

(7.14)

This equation implies that the interferometer of Fig. 5

can achieve a phase sensitivity approaching I /E, and that
photons are most economically used by the interferometer
when the coherent state

~
a) fed into the input port ai

has its intensity reduced to
~

a
~

=1, that is, on average
only one photon per unit coherence time of the four-wave
mixer enters the input port a ~.

The sensitivity hP of Eq. (7.23) with the particular nu-
merical coefficient 2 cannot be achieved in practice. The
reason for this is now indicated. Equation (7.23) holds
only for $(1/N. Hence a practical interferometer em-
ployed to measure ({)i must incorporate a feedback loop
which adjusts p2 to follow p& such that /=pi pi 0. — ——
However, for angles P outside the narrow range

~ P ~

( 1/Ã the uncertainty in P, defined by Eq. (7.16), be-
comes

(&p) = ( Jzout)

B(J„„,&
(7.16)

' 1/2
4~a~2+1

(7.24)

This quantity is minimized with respect to the pump
phase 5 when 28—5=0, that is, cos(Q —5)=1. This
quantity is also near its minimum value when /=0.
When ({) is set to zero Eq (7.16).reduces to

(&p)'= 1
(7.17)

~a
~

sinh P
The parameter P will now be expressed in terms of the

mean number of photons (N) leaving the four-wave
mixer and

~

a
~

. This will allow us to optimize hP hold-
ing (N) fixed. From Eq. (6.31) the number operator N
can be expressed in terms of K„

which for small P and
~

a
~

=1 becomes

(7.25)

That is, the uncertainty in P is greater than P itself.
A feedback loop presented with a measurement of P

whose uncertainty is greater than P will generally not be
able to adjust ({)2 properly to drive p to zero. The uncer-
tainty b,P can be decreased by increasing

~

a
~

or by
averaging several successive measurements of P. In the
next section the problem of locking an interferometer to
/=0 will be discussed in more detail and the maximum
uncertainty in hP that a feedback loop can tolerate will be
determined.

N=2j:g —1 . (7.18)

Upon leaving the interferometer the state
~
a) has been

transformed, according to Eq. (6.28), into the state
~
P),

From Eq. (6.18) and Eq. (6.22) one has
—iSK —i pK i 5K —iSK i pK i 5K

(7.19)

N=(
~

a
~

+1)coshP —1 . (7.21)

This equation is easily solved for sinh P. Equation (7.17)
then becomes

=(cosg)(sinhP)K„+(sing)(sinhP}K~+(coshP)K, .

(7.20)

The mean number of photons leaving the four-wave mixer
can then easily be shown to be

VIII. TRACKING THE PHASE

In the last section an interferometer capable of achiev-
ing a phase sensitivity hP approaching I/N, where N is
the number of photons passing through the interferometer
per unit measurement time, was discussed. This sensitivi-
ty is only achieved, however, for a small range of angles
within 1/N of /=0. The interferometer can be made to
follow the phase P& with a sensitivity approaching I/N
provided a feedback loop is employed to adjust a controll-
able phase shifter Pi such that ({)=(t z

—({)i is maintained at
zero. The operation of the interferometer of the last sec-
tion with a feedback loop will now be discussed in more
detail.

The parameters 8, 5,
~

a ~, and P are under the control
of the experimenter. It will be assumed that 28—5=0
and that

~

a
~

and P are known. Then the quantum statis-
tics of the light entering the interferometer is well charac-
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terized and in particular one knows the numbers & J, & and
& J„&,which according to Eq. (7.4) and (7.10) are

&J„&=—, fa/ sinhP.
(8.1)

(cosP)J,—&J, &

(8.2)

For simplicity it will be assumed that P is small so that
the approximations sing=/ and cog=i can be made.
Then one can write

The differenced photocurrent is measured at the output of
the interferometer, that is, the photodetectors measure
2J, . A sequence of measurements will generate a string
of numbers, each of which is an eigenvalue of 2J, . One is
free to process these numbers and in particular one can
subtract &J, & from them and divide them by —2&J, &.

Then the sequence of numbers t d ~,d2, . . . I are eigenstates
of the operator D

n —1

g I'(m)= 1.—
m=n

The mean value & P(n) & is, using Eq. (8.5),

&P(n)&=(1 —A, )"&P(0)& .

(8.10)

(8.11)

It is apparent that the mean value of P(n) will converge to
zero only if

~

1 —A.
~

& 1. Hence the feedback parameter is
restricted to the range

0&A, &2. (8.12)

P&(0). It will be determined how rapidly Pz approached
P&(0) given the feedback algorithm (8.8). Equation (8.8)
iteratively substituted into itself yields

n —1 n —1 n —1

p(n)= g (1—AA„)y(0)+x g a,
k=0 k =0 m =k+1

(8.9)

where the product is defined in the usual way, except that

where

(8.3)

(8.4)

The mean-square value of P(n) can be obtained by
squaring (8.9) and then taking the expectation value. One
obtains

& [y(n)]'& = &(1—&A)'& "[y(0)]'

+X'&a'& g &(1—XA)'&"

Since

&A&=1,

&»=0
(8.5)

x'& As+a—A &y(0)

X g &(1—AA) &" ' "&1—kA&~

it is immediately evident that The sums can be evaluated to yield

(8.13)

that is, the sequence of numbers Id„d2, . . . ] are esti-
mates of P.

The phase shifter P2 of Fig. 5 will be taken to be con-
trollable. A feedback algorithm that will track P, main-
taining P =$2—

P& at zero will now be described. Let $2(i)
be the setting of $2 during the ith measurement. The
measurement provides the estimate of P(i) =$2(i) P&(i), —
d;, which is an eigenvalue of

&[P(n)] &=&(1—AA) &"[P(0)]

+A, (B )
q, 1 —&(1—A, A )&"

1 —&(1—AA) &

&(1 —XA)'&"—&1 —XA &"

&(1—AA) &
—&1—AA &

(8.14)
The expectation values &(1—A,A) & and &1 —A, A & can be
written, keeping in mind Eq. (8.5), as

D; =P(i)A; —8; .

The feedback loop then adjusts P2 to the new setting

(8.7)
&1 —aA&=i —a,
&(1—AA) &=(1—A) +A, (bA)

(8.15)

pq(i+1) =$2(i) —Ad;,

or in operator form

$2(i +1)=$2(i) AA [$2(i—) p&(i)]+—AB. (8.8)

where A, is a feedback parameter.
It is now assumed that the successive measurements are

performed on a time scale equal to the characteristic
coherence time of the four-wave mixer so that the ith
operators A; and B; are independent of the j operators AJ
and Bz. Then Eq. (8.8) can readily be iteratively substitut-
ed into itself. For convenience P~(i) will be held fixed to

Substituting these expressions into (8.14) one finally has

= [(1—A, )'+ A, '(hA )']"[P(0)]'
1 —[(1—A, ) +A, (b,A) ]"
1 —[(1—A, )'+ iP(b A )']

[(1—A, )~+A~(bA) ]"—(1—A, )"

[(1—A, ) +A, (b,A) ]—(1—A, )

(8.16)



BERNARD YURKE, S. L. McCALL, AND JOHN R. KLAUDER 33

A, (A2) (2. (8.17)

As a particular exmnple, consider the case when A, =1,
then

From this equation one sees that in order for ( [P(n)] )
to converge one must, in addition to (8.12), have
[(1—A, ) +k (b,A) ]"&1. This expression yields the re-
striction

approximately 1.44 measurements in order for pz to adjust
itself to the new Pi. Hence, on the average, the total num-
ber of photons NT used to detect this displacement is of
the order NT ——1.44N and b,P in terms of the total num-
ber of photons used is

(8.27)

& [y( )]')=(&A )'"[y(0)]'+&B'&

(AB—+BA)(bA)'"-' .

The mean-square value of P converges to

1 (b,A )—

(8.18)

{8.19)

Hence, by increasing the number of photons fed into the
four-wave mixer from 1 to

I
a

I
=2+~5=4.24, the in-

terferometer can be operated stably in a feedback mode
and $2 can detect changes in Pi as small as that given by
(8.27).

Consider now the case where, instead of choosing
I
a

I

large enough so that the feedback loop would be stable
with the feedback parameter A, set to unity, one chose

I
a

I
=1 as was done in Sec. VII in order to optimize the

sensitivity (7.22} with N fixed. In this case

1

ln(b, A )
{8.20}

We now substitute the results of Sec. VII into these ex-
pressions. One has

2
I
a

I
(sinh P+ —,

' )+ —,
'

sinh P
(b,A) =

I
a

I
4sinh2P

(8.21)

and

&B')=
Ia I

sinh2P
(8.22)

As P is driven to zero, the characteristic number of
measurements n that must be made to reduce P2 to 1/e of
its original value is

(bA) = —,',
(B')= . ,sinh P

(8.28)

(AB+BA) = 2

sinh

Since (b,A) &1 it is apparent from (8.18) that the feed-
back loop cannot be operated stably with the feedback pa-
rameter set to unity. In fact, from Eq. (8.17) it follows
that A, must be less than —', if the feedback loop is to be
operated stably. In order to make the e-folding time for

as short as possible we choose the value of A, which
minimizes

[(1—A, )'+ A.'(b A )')

(AB+BA) = 2

I
a

I
~sinhP

In the large-p limit Eq. (8.21) reduces to

(8 23) of Eq. (8.16), that is,

2
I
a

I

'+-'
(b,A )'= (8.24)

In order that the sensitivity (hP) not be degraded too
much from its minimum value (b,4) =(B ) [see Eq.
(8.19)], let us choose (b,A) = —,'. Then the characteristic
number of ineasurements necessary to reduce P to 1/e of
its original value is n =1.44. Prom (8.24} one sees that

I
a

I
has the value

I
a

I
=2+i/5. Using (7.21), Eq.

(8.19) becomes, for large N,

2{
I
a

I
'+I)'

&min-
IaI N

12.9
2N

1

ln[(l —A, ) +A, (hA) ]
For A, = —,

'
and (b A ) = —', one has, upon using Eq. (7.21),

(8.31)

(8.32)

(8.25)

1 2
(8.29)

1+(EA )

If pi(0) is held fixed (p2) settles to a steady-state value

(8.30)
1 —[(1—A, )'+ A, '(hA )']

The characteristic number of measurements which must
be made to reduce P2 to 1/e of its initial value is

Suppose Pi is stationary so that Pz has settled down and P
fluctuates with the mean-square value of (8.25), i.e.,

(8.26)

Then if a small disturbance should come along to displace
Pi by an amount hP from its quiescent value it will take

n =3.0 . (8.33)

Again consider the case where Pi has remained constant
for a long time so that the rms fluctuations in P have set-
tled down to the value determined by (8.32), 6/=1 07/N.
Suppose now that Pi is displaced instantaneously to a new
value a distance hP from its old value. It takes character-
istically three measurements for pz to adjust itself to the
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new P&. Hence, on the average, the total number of pho-
tons ET used to detect the change in P& is NT 3——N. The
sensitivit~ of the interferometer, operated with

~
a

~

=1
and A, = —,, is thus expressed in terms of the total number

of photons needed to observe the change as

b,(j) =
T

(8.34)

a number that is somewhat better than Eq. (8.27).
In this section it has been shown that by using suitable

feedback loops the interferometer of Sec. VII ean track
changes in p1 in a stable manner and can achieve a phase
sensitivity of order 1/X. Hence the two problems en-
countered in Sec. VII, namely the fact that the inter-
ferometer achieves its optimum sensitivity only for a
small range of phases, (f ( 1/X, and that the fiuctuations
in J„„„the interferometer's output, are greater than
(J„„,) for

~

a
~

set at its optimum value, can be over-
come be operating the interferometer with

~

a
~

slightly
degraded or by choosing the response of the feedback loop
to be such that it averages enough successive measure-
ments of P that a useful error signal can be generated.

In the literature a number of schemes for achieving
interferometer sensitivities of 1/N have been described.
All of these schemes employ standard interferometers into
which light from degenerate-parametric amplifiers or
four-wave mixers is injected. In the next section we will
describe a novel set of interferometers which dispense
with beam splitters and use the SU(1,1) boosts to convert
phase shifts into light amplitude changes rather than the
SU(2) rotations employed by a conventional interferome-
ter,

FIG. 6. An SU(1,1) interferometer. The beam splitters of a
conventional interferometer have been replaced by the four-
wave mixers ~M1 and F%'M2. The light pumping F%M2 is
phase shifted from the light pumping FWM1 by the angle P.

particular let FWM1 have the scattering matrix

&(-p)=
cosh( —,

'
P)

—i sinh( —,
'
P)

+i sinh( —,
'
P)

cosh( —,
'
P)

(9.1)

L ( —P,y )= 0 coshP —sinhP

0 —sinhP coshP

The scattering matrix for FWM2 is

cosh( —,
'
P) i sinh( —,

' —P)
s(p)= 1i sinh( 1P) cosh(TP)

(9.2)

(9.3)

As can be seen from Eq. (6.13), K transforms as a
Lorentz boost L( —p,y) along the —y axis under this
scattering matrix:

1 0 0

IX. AN SU(1,1) MACH-ZEHNDER INTERFEROMETER

In Sec. III it was shown how the operation of a Mach-
Zehnder interferometer could be viewed in terms of rota-
tions of the vector J under the rotation group SU(2).

In this picture relative phase shifts between two light
beams correspond to rotations about the z axis while pho-
todetectors are sensitive to rotations in a plane containing
the z axis. The function of the beam splitters was to can-
vert a rotation about the z axis into one perpendicular to
the z axis.

In this section an interferometer whose operation can be
viewed in terms of transformations of the vector K Eq.
(6.1), under the Lorentz group SU(1,1) is considered.
From Eq (6.21) one sees that the common mode phase
shift of two light beams corresponds to a rotation of K
about the z axis. But from Eq. (6.1) one sees that photo-
detectors placed in the two light beams will be sensitive
only to transformations perpendicular to the z axis.

Again, a device is required which will convert rotations
about the z axis into transformations perpendicular to this
axis. The four-wave mixers described in Sec. VI can carry
out such transformations. These transformations consist
of Lorentz boosts.

As a specific example, consider the device of Fig. 6.
The phase shifter f in the pump beam is.adjusted such
that four-wave mixer FWM2 performs the inverse of the
transformation performed by four-wave mixer FWM1. In

This scattering matrix transforms K as a Lorentz boost
L(p,y) along the +y axis. The transformation per-
formed by the phase shifters ((}1 and (()z is, from Eq. (6.20),

S(P)=
0 e

—i/2 (9.4)

s =s(p)s($)s( —p),
and the overall transformation performed on K is

(9.6}

K,„,=L (P,y)R (P,z)L ( —P,y )K;„. (9.7)

It will be useful to reexpress this transformation as fol-
lows:

L(P,y)R (((},z)L ( Py) =R (e,z)L(—yx}R(e,z), (9.8)

where L (y,x) denotes a Lorentz baost along the x axis,

Under this scattering matrix K transforms as a rotation
R (((),z) about the z axis by an angle p = —($1+$2),

casp —sing 0
R (((},z ) = sin((} cos((} 0 (9.5)

0 0 l

The overall scattering matrix for the device of Fig. 6 is
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coshy 0 sinhy

L(yx)= 0 1 0
sinhy 0 coshy

(9.9)

(9.10)

Equation (9.8) holds when 8 and y are chosen such that

( 1 —cosP )coshP
sm8 =

[sin p+ ( 1 —cosp ) cosh p] '~z

sing
cosd =

2 2 1/2[sin P+(1—cosP) cosh P]'~

coshy = (1—cos4 )cosh p+ cosp,

sinhy =sinhp[sining+ (1—cosp)~coshzp]'~2 .

(9.11)

(9.12)

(9.13)

(a)

E, IO&=-,' Io&,

Z, IO&=0.

(9.14)

(9.15)

Consequently, from Eq. (6.6) the invariant E is zero, that
is, we can think of K for the vacuum state as lying on the
light cone. In the spirit of Fig. 2, the vacuum state is de-
picted in Fig. 7(a) as a cone whose base intersects the z
axis at —,'. The Lorentz boost l. ( —p,y) is equivalent, in
the Schrodinger picture, to a boost of the state vector in
the opposite direction. The Lorentz boost performed by
the first four-wave mixer is depicted in Fig. 7(b). The
mean value of E, in terms of the mean number of pho-
tons &N & emitted by the four-wave mixer is, from Eq.
(6.31),

The phase shifts P, and Pz encountered by the two light
beams leaving the four-wave mixer then rotate the state
vector about the z axis by an angle —/=/~+$2. This is
depicted in Fig. 7(c). A second Lorentz boost with the
same rapidity, but in the opposite direction, is then per-
formed. If / =0 the final state will be a vacuum state and
no photons wi11 be detected by the photodetectors in the
output beams. If P is nonzero the state of the light
delivered to the photodetectors wi11 be a Lorentz-boosted
vacuum, the rapidity parameter being determined by Eq.
(9.12) or (9.13).

In Fig. 7(b) the projected ellipse lying in the x-y plane
has a width of —, and the distance from the origin to its
center is &E, &= —,(&N&+1). Hence Fig. 7(c) suggests
that the minimum detectable phase P;„is of the order

Hence the transformation performed by the device of Fig.
6 on K can be regarded as a rotation 8 about the z axis,
followed by a Lorentz boost along the x axis, followed by
a second rotation I9 about the z axis.

Let us now consider the operation of this device when
no light enters the input ports, that is when in) is the
vacuum state IO&. The vacuum state is both an eigen-
state of E, and J,: (c)

FIG. 7. A geometrical view of the performance of an SU(1,1)
interferometer. (a) The input state consisting of the vacuum
state is depicted in the (K„,K„,E,) space, where K„and E„are
regarded as space coordinates and E, as a time coordinate, as a
circle on the light cone. {b) The first four-wave mixer performs
a Lorentz boost along the positive y axis. (c) The phase shifts
accumulated by the light beams propagating in the interferome-
ter result in a rotation in the xy plane. {d) The second four-
wave mixer performs a Lorentz transformation along the nega-
tive y axis. The total number of photons leaving the interferom-
eter is a linear function of I(,.

explicit calculation. From Eq. (9.6) and Eqs. (6.15) and
(6.23) the incoming state vector

I
in& is transformed as

I 0

I
out&=e "e 'e "I in), (9.17)

but from (9.8) this is equivalent to the transformation

I
out& =e' *e'" 'e ' *

I
in& . (9.18)

The operator Nd for the total number of photons detected
by the photodetectors placed in the output beam is from
Eq. (6.31)

Xg ——2E, —1 . (9.19)

&out I&, I
out&=&in

I

e' 'e '" «Ke' «e
' '

I
in& .

Hence in order to evaluate &N~& and ~~ one needs to
evaluate &out IE, I

out& and &out IK, I
out&. From Eq.

(9.18) one has

1

&X&+1
' (9.16)

that is, this detector can achieve a phase sensitivity ap-
proaching 1/X.

That this is the case will now be demonstrated with an

Since
I
in) is the vacuum state, one has

e
' 'I in&=e-'e~'I in& .

Equation (9.20) thus simplifies to

(9.20)

(9.21)
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(out ~K, ~out)=(0~e K,e '~0) .

From Eqs. (6.18) and (6.17),

e «K,e "= (sinhy )K„+(coshy)K, ,

(9.22)

(9.23)

The quantity (b,P) is ininimized when / =0, then

1
4)min=

sinh
(9.30)

but

so

(oiK, iO) =0 (9.24)

Expressed in terins of the mean number of photons (N)
emitted by the first four-wave mixer, sin P
=(N)((N) —2), so

(out
i K, i

out) = —,
' coshP . (9.25)

1

(»((N ) -2) (9.31)

From Eq. (9.19), the mean number of photons (Nd)
detected by the photodeiectors is

( Ne ) =coshy —1 .

In a similar manner one can show

(b,Nq) =sinh y .

(9.26)

(9.27)

The dependence of y on (() and P is given by Eqs. (9.12}
and (9.13). Hence Eqs. (9.26) and (9.27) can be rewritten
as

(Nd ) =(1—cosP)sinh P,
(ddt) =[sin P+(1—cog) cosh P]sinh P .

(9.28)

sin P+(1—cog} cosh P
sin P sinh P

(9.29)

The mean-square fluctuation in P due to the photon
statistics is thus

(b,Ng)
(&p)'=

a(N, )

Hence it has now been shown that the SU(1,1) inter-
ferometer depicted in Fig. 6 can achieve a phase sensitivi-
ty approaching 1/¹This sensitivity is achieved when no
light is fed into the input ports. A comparison with Fig.
5 shows that SU(1,1) interferometers achieving a sensitivi-

ty of 1/N require fewer optical elements than an SU(2)
interferometer achieving the same sensitivity. Further, at
/=0 no light is delivered to the photodetectors, that is,
the pairs of pump photons converted into pairs of four-
wave-mixer output photons are absorbed by the second
four-wave mixer and converted back into pump photons.
Hence an SU(1,1) interferometer can be very economical
with photons. It will absorb pump power only when P is
nonzero. It is also worth pointing out that the beams 1

and 2 need not be at the same frequency, as long as they
are placed symmetrically about the pump frequency, e«0,

that is, with beam 1 at the frequency coo+ hco and beam 2
at the frequency coo —hem; the scattering matrix6'2'~ for
the four-wave mixer will still have the form (6.11).

By using techniques similar to those used in deriving
Eq. (6A1) one can show that the probability P(N) of
detecting a total of N photons leaving the output ports of
the interferometer is

0 if N is odd

P(N)= . 2 ( 1 —cosP )sinh2P

(1—cosP)sinh P+2 (1—cosg)sinh2P+2
if N is even .

(9.32)

Let N; denote the number of photons counted during the
ith measurement in a sequence of measurements. One is
free to take the square root of each of these numbers.
Hence it is meaningful to talk about the average and rms
value of v N. The motivation for investigating the statis-
tics of v N stems from the fact that (N ) is an even func-
tion of P. Now

(vN)= g vNP(N) (9.33)
X even

The sum has the form
k

1gvX—
k=o

which can be approximated by the integral

x

f 1 vcrx dx=
a 2(]ng) «

(9.35)

can be put into the form

23/2(vN)=
(1—cosP)sinh P+2

(1—cosP)sinh P
(1—cosP)sinh P+2

(9.34)

Hence

(~N )=
(1—cog)sinh P+2

r

ln
(1—cog)sinh P+2

(1—cosg}sinh P

', —3/2

(9.36)
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Since this approximation holds reasonably well for

(1—cosP)sinh P)4 (9.37)

Hence for N & 4 it has been shown that the uncertainty in
the inferred norm of the phase (t) is to a good approxima-
tion

( v N )- (1—cos(It )'/ sinhp .
2

Approximating (1—cos4) ) as P /2 one finally has
' 1/2

( v N ) =——
I

(()
I
sinhp .1

2 2

(9.3&)

(9.39)

Hence the norm of the phase ()) inferred from a measure-
ment of N is

the logarithm can be approximated via 1n(1+x)~ and
one has

xIII=0.5221'
I

. (9.44)

It is also instructive to ask what the probability P(
I PJ:

(1—(x)1())1 (1/1 &(1+a)1(()1)is that a measured
will lie in the range

(1—&)14'
I

& I(()1 «I+~)
I 0 I

From (9.40) this is equivalent to determining the probabil-
ity P (N: N 1 & N & N2) that N lies in the range
X~ &X & N2 where

2
2

' 1/2 Ni ———(1—a)'P sinh'P,
8

(9.45)

sinhP

From (9.39) one has

(9.40) N2 ———(1+a) p sinh2p.
8

One can show rigorously

(941) P(N: N, (N &N2)

that is, the mean value of 1(I) I
inferred from a measure-

ment of N is equal to the norm of the actual phase setting
(tI of the interferometer. Now

2 N&/2
(1—cos(tt)sinh P

(1—cos(t/)sinh2p+ 2

so

(9.42)

' N~/2
(1—cosg)sinh2P

(1—cog)sinh p+2
(9.46)

(5, 1/12) = P =0.273$ (9 43) So from Eq. (9.45)

P(141: (1—6r)
I 0 I

& 14' I
«I+i )

I 4 I
) =

(n/16)(1 —a)2$2sinh2P
1 —cos(t) sinh P

(1—cosP)sinh P+2

(a/16)( 1 pa)2(()2sinh2P
1 —cosy jsinh p

(1—cos(t, )sinh2p+ 2
(9.47)

Approximating 1 —cos()I) by P /2, this expression can be
put into the forin

P(
I 0 I: (1—~)141 & 14 I

« I+~)
I & I )

{m/16){1 —a)~x {m/16){ 1+a)~x

where x =(I) sinh P.
Now

(9.48)

x
lim

x ~ X+4
—4=8 (9.49)

This limiting value is not a bad approximation for
[x/(x+4)] even for x as low as 10, the level at which
on average five photons are counted in the interferometer
output beams. Hence

P(
I y I: (1—a)14'

I
& 14' I

«I+(2)
I 0 I

)

—(w/2)(1 —a)~ —(a/2)(1+a)2
t, usmc

As an example, let a= —,', then

I(() I
/2)

=e —e =0 646 (9 51)

Hence from a single measurement of 1/1 one has 65%%uo

confidence that 1/1/2 ( 1$ I & 31())
I
/2.

The interferometer described here suffers from draw-
backs similar to those of the SU(2) interferometer of Sec.
VII. Maximum sensitivity occurs at /=0 and the sensi-
tivity rapidly degrades as P is adjusted away from zero. It
was shown in Sec. VIII that such drawbacks can be over-
come with feedback. However, implementing a feedback
algorithm for the SU(1,1) interferometer described here is
complicated by the fact that (N ) is an even function of ())
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Pz(new)=gz(old)+ IN I
. (9.52)

Make repeated measurements of
I P I

at this new setting
so that a new IP I

can be inferred with the precision
If

I 0 I
inferred for the new setting of Pz

is less than
I

((} I
inferred for the old setting one assumes

that one has moved in the right direction. If, on the other
hand, the inferred value of

I P I
for the new setting of Pz

is greater than the inferred
I ((}

I
for the old setting one as-

sumes that one has moved Pz in the wrong direction and

Pz is then readjusted so that

yz(new) =((}z(old)—
I y I

(9.53)

The process is then repeated.
If

I P I
is determined to sufficient precision this alga-

rithin will move one closer to / =0 most of the time. On
the occasions when this algorithm moves one in the wrong
direction it generally does not move Pz very far in the
wrong direction and the lost ground is regained during the
next few iterations of the feedback procedure. Further,
since a single measurement already determines

I P I
with

a precision 6/=0. 5
I

((} I
at a 65% confidence level, one

does not have to make very many repeated measurements
of

I P I
in order for the feedback algorithm to work.

and hence the sign of the error signal cannot be deter-
mined from the number of photons counted by the photo-
detector during a single measurement.

The sign of the error signal can be generated by chang-
ing (dithering) Pz between successive measurements and
constructing the derivative signal (N~+ i N;—}Ihgz.

Alternatively, one could implement the feedback algo-
rithm which will now be described. Make repeated mea-
surements of

I P I
until

I P I
is determined to some

predetermined precision: 5
I P I

=a
I P I

where a is a con-
stant. Then move Pz according to

[L„,Ly ]= —iL, ,

[LyL ) iL

[L„L~)=iLy .

(10.3)

Lx ILy 2 aa

which satisfy the commutation relations

[L,L+ ]=2L, ,

[Ls L+)=+L+

The Casimir invariant

(10.4}

(10.5)

(10.6)

when expressed in terms of the operators a and a",
reduces to the number

2 3L = ——, . (10.7)

It is useful to determine how L= (L„,L„,L, )
transforms under specific cases of Eq. (10.1). Under the
mode transformation

a,„,=cosh(-,' p)a;„+sinh( —,
' p)a;"„,

L transforms as a boost along the x axis:

Lx coshP 0 sinhP Lx

Ly —— 0 I 0 Ly

sinhP 0 coshP
ovi in

Under the mode transformation

(10.8)

(10.9)

Again, it is useful to introduce the raising and lowering
operators

L+ ——L„+ILy= —,a a

X. SINGLE-MODE SU(1,1) INTERFEROMETERS a,„,=cosh( ,
' P)a;„—isinh—( —,

' P)a t„ (10.10)

L = ——(a a —aa}
4

L, = —,(a a+aa ) .

(10.2}

These operators behave as generators ' of the group
SU(1,1) satisfying commutation relations identical with
Eq. (6.2):

In this section interferometers based on devices having
the scattering matrix

a,„,=cosh( ,' P}a;„+e 's—sinh( —,
' P)a t„ (10.1)

will be described. Such a single-mode device can be re-
garded as a limiting case of the four-wave mixers of So:.
VI in which the two input and the two output beams are
made collinear and are sufficiently close in frequency that
they cannot be resolved during the coherence time of the
device. Both four-wave inixers and parametric amplifiers
configured properly' ' are capable of performing the
mode transformation Eq. (10.1). Connected with Eq.
(10.1) it is convenient to introduce the operators

L„=—,(a at+aa),

L transforms as a boost along the y axis:

0 0

L» = 0 coshP sinhP L»
0 sinhP coshP

, ovt g

A phase shift

a ops
—ip

(10.11)

(10.12)

transforms K as a rotation about the z axis by the amount
2$.

L„

L,
, out

cos2$
sin2$

0

—sln2$ 0 Ly

cos2$ 0 L»
0 1

in

(10.13)

It can be shown that K transforms under Eq. (10.1) as a
rotation of K about the z axis by the angle —5/2 fol-
lowed by a boost p along the x axis followed by a rotation
about the z axis by the angle 5/2. Equivalently, in the
Schrodinger picture the state vector transforms according
to
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—i (5/2)L„ i PL„ i (5/2)L
out =e "e "e ' in), (10.14)

N =21.s —
2 (10.16)

The amplitude that n photons will be counted in the out-
put beam is (n

~
out), hence the probability P(it) that n

photons will be counted is

P(n)= ( (n (out) ~'.
Now for an n-photon state

~

n ) one has

(10.17)

L. In &= —+—1
2 4

(10.18)

Hence one has

x ~0) ie/4~0} (10.19)

~

n )
—'y( /2+)/4)

~

n } (10.20)

The probability distribution (10.17) thus reduces to

P(n)=
f
(n fe ' [0) /2. (10.21)

Hence P(n) is independent of the phase angles P and 8,
i.e., P(n) depends only on the magnitude of the boost.
Again, using (6.35) one has

e "=exp[i tanh( ,
' p)L+ ]exp[ —2—1ncosh( —,p)L, ]

Xexp[i tanh( ,
' p)L ] . — (10.22)

Hence by using the techniques used to arrive at Eq. (6.41)
one can show

iPL„
where e " is a single-mode squeeze operator' and

i{5/2)L
e ' has been called a single-mode rotation opera-
tor 6, 12, 13

More generally one could consider a device which
transforms a state vector according to

~

out) =e' 'e' "e' *
(
in) . (10.15)

The probability distribution for the number n of photons
in the output beam will now be determined for the case
when the input consists of vacuum fiuctuations. A more
general case, when the input consists of coherent states,
has been treated by Yuen. 2 A photodetector in the out-
put beam measures N =at(2, which can, from Eq. (10.2),
be written in the form

photons will be counted leaving the two-port four-mixer
of Sec. VI. From Eq. (6.41)

0, n odd

sech ( —,
' p)[tanh ( —,p)], n even .

(10.25)

%'ith the identity

2k 2(n —k}
k n —k (10.26}

one can show

PT(n)= g P(n))P(n2) .
N ),N2

n1+n2 ——n

(10.27)

where 5 is proportional to the phase of the pump light
entering DPA2. Letting

~

in) denote the state vector for
the incoming light, the state vector

~
out) for light leav-

ing the interferometer is

isL i PL isL ——ifL iPL„—outj=e 'e "e 'e 'e " inj . (10.28)

The behavior of this device when
~

in) is the vacuum
state will now be considered. Figures analogous to Fig. 7
can be drawn to illustrate the behavior of the interferome-
ter. However, in this case the Casimir invariant Eq. (10.6)
has the numerical value ——,', . Hence L lies on a space-
like hyperboloid instead of the light cone of Fig. 7. The
vacuum state is an eigenstate of L,

This equation implies that the statistics of the total num-
ber of photons leaving the two-mode four-wave mixer is
the same as the statistics of the total number of photons
coming from two independent single-mode devices. This
observation will allow a simplification of the discussion of
feedback loops for the interferometer discussed in this sec-
tion, since the results of Sec. IX can be made to apply by
pairwise averaging successive measurements made with a
single-mode device.

The interferometer to be considered in this section is
depicted in Fig. 8 where for the sake of definiteness,
degenerate-parametric amplifiers DPA1 and DPA2 are
used to perform the Lorentz boost. DPA1 will be taken

iPL„to perform the boost e " on the incoming state vector.—iPL
The phase shifter is taken to perform a phase shift e
on the light beam. The last degenerate-parametric ampli-
fier is taken to perform the boost

—iSL -iPL i SL
e 'e e

0, n odd

P(n)=
2n n

2

tanh ( —,'P)
n even

cosh( —,
' P)

(10.23)
DPA I DPA 2

where PUMP

nt

(n —m)!m!
(10.24)

It is useful to compare this probability distribution with
distribution PT(n) for the probability that a total of n

FIG. 8. A single-mode SU(1,1) interferometer. The device
employs two degenerate-parametric amplifiers DPA1 and
DPA2. The output of the device is sensitive to the difference
between the phases (() and 5 accumulated by the signal and pump
beam, respectively.
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(10.29)

and hence could be represented as a circle drawn around
the hyperboloid at a height along the z axis of —„'.

%e now determine the mean and variance in the num-

ber of photons counted at the output of the interferome-

ter. Since the number operator N for the total number of
photons counted at the output of the detector is linear in

L„Eg. (10.16), one would like to determine
(out ~L, ~

out). One can readily show from Eq. (10.28)
that

—i PL„ i (P—5)L i PL„ I —iPL„—i(P —5)L i PL„
(out L, outj=(in e "e 'e "L e "e 'e " inj .

Using the techniques of Sec. IX this can be further reduced to

(out ~L,"~ out) =(in )e *e "e *L,"e *e "e *
~

in) =(in
~

e 'L,"e '
~
in),

(10.30}

(10.31)

where in analogy with Eqs. (9.12) and (9.13),

coshy =[1 cos(—P 5)]c—osh'P+ cos(P 5),—
(10.32)

(E)=—(out
i
N

i
out) = —,

' coshy, (10.33)

sinhy =sinhPI sin (P —5)+[1—cos((()—5)] cosh PI
'~

It is straightforward then to show that

taining P —5=0 by using the error-correcting signal to
adjust the phase shifter 5 in the pump beam delivered to
DPA2. As was mentioned earlier the statistics of the total
number of photons counted in two successive measure-
ments of P are the same as for the total number of pho-
tons leaving the interferometer of Sec. IX. Hence the
feedback algorithms discussed in Sec. IX will also work
for the single-mode device discussed here.

( N ) =—(out
i
N

i
out)

= —,
'

sinh y+ —,
'

(coshy —1)' (10.34)

or, using Eq. (10.32)

( N ) = —,
' [1—cos((() —5)](cosh P—1),

(10.35)

(hN) = —,'sinh PIsin (P —5)+[1—cos(P —5)] cosh PI .

The mean-square fiuctuation in the readings for P,
given by

(gyp
(M')
a(x)

(10.36)

is readily evaluated and has a minimum given by

(&;„)= 1

The mean number of photons (El) in the light beam
passing through the phase shifter P is

(Nl)=(Oie "¹"iO)

(10.37)

= —,
' (cosh@—1) .

Solving this equation for sinh P one finally has

2 1

8(N )((E ) —1)

(10.38)

(10.39)

Hence it has been shown that the device of Fig. 8 can
indeed achieve a phase sensitivity approaching I /n. This
minimum sensitivity is achieved when P —5=0. Hence
by implementing a feedback loop one can track P main-

XI. CONCLUSION

A geometric or Lie-group-thceretical approach to the
analysis of interferometers was presented. Such an ap-
proach facilitates identifying the input states which op-
timize the interferometer's sensitivity. It was shown that
ordinary interferometers are characterized by the group
SU(2) which is equivalent to the group of rotations in
three dimensions. With suitable input states such an in-
terferometer can achieve a phase sensitivity b,P approach-
ing 1/N where N is the total number of photons passing
through the phase-shifting element (() of the interferome-
ter. Although this sensitivity can only be achieved for P
within I/N of /=0, it was shown that by employing a
feedback loop the interferometer could track phase as a
function of time with a precision of I/E.

A class of interferometers in which four-wave mixers
serve as active analogs of beam splitters was also present-
ed. Such interferometers are characterized by the group
SU(1,1) and have the virtue of being able to achieve a
phase sensitivity approaching I/N with only vacuum
fiuctuations entering the input port. SU(1,1) interferome-
ters can consequently achieve the 1/N phase sensitivity
much more readily and in fact have a simpler construc-
tion than SU(2} interferometers. The output of a four-
wave mixer depends on the relative phase between the
pump and the incoming signal. It is this phase sensitivity
which the SU(1,1) interferometers employ. In fact, it was
shown that degenerate-parametric amplifiers which are
also phase-sensitive devices can be used to construct
SU(1,1) interferometers.
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