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Coherent irradiation of multilevel atoms in branched and cyclic configurations

S. P. Krinitzky and D. T. Pegg
School of Science, Griffith Uniuersity, Nathan, Queensland 4111, Australia

(Received 29 April 1985)

An analytic solution is presented for the time development of an n-level atom in resonant interac-
tion with n —1 lasers in a branch configuration, which is an alternative generalization of the three-
level atom to the commonly studied cascade configuration. The same analytic approach is also ap-
plied to a four-laser resonant interaction with a four-level atom in a cyclic configuration, where it is

found that a change of phase of any one of the lasers has a critical effect on the population dynam-
ics and, with certain Rabi frequency and laser phase relationships, double-quantum transitions can
be eliminated completely.

INTRODUCTION

The interaction of atoms with coherent fields, such as
those produced by single-mode lasers, has been the subject
of intensive study, with much of the work devoted to
two-level atoms. The interaction of three-level atoms'
with two fields has also received much attention. Some
attention has been given to four- and higher-level cases
where the emphasis has been on cascade-type configura-
tions, ' though other configurations have also been stud-
1ed 6—8

In this paper we examine some multilevel configura-
tions for which the time evolution can be solved analyti-
cally, with the obvious advantage over numerically solved
cases in giving an understanding of the processes in-
volved.

The first configuration we examine is the branch con-
figuration shown in Fig. 1, in which n —1 of the n levels
are coupled by means of n —1 lasers to a common level.
This can be seen as an alternative generalization of the
three-level case to the cascade configuration. Later we ex-
amine another configuration, a cyclic configuration,
where the phases of the laser fields become important.
We consider only timescales short enough for decay to be
neglected and assume that the Rabi frequencies are large
enough for a few population cycles to occur in such time-
scales. We also assume that the levels are sufficiently
unevenly spaced, compared with the power broadening,
for each laser to drive only one transition, which is driven
on resonance, and any nonresonant level shifts are either
negligible or already incorporated into the level spacings.
Our approach is to solve for the time-displacement opera-
tor U(t, to). Once this is found the evolution of the densi-
ty matrix or any Heisenberg operator can be found; how-
ever, here we shall limit ourselves to finding transition
probabilities.

displacement operator in this frame is then, in units with
%=1,

U(t, to) =exp[ t A (t——to)],
and in the laboratory frame it is

U(t, t, )=T '(t)U(t, t, )T(t, ) .

The formal solution (1) involves an infinite series of terms
in powers of A and as such is not generally immediately
applicable to expressing transition probabilities exactly in
a finite nuinber of terms. If various recurrence relations
exist, however, the infinite series (1) can be replaced by a
finite series. The simplest such relation is

=k I,
where I is the -unit operator and k is a constant, with
which (1) becomes

U(t, to) =cos[k (t to)] i' —'si—n[k (t —to)] .

II. METHOD OF SOLUTION

The time-displacernent operator is found by the method
of transformations, in which an unitary transformation is
made by means of an operator T to a reference frame in
which the effective Hamiltonian A is static. The time-

FIG. 1. Energy-level diagram of an n-level system in
resonant interaction with n —1 lasers in a branch configuration.
The arbitrary zero level of energy is set at level 1, which is the
common level coupled to all other levels. The laser associated
with Rabi frequency aj couples levels 1 and j.
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An example of this is where A is proportional to an ef-

fective spin- —,
' operator, as for a two-level system.

Another simple recurrence relation is
(13)

for which the series (1) becomes

U(t, t, )=l+b '4 'jcos[b(t —t, )]—1 j

ib —'A sin[b(t tp)]—.

This can occur, for example, if M is proportional to a
spin-1 operator.

The multilevel configurations studied in this paper are
such that the static effective Hamiltonian obeys either re-

currence relation (3) or recurrence relation (5).

III. BRANCH CONFIGURATION

VA'th the levels coupled as shown in Fig. 1, we choose
level 1 to be the common level coupled to all other levels,
and set our arbitrary zero of energy at this level. The lab-
oratory Hamiltonian can thus be written in the general
form

~L g [ lj ) (g l Ej +2 aJco(spit +p )J
j (+1)

X( ~1&&j
~

+H.c.)], (7)

where aJ is the resonant Rabi frequency for the coupling
of level 1 with level j, and coJ and pJ are the frequency
and phase of the laser beam j. EJ is the energy of level j.
Without losing generality, we have made at in (7) real and
positive, which can be done by choosing the appropriate
quantum-mechanical phase factor exp(i pJ ) of state

~ j ) to
combine with any phase factor associated with at to give
unity. The associated unitary transformation is

exp 'i & lj&&j I p,

Thus we have a recurrence relation of the form (5), and
hence a time-displacement operator of the form (6). The
transformation (8) only alters the phases of the states, so
from (2) we can find the transition probabilities directly
from U(t, tp), e.g., if the atom is initially in state

~

1) at
time tp, the probability Pki that it is found in another
state

~

k ) at time t is

Pki ——
j (k

/
U(t, tp)

/
1) j (14)

From (11), (k j P ~
1) is zero, so from (6) and (10) we

find that

Pk, b—a—ksin [b(t —tp)] . (15)

Similarly, we find the transition probabilities Pt J between

states with k&1, j&1,and P» to be

and

PkJ. baka—J I cos[b (t —tp)] —1 j

P, i cos [b——(t —tp)] .

(16)

(17)

The modulus of the amplitude that the atom remains in

an initial level i & I is

U" (t tp)
~

= 1+a b [cos[b (t —tp)] 1 j (18)

which has a minimum value of 1 —2a;b . Clearly, state

~

i ) will never transfer its total population to the other
states if the Rabi frequency a; is sufficiently weak for
a; &b /2. This is a generalization of the effect described

by Shore and Ackerhalt for a three-level atom. When a;
is small, the corresponding laser beam can be considered
as a weak probe beam probing level 1. When the interac-
tions of

~
1) with the other states, which, from (13), con-

tribute to b, are large enough, the laser associated with

a; is effectively taken out of resonance.

T =exp i g ~
j)(j ~

(pi t+p )

j (+1)

with the transformed Hamiltonian then given by

(8)

=TA JT +/TT

Substituting (8) into (9) and discarding terms oscillating at
twice the optical frequencies, which produce optical
Bloch-Siegert effects, we find that A simplifies, with the
resonance condition EJ =piJ, to the static form

~= g a, (~»(jj+~j&&I~). (10)
j (&1)

From this we obtain

g a, 'aJ
~
1)(1

~
+ g ak

~ j&(k
~

and, hence,

(12)

The unitary transformation we use to obtain a static
Hamiltonian is

IU. CYCLIC CONFIGURATION

For the branch configurations investigated above, as
with cascade configurations, it is possible to find transfor-
mations which make the static Hamiltonian elements real
and positive and which remove the phases of the oscillat-
ing fields. In this section we consider a cyclic configura-
tion, an example of which is shown in Fig. 2, in which the
number of lasers is equal to the number of levels. For
such cases we find, interestingly, that the relative phases
of the lasers of different frequencies do have a critical ef-
ect.

The cyclic configuration of Fig. 2 can be seen as an ex-
tension of the three-laser four-1evel cascade configuration
achieved by means of a fourth laser coupling states

~

4)
and

~

1 ) . An analytic solution for a four-level cyclic con-
figuration has been obtained previously. Here we consid-
er two different configurations which display the impor-
tant physical effect of the relative laser phases.

Interaction terms of the laboratory-frame Hamiltonian
involve products of the type aJ

~ j ) (j—1
~

for j= 1,2,3,4,
where the state

~ j—1) for j= 1 represents the state
~

4).



33 COHERENT IRRADIATION OF MULTILEVEL ATOMS IN. . .

~'=g(la, ia, za, +i I+ laj' iaj I+ laj I

+
I

a a +, I
)(

I j ) &j—1
I
+H. c. ) .

FIG. 2. Example of a four-level system in resonant interac-
tion with four lasers in a cyclic configuration. Levels 1 and 4
are coupled by the laser associated with Rabi frequency al, lev-

els 1 and 2 by laser a2, levels 2 and 3 by laser a3 and levels 3 and
4 by laser a4.

I aj-iaj+i I

=
I a)aj-z I

(26)

w»c»mp»es
I a4az I

=
I
aia31 we have

~'= g( la, zl'+ la, i I'+ la) I'+ la)+i ')
J

&&
I a~ I

(
I j & &i —1

I
+H c )

It follows that if we adjust one of the Rabi frequencies,
e.g., a], so that

aj =
I aj I

for j~i, ai ——
I
ai I

exp(iP) .

The laboratory-frame Hamiltonian is then

ML= g Ij )&j IE, + +2cos(pi, t+p, )

(19)

Transforming the phases of the states
I j ) to give

I j )exp(i pj ) can only give cancellation of the phase factor
in aj = aJ I

exp(i8~) for all values of j if a particular re-
lationship 8]+82+83+84——2nm. holds between the phases
of the aj. To keep the discussion as general as possible, so
far we do not assume such a relationship, which means
that we can only make three of the aj real and positive,
and leave ai, say, to include an arbitrary phase factor
exp(i P), i.e.,

(27)

where

b'= 2 I aj I

' (28)

Thus with this choice of phase and intensity of the laser
producing ai, the cyclic configuration of Fig. 2 is analyti-
cally solvable with the solution given by (6). We note that
a special case of (26) in which the moduli of all the Rabi
frequencies are equal is also a particular case of the con-
figuration of Stettler et a/. From (6) we find the follow-
ing transition probabilities:

X(aj
I j)&j —1

I
+H. c.), (20)

Pzi azb si——n [b (t tp)]-,

P4i ——
I
ai

I

b sin [b(t t )]p,—
(29)

(30)

where a~, tpj, pj pertain to the laser beam j which couples

I j ) and
I j—1). Given the resonance conditions

pij =EJ —Et i for j~ 1 and pi, =E4 Ei, the tran—sforma-
tion

T =exp i g I j ) &j I
(E)t +8J )

J
(21)

will produce a static Hamiltonian A when the Bloch-
Siegert terms are ignored, which will have zero diagonal
elements. We find that if the phase of the ai laser is
selected so that

P3i ——(
I
ai

I a4+a3az) b [ ocs[ b(t —tp)] —1I

Pii ——[1—2(
I
ai +az)b sin [—,

' b(t —tp)]}

(31)

(32)

From (31) it can be seen that in the special case
I
ai

I

=a4
and az ——a3, if all the population is initially in state

I
1),

say, then at a later stage all of the population can be
found in state

I
3), the state not directly coupled to

I
1).

To investigate the infiuence of the laser phases, we re-
turn to Eq. (20) describing the cyclic configuration of Fig.
2, but now alter the phase of the laser associated with ai
by m, so the phase condition (22) is replaced by

4i =4z+43+44 P— (22) 0i =~+4'z+6+ 44 P— (33)

~= 2 I a) I( fi&&i —1 I+ li —»&i
I
), (23)

then we can choose values of 8~ such that 8J —8J
for j&1 and 84 —8i ——iI), +p, which makes all the ele-
ments of A real and positive. %e then have

With this condition, the values of 81 in (21) can be chosen
so that 81 —8~ i p~ for j&1 an——d 84 —8i ——pi+p m, —
which makes all the elements of A real and positive ex-
cept for A i4 and A 4„which are now real and negative,
i.e., a i ———

I
a, I, so (23) is replaced by

which gives
A = g aj (

I j ) &j—1
I
+H. c.),

J
(34)

~'= Q[( I a) I'+
I a, +i I') li&&i I

+
I a)aj -i I

( li & &i —2
I
+H c )]

where aJ is real and positive for j&1, and a] is negative.
Remembering that the state

I j—2) is the same state as
I
j+2), we obtain

where
I j—2) represents the states

I
3) and

I
4) when

j= 1 and j=2, respectively, aJ+] represents a& when j=4,
and so on in cyclic order. From (23) and (24) we obtain

A = g (ajz+aJ+ i)
I j)&j

I

J

+ g(a~ aj. i+aj+iaj. +z.) Ij ) &j+2
I

(35)
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We see that if aj+aj+, is independent of j, then the first
term of (35) becomes proportional to the unit operator.
Also, if

ajaj &

———a&+ &a&+2

for all j, then the second term vanishes. Because a, is
negative and the other three Q& are positive, we can indeed
satisfy both these conditions. This requires the two condi-
tions

phase relation is (22), and in which case there is a com-
plete transfer of population from state

~

1) to state
~

3 ) at
particular times. This clearly shows the important effect
of the laser phase on the system. Physically, the only
difference between the above two equal Rabi-frequency-
magnitude cases is a phase shift of min. one of the laser
beams, which has the effect of changing a complete
double-quantum population transfer to a zero double-
quantum transfer.

Qy=Q2, Q) = —Q3 . (37} V. CONCLUSION

With these conditions satisfied, we obtain

A ~=(ate+a&)I, (38}

which is the simplest form of recurrence relation (3) with
k =aq+ai. The solution for U(t, to) can be found by
substitution into (4) and the various transition probabili-
ties follow. The amplitude that an atom remains in any
energy state is given by the cosine term of (4). The in-

teresting feature of the solution is that because U(t, to)
contains no terms of higher order than 4, only single-

quantum transitions can occur, the amplitudes of which
are determined by (34) and the second term of (4). For ex-

ample, if an atom is initially in state
~
1) the amplitude

that it can be found in
~

3) is zero at all times. This is in

agreement with the result found by Deng for a different
physical situation, but which, in the appropriate limit, is
mathematically equivalent to the case studied here.

A special case of the above is where, in addition to (37),
we also have az ——ai, so that the magnitudes of all the
Rabi frequencies are equal. Equality of all Rabi-
frequency magnitudes also defines a special case of the
first cyclic configuration of this section, for which the

In this paper we have found an analytical solution to
the atomic time development when n —1 lasers interact
resonantly with an n-level atom in a branch configuration,
as opposed to the more usually studied cascade configura-
tion. We have assumed that the Rabi frequencies are
much greater than the damping rates, so the solutions ob-
tained are applicable for at least a few cycles. We also
solved the time evolution of a cyclic configuration involv-
ing four lasers interacting with a four-level atom. The in-
teraction Hamiltonian was kept general, but various rela-
tionships between the Rabi frequencies and between the
laser phases were needed to obtain analytical solutions.
For such n-level n-laser interactions the relative phases of
the lasers have an important infiuence on the atomic evo-
lution, and we found for the four-level case that a shift in
phase of n of one of the lasers could change the situation
from one of maximum double-quantum transfer to one in
which the amplitudes for double-quantum transitions are
zero. The latter case may be interpreted as complete des-
tructive interference of the amplitudes for a double-
quantum transition associated with two different path-
ways.
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