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Quantum theory of multiwave mixing. VII. Connection to quantum Langevin theory

David A. Holm and Murray Sargent III
Optical Sciences Center, Uniuersity ofArizona, Tucson, Arizona 8572l

(Received 3 February 1986)

We transform our quantum theory of multiwave mixing, which is based on a reduced density

operator, to the corresponding nondegenerate quantum-noise Langevin equations. W'e derive the
diffusion coefficients from the drift coefficients using the generalized Einstein relation and illustrate
the resulting quantum Langevin theory of multiwave mixing by specializing to the Reid and Walls
degenerate theory of squeezed states of light.

I. INTRODUCTION

In the field of theoretical quantum optics, much
research has been performed in the Heisenberg picture
with the help of quantum-noise operators. This includes
the early work on this subject by Lax, ' Haken and co-
workers, the resonance fluorescence description by
Cohen-Tannoudji, the quantum theory of optical bistabil-
ity by Bonifacio and Lugiato and Drummond and
Walls, and more recently, the investigation of squeezed
states of light by Reid and Walls. 6' In these papers
Langevin equations were calculated (often from an ap-
propriate Fokker-Planck equation) and the required quan-
tities resulted from analysis of their drift and diffusion
terms.

An alternate approach derives the desired equations of
motion from a combined atom-field density operator
traced over atomic and field states of lesser interest to ob-
tain a Schrodinger-picture reduced-density operator for
the field mode(s) of primary interest. This was the
method used in the Scully-Lamb quantum theory of the
laser, ' in Stenholm's analysis of the interaction of radia-
tion with matter, 9 in the quantum three-level work of
Singh and Zubairy, ' and in our quantum theory of mul-
tiwave mixing.

In general, the Heisenberg-picture quantum I.angevin
approach and the Schrodinger-picture reduced-density
operator approach are equivalent, but provide different in-
sights and ease with which problems can be solved. The
present paper builds a bridge over which to carry new re-
sults from one approach to the other as well as to provide
thoroughly independent checks of results found on either
side of this bridge. Specifically this paper connects the
two viewpoints by calculating the Langevin drift coeffi-
cients directly from the reduced-density operator equation
of motion and by calculating the diffusion coefficients us-
ing the generalized Einstein relation. "8' It uses the
bridge to obtain a quantum Langevin theory of multiwave
mixing equivalent to our reduced-density operator version.

Although this procedure has been known since the early
days of quantum optics and most of it even found its way
into a textbook, ' it is surprisingly not well known in the
field and is especially useful in relating the application of
our quantum multiwave mixing theory to squeezing to the
work of Reid and Walls. ' Since both of these theoretical

treatments of four-wave mixing consider weak quantum-
mechanical sidemode fields and classical pump fields in-
teracting with two-level media, one would expect a rela-
tionship to exist. We show this to be the case. Reid and
Walls omit many steps in their derivations, particularly of
the all important quantum-mechanical diffusion coeffi-
cients. Our derivations' ' are substantially more de-
tailed and with the present paper give a totally indepen-
dent check on their work. This has enabled us to provide
new physical insight into their calculations, such as the
relationship to saturation spectroscopy and resonance
fluorescence. It also generalizes their results to nondegen-
erate four-wave mixing, of major importance to the theory
of squeezed states, and it identifies some elastic scattering
terms missing in their degenerate treatment.

In Sec. II we suinmarize the fundamental results of pa-
pers I and II (Refs. 12 and 13) for the case of upper-to-
ground lower-level decay. Although this summary has
also appeared in other papers in this series, including it
here allows for an immediate understanding of our as-
sumptions and results. Section III reviews how quantum
Langevin equations can be obtained from the reduced-
density operator equation of motion and how the dif-
fusion coefficients can be calculated from the drift coeffi-
cients via the generalized Einstein relation. Section IV
applies this formalism to our quantum theory of mul-
tiwave mixing, yielding the nondegenerate multiwave dif-
fusion coefficients and reducing them to those published
by Reid and Walls by subtracting out the elastic scatter-
ing contributions. Section V presents a simple example of
how solutions to the differential equations derived by each
method do, in fact, result in the same answer, and
discusses the implications for theories concerning
squeezed states.

II. SUMMARY OF BASIC EQUATIONS

In this section we summarize the theory developed in
Refs. 12 and 13 that forms the basis for this paper. Our
Hamiltonian (in rad/sec) is

+ g [(v& vz)at. af+(ga~ U—o +H.c. )] .
1=1
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In this expression aj is the annihilation operator for the

jth fiel mode, UJ =UJ(r) is the corresponding spatial
mode factor, o and cr, are the atomic spin-flip and
probability-difference operators, co and vi are the atomic
and field frequencies (see Fig. 1), g is the atom-field cou-

pling constant. We take mode 2 to be arbitrarily intense,
and treat it classically and undepleted. Modes l and 3 are
quantum fields treated only to second order in amplitude,
and cannot by themseNes saturate the atomic response.
This is an important assumption and limits the applicabil-
ity of the theory. The rotating-wave approximation has
been made and the Hamiltonian is in an interaction pic-
ture rotating at the strong field frequency vz. We define
an atom-field density operator p, f and obtain its time
dependence from the standard density operator equation
of motion

atom sign al con ju gate

FIG. 1. Mode spectrum showing weak quantum sidemodes at
frequencies v~ and v3 symmetrically placed about the arbitrarily
intense pump frequency v2. The atomic resonance frequency co

is near, but not necessarily equal to, the pump frequency.

pa fi [H-~pa-f]+ (2)

where the ellipsis represents relaxation processes.
We calculate the reduced electric field density operator

p that describes the time dependence of the two quantized
fields by taking the trace of p, f over the atomic states.
We assume all field amplitudes to vary little during atom-
ic decay times. This allows us to solve the atomic equa-
tions of motion in steady state and then to obtain the
slowly varying field density operator equation of motion

p= —Ai(paioi —a ipai) —(Bi+v/2Qi)(aiaip —
aipa i)

+Ci(a ia &P a ipa, )—+D&(pa&a i —a ipa & )

+[1~3]+H.c. , (3)

where [1~3] represents the same terms with 1 and 3 in-
terchanged, v/Q& is the cavity loss rate for cavity config-
urations, the coefficients Ai, Bi, Ci, and Di are given by

Ng &i
Ai ——

l+I,W,
Ii&i

2 1+IiX (S'i+ &3 )

Xg &i I2&2 I2 P [(1+I2&2/2)&(+&2(1 I /ih—)/2]
2

1+I2&+(&i+&'i )
2

(5)

Xg &i
Ci ——— Ui Ui1+Ii

I2&i
2T, P"~P S' i —&2(1+I'/i 6) /2

2

1+I2& (N i+N i )

Di ———Ng Ni, 2TiP iP [(1+Ii&2/2)&i+&2(1 I /ib, )/2]—
1+I,W (&,+&f )

2

where following the notation of Ref. 12, the complex
Lorentzian denominators &„are given by

1

@+i(co—v„)
'

the dimensionless Lorentzian &2 is

the dimensionless intensity I2 is

I2 =41 ~21'Ti T2

the dimensionless "population pulsation" term W is

and where P 2 ——p8'2U2/2A, p is the electric-dipole ma-
trix element, N is the total number of interacting atoms,
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—(ai ) =—8'& ——(aij)=g(n
~

a ij ~

n )
dt dt

=(A i 8i —v/—2Qi ) 8('i

+(Ci Di )8'3, — (8)

where 8'3 ——(a 3 ) . Equation (8) is the semiclassical
coupled-mode equation of motion for the field amplitude
8'i. We thus see that the quantity 8i —Ai is the senu-
classical complex absorption coefficient of a weak probe
wave in the presence of a strong field, and that Ci Di is-
the mode-coupling coefficient in phase conjugation and
modulation spectroscopy. Each of these coefficients can
be derived purely semiclassically.

Also of interest, especially for the calculation of squeez-

ing, are the equations of motion for the number operator

a iai and combination tone operator a, a3. These can be
obtained in the same manner as for Eq. (8):

and b, =vr —v~ is the beat frequency between modes one
and two. These coefficients assume the only relaxation
processes are upper-to-lower-level decay described by the
decay constant I ( = I /'r& ), and the dipole decay
described by y (= I/'rr). This is the usual experimental
situation in laser spectroscopy. For pure spontaneous de-

cay, y is equal to I /2. For more general coefficients, see
Refs. 12 and 16.

The equation of motion (3) for the field reduced-density
operator p and the expressions for the coefficients Ai
through Di are the fundamental equations of our theory.
We may use Eq. (3) to obtain the equation of motion for
the expectation value of any operator of the quantized
fields 1 and 3. This was also done in Ref. 12. For exam-
ple, the annihilation operator (ai) corresponds to the
classical Fourier amplitude for the electric field of mode
1, w'„and its equation of motion is given by

it is identical to the expression first derived by Mollow.
Similarly, the inhomogeneous term of Eq. (10), C, +C3, is
the quantum source contribution for the "combination
tone" (a ia3 ) and is responsible for squeezing.

III. QUANTUM LANGEVIN EQUATIONS
AND THE GENERALIZED EINSTEIN RELATION

This section shows how to derive the quantum
Langevin equations of motion for operators which the re-
duced density depends on. For the sidemode reduced-
density operator of Sec. II, this means we can find equa-
tions of motion for the sidemode annihilation operators
a

&
and a3 as well as their adjoints and the various bilinear

products of these operators. It is no longer possible to ob-
tain Langevin equations for the atomic operators, since we
have traced the atom-field density operator over the atom-
ic coordinates in deriving the sidemode reduced-density
operator.

The Langevin equation for an operator is immediately
obtained by deriving the equation of motion for the expec-
tation value of the operator as described in Sec. II and
then removing the expectation value angle brackets and
adding a noise operator with zero expectation value. This
recipe does not tell us what the noise operator is, but all
we typically need to know about the noise operator is its
two-time correlation function. We assume the noise pro-
cess is Markovian (5 correlated in time) with appropriate
diffusion coefficients. The generalized Einstein rela-
tion" ' reviewed in this section shows how these dif-
fusion coefficients can be derived from the drift coeffi-
cients in the Langevin equations.

We start with the double sidemode example pertinent to
multiwave mixing and then consider a more general con-
text. Removing the expectation value angle brackets from
Eq. (8), we have the Langevin equation for a „

—(a t&a i ) = (a ia &p ) =g ( n
~

a tia ip ~

n )
dt

=(A
&

—8i —v/2Qi)(a ia& )

a i
——(A ] 8i —v/2Qi )a—i +(Ci Di )a 3+F],—

and similarly

a 3 —(A3 83 v/2Q3)a3+(C3 D3 )a~ +F3— (12)

+(Ci Di)(aiai )+A—i+c.c. ,

Here F, (t) and F3(t) are random rapidly varying noise
operators with vanishing mean,

d
dt
—(a,a3) = (aia3p) —g(n

~
aia3p

~

n )

(9)
(F,(t)) =(F,(t)) =0,

but 5-correlated two-time averages

(13)

(14)

=(A, —8, -v/2Q, )&..., ) (F,(t)F, (t')) =2(D..., )5(t t') . — (15)

+(C) Di)(a3a3)+Ci—

+[1~3]. (10)

In free space, no build up of photon number occurs, and
d(n&)/dt=A, +Ai. Thus, we interpret A, +Ai given

by Eq. (4) as the spectrum of resonance fluorescence and

Here (D y ) and (D, , ) are two of four important dif-

fusion coefficients that describe the field operator correla-
tions (the other two, (D i ) and (D i t), are given bya 3a3

interchanging 1 and 3, and taking the complex conjugate,
respectively). By using the delta functions in Eqs. (14)
and (15), we have made the Markovian approximation.
To find their values, we review the generalized Einstein
relation.
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Equations (11) and (12) are each of the general operator
form'

D, =(A i
—Bi )a i+ (C, D—i )as . (23)

Ap D——„(t)+Fq(t), (16)

where A„ is the quantum operator, D„ is its drift term,
and F„ is the noise operator. From the identity

A„(t)=A„(t b—t)+ f dt'A„(t'), (17)

we have

& Aq(t)F„(t))

= & A„(t —hr)E„(r) )

+ t' D~ t' +F~ t' F„ t . 18

Because the operator A„(t') at time t' cannot be affected
by a fluctuation at a later time t, the first term on the
right-hand side of Eq. (18) is zero. Similarly the correla-
tion &D&(t')F„(t)) is zero except at the point t'=t, but
the interval of integration is zero (set of measure zero).
All that remains is

& A„(r)F„(r)) =I dh'&E„(t')F„(t) )

t' F~ t' F„t, 19

where in the last step we have assumed the noise to be sta-
tionary. Substituting the equivalent of Eqs. (14) and (15)
into (19) we have

& Aq(t)F„(t) ) = &Dq„) .

In an analogous manner we find

& F„(t)A„(t)) = &Dq„) . (21)

dt
—&A„A, ) =&A„A„)+&A„A„)

=&D„A„)+&F„A„)+&A„D„)+&A„F„).

We now may use Eqs. (20) and (21) to determine the
equation of motion for the expectation value of &A„A„).
From Eq. '(16)

The drift term for a i is the adjoint of Eq. (23). Substitut-
ing these into Eq. (22) and using Eq. (9), we find

2&D t )=Ai+At .

This remarkable result reveals that the diffusion coeffi-
cient (24) for the operator a,a, is simply the resonance
fluorescence spectrum. z Figure 2 graphs this well-known
spectrum both for centrally tuned pump as well as a
slightly detuned pump.

To find the diffusion coefficient for the combination-
tone operator a ~f3, me note the operators a3 and a ~

com-
mute, and hence that the Einstein relation must be sym-
metric under an interchange of the indices 1 and 3. Thus,

With the help of Eq. (10), we obtain

2&D..., ) =Ci+Cz . (25)

Once again the diffusion coefficient is the inhomogeneous
term of an equation of motion (10), that is, it is the quan-
tum source term for the combination tone operator a iaz.

The coefficient Ci +Cz represents a quantum mechani-
cal quantity new with our quantum theory of multiwave
mixing and as shown in Ref. 24 it is responsible for
squeezing. Since C3(b, )=Ci( —b, ), Ci+Cs is a sym-
metric function of b„but unlike At+A i it is only real
for a centrally tuned pump (vz ——co). Figure 3 plots the
real part of C, +C& vs ETz for the atomic detunings
~2 ro —vz of 0, 4Tz ', and 8Tz '. Iz ——50 and Tz ——2Tt,
the case of pure radiative decay. We note its similarity to
the three peaked spectrum of resonance fluorescence z ex-
cept that the central peak is inverted. Just as in the case
of resonance fluorescence, the sideband peaks move out-
ward with detuning and the central dip rapidly disap-

Substituting Eqs. (20) and (21) and rearranging gives

2&D„„)=—&A„A„)—&A„D„)—&D„A„) .
dt

(22)

Equation (22) is called the "generalized Einstein relation. "
It shows that the diffusion coefficients &D„„)are directly
related to drift coefficients D„and D„and thus
compromises a quantum fiuctuation-dissipation theorem.
This very useful equation makes it possible to calculate
the diffusion coefficients immediately from the drift coef-
ficients, provided one can independently calculate the
equation of motion for &A„A„).

0. I. 20

IV. APPLICATIONS TO THE QUANTUM THEORY
OF MUI.TI%'AVE MIXING

It is straightforward to apply Eq. (22) to Eqs. (9) and
(10) to obtain the diffusion coefficients for the operators
a iai and a iaz. From Eq. (11) we see that the drift term
for a& is

FIG. 2. Resonance fluorescence spectrum A &+A & given by
Eq. (3) vs the pump-sidemode beat frequency h=vz —v~ with
pump both on and off resonance (elastic delta function at 6=0
exists, but is not shown). Equation (23) shows that this spec-
trum is also the diffusion coefficient for (FtF~). The two
curves are for the pump detunings v2 —co=0, 4/T2, with pump
intensity I2 ——50, and T2 ——2T& {pure radiative decay).
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for 2(D i ) and

LJ
+

LJ

Ql

K

Q. C Ng I2&z
d (Ii )=, (1—]'5)'f

y(1+I,W, )'

I2
+i5Ii(1—f)(1 ]—'5)+

2

(DW) (27)

FIG. 3. Real part of combination-tone source term C~+C3
vs ET2 for pump detunings vq —co=0, 4T2 ', and 8 T ', pump
intensity I2 ——50, and T2 ——2T~.

pears. The imaginary part of C]+C& is zero when vz ——co,

since in that case Ci ——C;, but when the pump field at
frequency v2 is detuned from atomic resonance, it is
nonzero and can be much larger than the real part if
52 » Ti '. Figure 4 depicts the imaginary part of
C] +C3 vs 5T2 for the detunings of 4 Ti ' and 8 Ti
The other parameters are the same as in Fig. 3. Note the
dispersive character of the Rabi sidebands, just as in the
case of a coinplex absorption coefficient.

Having obtained the diffusion coefficients of Eqs. (24)
and (25), we may now compare them to the ones pub-
lished by Drummond and Walls5 (DW) and by Reid and
Walls. ' In each of their papers, their expressions for the
diffusion coefficients are valid only in the degenerate lim-
it, i.e., v] ——v2 or 5=0. From Eqs. (24) and (23) in Ref. 5,
the coefficients are

for —2(D..., ) and where 5=(co—v2)/y and f=I'/2y.
In transforming their notation to ours, X~I2,
(1+5 ) '~&i, and 2Ck'~Ng ly. Equations (26) and
(27) certainly do not at first glance appear to be equivalent
to the equations for A] and C], Eqs. (4) and (6). Indeed,
evaluating either of them at 5=0 immediately leads to
difficulties due to the presence of the I /ih term in each
of them. In resonance fiuorescence it is precisely that
quantity that gives rise to the elastic portion of the spec-
trum, also called the Rayleigh peak, since
i/b, +c.c. =2m5(b, ), where 5(b, ) is 5 function. In Eqs.
(26) and (27) there is no evidence of a delta function, and
we are therefore led to assume that they represent only the
inelastic portions of the spectrum. We now show that this
is the case.

As first shown by Mollow, the separation of the spec-
trum into the elastic and inelastic portions is somewhat
complicated, because the I /ib, term also contributes to
the inelastic spectrum when 6&0. The elastic part of A]
is found by letting b, =O in the I /ih term. This yields

Ng' Iz~z I
4y (I+I2~z)~ ib

The inelastic spectrum is defined to be

~1inel ~1 ~1el (29)

Substituting Eqs. (4) and (28) into (29) gives

0. 1

(DW) (26)

Ng &]
A .

] inc] 1+I

Ii&i ~ Ii&i
2

+I, W &)+&2/2

1+I,W (&]+&i)
2

+ Xg' XI2 r
1+I2Wi 4 i b,

I+IiW+ (&]+&3 )

y'
1+I2W2

FIC. 4. Imaginary part of Cl+C3 vs ET2 for &p —co=4T2 '

and 8T2 ', I2 ——50, and T2 ——2TI.

%e now wish to evaluate A1;„,1 at 5=0. However, the
second term in Eq. (30) becomes indeterminate when
b, =O. To evaluate it we use 1'Hospital's rule and differen-
tiate the numerator and denominator with respect to h.
Doing this and evaluating at 5=0, we find
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Ng I2
1 inel I

a=o=
(1 I ~ )3

I2&2 ib,2&2 I
(1—I /2y)+ 1+y~2+

2 2y 2y

I2&2
+

4
(31)

C1 inel C1 C1 el

Substituting Eqs. (6}and (32) into (33), we find
T

(33)

C1 inel

I2&2I, ~ &;—&/2
Ng

1+I2&2 1+I2P +(&i+&2)
2

Ng' yI2~2 r
1+I2&2 4 i b,

1+I2P (&i+&2 )
2

1+I2&2
(34)

The second term is again indeterminate when b, =0. Ap-
plying 1'Hospital's rule and evaluating at 5=0, we even-
tually find

y~2I2 l ~2
Cli il k=0 r~2+I2~2 (1 r/2y)

4(1+I2 &2) y

where b,2 to ——v2. —Upon taking the complex conjugate of
Eq. (31) and adding, we obtain Drummond and Wall's re-
sult of Eq. (26).

In a similar manner, we relate the "inelastic" part of
Cl+C& to the diffusion coefficient 2(D..., ). From Eq.
(6), the elastic portion of Cl is given by

Ng 2I2y &22
Cl el (32)

4(1+I2&2)2 t'&

Note that unlike A l,l, Cl, l is a complex number divided

by ih, implying that the imaginary part of that number
diverges when 6=0 (only the real part gives the 5 func-
tion). However, recall that we also must add C& to Cl,
and because C3(h)=Cl( b), that d—iverging term van-
ishes. Cl by itself is not a meaningful quantity; only
when it is added to C& or Dl does—it acquire physical
significance. C„„„is defined like & l;„,l, so

2~
(D., )sH, = I (D., )d(2x2z). (36)

Substituting Eqs. (26) and (27) into Eq. (36), and assuming

f=1 (pure radiative decay), we recover the expressions in
Eq. (3) of Ref. 6. In our third paper in this series, '~ we
performed the same type of average for all of the coeffi-
cients A l, B„C„andDl, as well as averages over inho-
mogeneous broadening and Gaussian transverse profiles.

We have thus shown that the diffusion coefficients of
Drummond and Walls and of Reid and Walls are, in
fact, the inelastic parts of the resonance fluorescence spec-
trum and the Cl+ C3 coefficient. Our theory reveals that
the diffusion coefficients should contain elastic contribu-
tions as well. It is well known that for either low pump
intensities or high detunings, i.e., for I2&2 && 1, the elas-
tic part of the spectrum dominates the emission. '

Specifically, I,l/I„, =1/(1+I2W2). Since this is the pa-
rameter range Reid and Walls consider for optimum
squeezing, these contributions should be included in the
degenerate theory. The effects of the elastic component is
planned to be considered in the next paper in this series.

V. COMPARISON BET%'EEN METHODS
OF SOLUTIONS

Equations (9} and (10) are linear, coupled, ordinary dif-
ferential equations, and they may be solved by the usual
techniques, such as the Laplace transform. Equations (11)
and (12), on the other hand, are linear, coupled, stochastic
differential equations, due to the noise operators Fl(t} and
Fi(t). Their solution require the introduction of a new

type of calculus, the Ito calculus. A good, recent discus-
sion of Ito and other types of calculus is given by Gar-
diner. In this section we show that solutions obtained
by this method and our reduced density operator method
produce the same results. We use a simple one dimension-
al problem, but the two-dimensional coupled-mode prob-
lem is a straightforward extension.

Consider the simple stochastic differential equation

+I22W22&2 (35)
da = —aa +F(t),
dt

(37)

C3(b, =0)=Cl(b =0), so multiplying Eq. (35) times two
and inserting the appropriate expressions for &2 and &z
recovers Drummond and Walls's result of Eq. (27).

Reid and %alls considered squeezing in degenerate
four-wave mixing. In order to account for the spatial hole
burning (SHB) of the two counterpropagating pump
burns, they integrated their diffusion coefficients over the
intensity distribution

I2 ~4I2cos2(K2. r) =2I2[1+cos(2E2z) j

(38}

The general solution to Eq. (37), from the Ito calculus [us-
ing the standard integration factor exp(at)], is given in
Ref. 25, p. 105 as

E

a{t)=a(0)e '+ dt'e " ' 'F(t') .

From Eq. (39) we may calculate (a (t)a(t) ) as

(39)

where a (t) is an operator, a a complex number indepen-
dent of t, and F(t) the noise operator satisfying

(F (t)F(t')) =35(t t') . —
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(a (t)a(t)) =(a (0)a(0))e ' + "+I dt"e " ' 'e '(a (0)F(t"))
'dt~ —a'(i —i')e —ai(Ft(t~)a(0))+ dt'dt«a {i i i a{i i (Ft(t')F(t"))

0 Q 0
(40)

The second and third terms of Eq. (40) are zero because,
once again, a fluctuation at time t' or t" cannot be corre-
lated to the operator at the future time t I.nserting Eq.
(38) into the last term of (40) and integrating, we obtain

(a (t)a(t)) =(at(0)a(0))e ' +

+ [1 e
—(a+a )tj

o,'+a (41)

as our solution.
Alternatively, we can use a reduced-density operator to

obtain the differential equation for (a a ) directly

d(a'a ) = —(a+a')(a a ) +A . (42)

In fact, this follows from Eq. (9) by dropping the ai con-
tributions, where a=Bi+v/2Qi —Ai. Equation (42) can
be easily solved to yield Eq. (41). We have thus illustrated
the equivalence between the two techniques. The solu-
tions of the stochastic differential equations of Langevin
theory can also be obtained by solving the equations of
motion derived from Eq. (3).

In conclusion, we have demonstrated that the Langevin
diffusion coefficients are identical to the inhomogeneous
source terms of our quantum coupled-mode equations (10)
and (11). In particular, the diffusion coefficient labeled A

by Reid and Walls is, in fact, the inelastic portion of the
resonance fluorescence spectrum A, +A f evaluated at
vi ——v2. Thus, the drift and diffusion coefficients for non-
degenerate four-wave mixing have already been published
in the earlier papers of this series, although they were not
named as such. The present analysis gives another
demonstration that our quantum theory of multiwave
mixing is fully applicable to the study of squeezed states,
and with its automatic nondegeneracy and inclusion of the
elastic contributions, represents a significant generaliza-
tion. The diffusion coefficients derived here can be sub-
stituted into Reid and %alls to obtain nondegenerate
squeezing. The completely independent derivations of
these coefficients by our method and by that of Reid and
Walls helps to confirm the validity of the results. The
next three papers in this series will treat the quantum
theory of four-wave mixing in detail uniformly using the
reduced density operator approach for one- and two-
photon two-level media.
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