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We study the influence of many-electron effects in multiphoton ionization within the framework
of diagrammatic many-body perturbation theory. We renormalize the electron-dipole coupling by
summing to infinite order both many-electron interactions using the random-phase approximation
and higher-order intensity terms. We introduce an effective intensity, which takes into account the
screening of the field by the electrons and represents the intensity really seen by an electron. The
theory is applied to a calculation of the two-photon one-electron ionization rate of helium in the
weak-field limit, using a local-density approximation one-electron basis set. The influence of many-
electron effects strongly depends on the field frequency. The two-photon ionization rate of helium
is lowered at low frequency (by a factor up to 1.4) and increased at high frequency when the photon
energy is above the ionization threshold. Finally, the importance of many-electron effects in multi-
photon ionization (e.g., regarding inner-shell ionization) is qualitatively discussed in connection with

experiments.

I. INTRODUCTION

Multiphoton ionization of one-electron atoms in weak
laser fields (e.g., < 10° Wcm™?2) is now a well-known sub-
ject, both experimentally and theoretically, and has been
extensively reviewed.!~> The new challenge brought to
theoreticians by recent experiments performed on rare
gases can be summarized by the following question: what
is the response of a many-electron atom (with several elec-
trons in the outermost shell) to a strong electromagnetic
field (10'2-10'"® Wem—2)?

This problem has been raised by experimental results
obtained in photoelectron energy analysis*~® and ion-
detection measurements.”~!! These two experimental
techniques yield different but complementary information
on the atomic processes. Both types of results have shown
that an atom irradiated by an intense laser field can ab-
sorb many more photons than the minimum number of
photons (N) required for ionization. This leads to the
generation of energetic electrons and the production of
multiply charged ions.

A photoelectron spectrum obtained in single-electron
multiphoton ionization consists of a series of peaks evenly
spaced in photon energy corresponding to an N-,
(N+1-, ..., (N+S)-photon absorption process. For
example, in the case of xenon irradiated by a
neodymium—yttrium-aluminum-garnet (Nd-YAG) laser
(1064 nm) at 10'> W cm 2, electrons whose kinetic energy
corresponds to an absorption of 11 additional photons in
the continuum have been reported.’ According to pertur-
bation theory, below the onset of saturation (which means
depletion of neutral atoms in the interaction region) these
peaks should have decreasing amplitudes and vary with
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the intensity as IV, J¥+!, ..., IN*5, Some experimental
results’® are at variance with these predictions and theoret-
ical one-electron models'?>~ !¢ have been recently proposed
for describing these strong-field effects and qualitatively
explaining the experiments.

Ion-detection experiments have shown that multiply
charged ions can be created through multiphoton absorp-
tion: up to Xe’* with a Nd-YAG laser”® (1064 nm, 10"
Wcem™2), even up to Xe®* with an ArF laser’!! (193
nm, 10'* Wcem™2). Doubly charged helium ions have also
been detected at 1064 nm,® in a percentage ratio of 4 at
610" Wcem—2. This ratio is extremely high considering
the difference between the minimum number of photons
that have to be absorbed for single (22) and double (68)
ionization. Very recently, up to Xe’* ions have been pro-
duced with a CO, laser!” (10 um, 103—10"* Wcm™2),
which suggests!” that the tunneling mechanism of Kel-
dysh'® could be relevant in this case.

Experimental results have emphasized the following
points: (i) an enormous energy is transferred to the atom
through multiphoton absorption (250 eV to yield Xe’*
with photons of typically 1, 2, or 6 eV energy); (ii) doubly
charged ions can be created either by a ‘“direct” process
from the ground state of neutral atoms or by a “stepwise”
process via the singly charged ion in its ground state or an
excited state;’ (iii) lastly, these multiple ionization process-
es strongly depend on the atomic structure and outermost
shell density.’~!! This suggests that many-electron (col-
lective) effects'®?° could play an important role in multi-
photon ionization of heavy atoms. Several (statistical)
models have been developed to account for the distribu-

tion of multiply charged ions at very high laser intensi-
ty.21-23
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Many-electron effects in atomic systems submitted to
weak external perturbations (linear response) are now fair-
ly well understood.?*—3! Some work has been done in
connection with nonlinear optical properties®? and multi-
photon ionization,>*~3¢ but the understanding is still quite
limited. However, this may eventually change because the
theory of many-electron effects in multiphoton ionization
is presently attracting much attention.’’ %

In this paper, we outline a theoretical description of the
interaction of a many-electron atom with an intense laser
field. The formalism which takes into account both the
interaction with the field and the Coulomb interaction is
nonperturbative in the sense that the interaction (elec-
tromagnetic or Coulomb) is allowed to modify the elec-
tronic structure. This is accomplished within the frame-
work of diagrammatic perturbation theory by performing
partial infinite summations. In this way, the electron-
photon and electron-electron interactions and the electron
and hole propagators are dressed. As a result, the interac-
tions become screened and the electron and hole levels
shifted and broadened.

Section II is devoted to a qualitative picture of the
response of a many-electron atom to a time-dependent
electromagnetic field. Section III presents the theoretical
formalism derived from diagrammatic techniques for
single-electron ionization. This is applied to a calculation
of the two-photon single-ionization probability of helium
in Sec. IV. Lastly, in Sec. V, we attempt to make some
contact with experiment and with other theoretical ap-
proaches, and we present some views on linear response,
nonlinear effects, and multielectron resonances.

II. QUALITATIVE PICTURE OF IONIZATION
BY STRONG TIME-DEPENDENT FIELDS

Figure 1 gives a schematic picture of the response of an
atom to a time-dependent external field. As long as the
frequency @ of the external field is low compared with
typical excitation energies of the outermost atomic shell
(e.g., the lowest excitation energy, the ionization energy,
or a collective frequency), the field will be screened out
from the interior of the atom. In the weak-field limit, the
frequency @ has to be raised above the first ionization
threshold in order to give rise to ionization. This
represents ordinary single-photon ionization, excited for
instance with synchrotron radiation.

If the outermost shell contains several electrons, the in-
duced fields due to the perturbed electronic density will

FIG. 1. Schematic picture of the excitation of an atomic sys-
tem by a time-dependent field.

screen the external field, so that one may think of the
electron as being emitted by an effective field at frequency
o (incorporating the many-electron response). The screen-
ing will effectively displace the oscillator-strength distri-
bution towards higher energies, in a manner that depends
on the polarizability of the atomic shell.>*2%2%30:46 Qften,
one has reason to talk in terms of collective effects, as for
instance in the case of the 5p® and 4d'" shells in Xe or
Ba,?* or the 6p and 5d shells in Th and U.?

At high-photon frequencies, finally, the outer atomic
shell cannot respond, and the field can penetrate into the
inner-shell region. There, however, the procedure repeats
itself; the inner shell is stiffer, and will follow the external
field until the frequency is further increased to well above
the typical excitation or ionization energy of the inner
shell. Moreover, at lower frequencies the inner shell will
enhance the field in the outer-shell region, leading to in-
creased ionization from the outer shell. These are the typ-
ical conditions that govern weak-field, single-photon ioni-
zation when the photon energy is varied.?*—3!

Let us now return to low frequencies w below the first
excitation energy of the outermost shell. Increasing the
strength of the field will merely increase the magnitude of
the response; the external field will still be kept from the
interior of the atom, unless it becomes so strong that non-
linear effects and/or tunneling ionization become impor-
tant. At high laser intensities, multiphoton processes be-
come highly probable, and total field-to-atom energy
transfers exceeding the ionization energies of inner shells
can be achieved. However, direct multiphoton ionization
of the inner shells cannot take place since the component
of the field at frequency w is screened out in the core re-
gion. Inner-shell ionization would have to proceed via in-
direct processes, which only become effective at very high
field strengths, e.g., (i) nonlinear processes leading to up
conversion and to strong harmonics at frequencies high
enough not to be screened by the outer shell; (ii) genera-
tion of fast photoelectrons from the outer shell, leading to
impact ionization of the inner shell;' (iii) stripping of the
outer shell (which screens the core) during the first part of
the pulse followed by ionization of the remaining core in a
later part of the pulse.*’

III. MULTIPHOTON SINGLE-ELECTRON
IONIZATION WITHIN A MANY-ELECTRON
FORMULATION

In the following, we shall imagine that the final-state
electron(s) can be measured using photoelectron spectros-
copy. A schematic picture of a photoelectron spectrum is
shown in Fig. 2. Observation of a particular photoelect-
ron (PE) line with kinetic energy e=¢; + Nw determines
the number of photons being absorbed. In addition, an ar-
bitrary number of photons may be absorbed and reemit-
ted. The amplitude ¢.(w;N;I) [Fig. 2(b)] takes into ac-
count intensity (I) effects, as well as correlation effects
like polarization and relaxation in a many-electron sys-
tem. The resulting photoelectron spectrum (current) is
given by

S (NI < [t (w;N;I) | %8(e—¢;, —Now) . (3.1
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FIG. 2. General representation of N-photon single-electron
ionization. (a) Energy scheme; (b) diagrammatic picture, inten-
sity (space between two wavy lines) and correlation (solid trian-
gle) effects are systematically included.

The amplitude ¢.(w;N;I) can be broken down into vari-
ous more or less elementary processes. To begin with, we
shall consider an effective one-electron problem and, in
particular, the influence of the field on the photoelectron.

A. One-electron formulation

A diagrammatic formulation of the N-photon one-
electron ionization amplitude is shown in Fig. 3(a). The
wavy box represents absorption of N photons plus absorp-
tion and reemission of an arbitrary number of photons.
The exact summation of higher-order intensity terms in

€=g + Nw
|
w

(a)

\ € €
+ |\ + i +..
n

(b}

telw, N, 1) =
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-

FIG. 3. One-electron formulation. (a) Diagrammatic repre-
sentation of the N-photon ionization amplitude; the space be-
tween two wavy lines represents a N-photon absorption plus any
higher-order process of photon absorption and emission. (b)—(d)
Diagrammatic representation of the effective dipole matrix ele-
ment D/; including repeated photon absorption and reemission
process, (b) perturbation expansion, (c) integral equation, (d) in
terms of a Stark-shift self-energy defined in (e). (e) Stark-shift
self-energy.

the perturbation expansion is a major problem. We do not
pretend to offer any general solutions, but we think that a
few important aspects can be discussed in a fairly simple
way.

We shall first consider one-photon absorption, N=1, as
shown in Fig. 3(b). The excitation of a bound electron (i)
to the continuum (g,n), followed by the repeated one-
photon absorption and reemission, may be represented by
an effective one-photon ionization dipole matrix element
Dl;(w), given by the perturbation series [Fig. 3(b)]

d Em dmn dm'

(@i —20) @y —w)

Di(w)=dy+I3

m,n
+IZX(...)+...’ (3.2)
or by the corresponding integral equation [Fig. 3(c)]

dsmdmn
(w,,,,- —2(0)((0,“' —w)

DY w)=d +I3 Dl(w) . (3.3)

m,n

Equations (3.2) and (3.3) are obtained by applying usual
diagrammatic evaluation rules (see, e.g., Refs. 48—50) to
the diagrams represented in Figs. 3(b) and 3(c). We are
using a basis of one-electron states, typically Hartree-
Fock; €,, and g; denote one-electron energy eigenvalues
and w,,; =¢€,, —€; represent one-electron excitation ener-
gies. The electron-photon coupling is given by

(m |Er|n)=I"*(m |&r|n)

-1, .

(3.4a)
(3.4b)

We shall adopt the following notations for the electron-
photon coupling: the lower-case letters (d,d”) represent
the ordinary one-photon or N-photon matrix elements;
the upper-case letters [D'w),DM(w)] represent the
“Stark-shifted” matrix elements (renormalized in the field
interaction); [d(w),dM(w)] denote the matrix elements
screened at frequency w (many-electron polarization ef-
fects are included); lastly, the script letters
[Z Y w,pw),ZM(w)] represent the complete matrix ele-
ments renormalized both in electron-photon and electron-
electron interaction.

Equation (3.3) may be written in terms of a Stark-shift
self-energy 2(w) [Fig. 3(d)],

Dji(w)=dy+ 3, MDJ,-((U) , (3.5
n Wpi —O

and we may also extend Z(w) to including processes
where the order of one-photon absorption and reemission
are interchanged,

dsmdmn dsmdmn
+

Se(e)=IS (3.6)

Wi — 20 O i

An approximate (nonperturbative) solution of the integral
equation (3.5) for the effective one-photon matrix element
D!j(w) is given by

Esn( dm‘
Deli(w)=dei+2——w)-—/F(w) B3.7)

Wy —@
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with
Sanlow)
Fl@)=1-3 —/—. (3.8)
n Wy — O

The solution in Eq. (3.7) is of the Fredholm type and has
the great advantage that it is correct to first order in
S(w): the approximate result (3.7) retains the correct
structure of Eq. (3.5), and the factorization only enters
when turning the higher-order corrections into a
geometric series. A much more approximate form, which
would be valid if the interaction were factorizable (which
it is not), is given by
The zeros of F(w) in Eq. (3.8) give the poles of the
Stark-shifted excitation spectrum. In the neighborhood of
a discrete excitation n, Eq. (3.7) becomes

Zenlw)dy

—_—, (3.10)
Wpj —Zpp(@)— 0@

Dy(w)=d;+

which describes a Stark-shifted intermediate resonance.
In the continuum, F(w) will lead to a change in the con-
tinuum density of states.

The above description merely represents a systematic,
and probably well-known, treatment of weak-field one-
photon ionization. The Stark-shift self-energy =(w) in
Eq. (3.6) is only calculated to first order in the intensity I,
and systematically going to higher order represents a ma-
jor problem. The infinite-order problem has been exten-
sively studied for a one-electron system®!'~>3 but not for
any many-electron system. In this paper, however, we
shall only consider the Stark shift to first order in the in-
tensity of the photon field.

In order to generalize in a simple way to N-photon ioni-
J

e
¥

S N
G \E A

FIG. 4. One-electron formulation. Diagrammatic represen-
tation of the N-photon ionization matrix element (a) dZ, (b)
D¥(w), (c) intensity-renormalized electron-photon coupling
D). (pw), (d) different ways of partitioning DY(w) [Eq. (3.12)],
(e) integral equation [Eq. (3.15)].

zation, we shall assume that circularly polarized light is
used to step only upwards in angular momentum in ab-
sorption, /—/ + 1, and downwards in emission, | —/ —1.
The unperturbed N-photon one-electron matrix element
[Fig. 4(a), no Stark shifts] has the form

d,dN-!
dﬁ=2ﬁﬂ(‘]§_—“—5 , (3.11a)
n n
dem- '“dmmdmi
d]\_ N-—-1 2 1 .
c ml,ml‘;,mlv_l [Omy i~ (N —Do] " (0 —20) @y —) 3.115)

We now wish to represent the effect of the Stark-shift self-energy in terms of an effective one-electron dipole matrix
element D,,,(pw) leading from (n,(p —1)w) to (m,pw) [Fig. 4(c)]. The effective N-photon matrix element is defined as

D!, (Nw)DY Y w)

D¥(w)=
(o) ? 0N 1w’ (3.12a)
) D., (Nw) --D (2w)D,, ;(®)
DN(w)= > N el ik : (3.12b)
myumy, s my_y [@my_i— (N =1o] - (0, —20)@p,; —©)
T
where [Fig. 4(c)] (p=1,2,...,N) (Ref. 54),
Smglpw) dpnd dmnd
D]} =d ~mr—p) , 3.13 b3 =1 i ~
mn(P©) mn + § 0gi—p® qn(PCU) ( ) mq(pw) g on—(p + Do + o —(p—Do
and where 3,,,(pw) is given to lowest order as in (3.6) (3.14)



3942

In order to have an integral equation for the N-photon
amplitude D¥(w), we multiply Eq. (3.13) from the right
by DY—Yw) and sum over n (we also let m—¢ and
p—N). As aresult

Z.a(Nw)

Dz(w)—DgHz ‘._N Do), (3.15)

d,DN )
N _ enni
Da=2 opi—(N =1

n

(3.16)

Equations (3.11)—(3.13) and (3.15) have been graphically
interpreted in Fig. 4. Equation (3.11b) is represented by
Fig. 4(a) and the intensity-renormalized Eq. (3.12b) by
Fig. 4(b). The integral equation (3.13) for the intensity-
renormalized electron coupling is described by Fig. 4(c).
Figure 4(d) illustrates the different ways of partitioning
the full N-photon matrix element D¥(w) in Eq. (3.12),
while Fig. 4(e) graphically describes the integral equation
(3.15).

Using the Fredholm apProximation, the effective one-
electron matrix element D,,,(pw) [Eq. (3.13)] is given by

Znm )dgn
DL (po)~d,, + 2‘, ZmgP0)gn / Flp (3.17a)
~d, /F(pw) , (3.17b)
where
Zanlpw)
F =1-y — 3.18
(po) ? o —pe> (3.18a)
=1—IBypw), (3.18b)
with
| dpg |2 1
Bolpw)= % on—po | og—p T 1w
L (3.19)

+ w4 —(p—1Do

Bolpw) is related to the Stark shift and represents an in-
verse characteristic intensity. In the neighborhood of res-
onances, By(pw) shows large and rapid variations with en-
ergy, and the zeros of F(pw) give the Stark-shifted reso-
nances. However, even when By(pw) varies slowly, F(pw)
may become zero if the intensity is sufficiently large.
This would correspond to new levels induced by the field.

It is very instructive to evaluate Eq. (3.12b) using the
approximative dipole matrix elements in Eq. (3.17b). The
result for the Stark-shift-corrected effective N-photon
one-electron matrix element then becomes

da
F(Nw)- - F(20)F ()

where d¥ is given by Eq. (3.11) (no intensity renormaliza-
tion).

D¥(w)~

(3.20)
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The photoelectron current can now be written approxi-
mately as

INI I

SdoN;De | [ ————
p=1 [1—=1Bypw)]

X |d¥ | %8(e—e;—No) . (3.21)

At low intensity, the current shows the usual IV power
dependence given by perturbation theory. At higher in-
tensities, the renormalization factors may change this
power dependence. At very high powers [I8y(pw)>>1],
an entirely different intensity dependence can appear, but
then the present low-intensity expansion of the Stark shift
may no longer be valid.

It should be emphasized that nonlinear effects have not
been included in the formulation leading to Eq. (3.12) in
the sense that no components of the field are oscillating at
other frequencies than the fundamental frequency w. We
shall only consider nonlinear effects in connection with a
system of interacting electrons. The electron-electron in-
teraction can be mediated either by photons [at
0,30,50, ..., i.e., only odd harmonics; see Figs.
5(a)—5(c)] or by the Coulomb interaction [at
0,20,30, . . ., ie., all harmonics; see Figs. 5(d)—5(g)].
Figure 5(a) could involve a spontaneous emission at w.
Note that the spontaneous processes indicated in Figs.
5(a)—5(c) should be extremely weak (negligible). Figures
5(d)—5(g) describe various harmonic components of the
induced field and will be discussed in the following sec-
tion.

B. Many-electron formulation
The next step in our treatment must be to investigate

how the many-electron interaction effects can be included
in the one-electron picture given above. A complete

many-electron formulation would contain all aspects of
polarization, relaxation, and correlation including a whole
The many-electron

host of additional nonlinear effects.

(d)

FIG. 5 Examples of linear and nonlinear effects which have
not been included in the one-electron formulation (see text).
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problem is a formidable problem already in the case of
one-photon weak-field ionization, and we have no inten-
tion to provide any general discussion in this paper. In-
stead, we shall concentrate on many-electron polarization
effects which screen the external time-dependent radiation
field and consequently modify the electron-photon cou-
pling.

A nice aspect is that some important effects of polari-
zation can be included in the same way as the Stark-shift
interaction X, as shown in Fig. 6 . However. the structure
of the integral equation describing the N-photon matrix
element 2 M(w) is not as simple as (3.15) due to ground-
state correlation effects (last diagram in Fig. 6) which in-
troduce negative frequency denominators. As long as we
neglect these effects and restrict ourselves to the forward-
propagating diagrams (the first three diagrams to the
right of the equality in Fig. 6), the combined problem is
still described by an integral equation analogous to (3.15),
in which the Coulomb interaction is added to the Stark-
shift self-energy =(Nw),

[Een(NQ))+ Vieni]
@y —No

DY0)=2Y+ 3, D% w). (322

n
As might be expected, there is then no clear distinction
between effects of the field and effects of the Coulomb in-
teraction. In particular, at high intensities, effects of the
field may win over the electron-electron interaction.

In spite of the advantages of a unified picture, it can be
more convenient to separate out the many-electron effects,
in order explicitly to obtain screened (renormalized)
electron-photon and electron-electron interactions which
describe the zero-intensity limit. Figure 7(a) shows di-
agrammatically the random-phase approximation (RPA)
(Refs. 24 and 27) for the electron-photon dipole interac-
tion. (Note that the screened interaction could alterna-
tively be represented by an open circle in the following.)
We shall assume, for sake of simplicity, that exchange ef-
fects [i.e., electron-hole ladders, RPAE (random-phase-

P\E
. &

FIG. 6. Many-electron formulation (1). Diagrammatic repre-
sentation of the effective N-photon matrix element 2 Y(w); the
first diagram to the right of the equality is DY defined as in
(3.14), the next one includes the interaction with the field, and
the last two diagrams the Coulomb interaction.
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approximation exchange)] are included in the one-electron
description. The random-phase approximation (RPAE)
describes many-electron polarization effects, and is in par-
ticular capable of handling collective effects.’**® The
screened electron-photon interaction can also be con-
structed with the screened electron-hole interaction as
shown in Figs. 7(b) and 7(c). The RPA integral equation
for the dipole matrix element screened at frequency o,
dpyn (o) [from Fig. 7(a)], can be written as

204 Vni
A @)=y — 3, —2—"2Ld () (3.23)
ej @y —®
where V,,jn, is the Coulomb matrix element
Viing={mj | |[t—r'| ~'|nq) . (3.24)

If the polarizability of the outermost atomic shell is large,
the field strength inside the atom may greatly differ from
the field strength outside. Obviously, this should be of
particular importance in nonlinear processes, because it
will lead to a renormalization of the coupling constant. In
analogy with Eq. (3.4), we may write the electron-photon
coupling as

1'%, —I1'"%d,, (o)

=I'""(m |&t(w)|n), (3.25)
where
20, j| |t=1"| " g )d,i(w)
ero)=t1— Y ¥ i1 > | 2(‘1 g .
oJ Wgj —®
(3.26)
(j| |r—r'| ~!|q) involves an integration over r' (the

one-electron states refer to r’). Equation (3.26) corre-
sponds exactly to Fig. 7(a).

The screened dipole operator r(w) may be rewritten in
terms of a space-dependent inverse dielectric function
(response function) e~ !(r,w) as (see also Refs. 24, 29, 30,
and 55)

erw)=e Yr,wler. (3.27)

(c)

FIG. 7. Random-phase approximation. (a) Integral equal for
the screened electron-photon interaction, (b) screened electron-
photon interaction constructed with (c), (c) screened electron-
hole interaction.
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The effective electron-photon interaction may now be ex-
pressed in a number of ways:

I, (0)={(m | e r,0)B-r|n) (3.282)
={(m | Eqdr,0)r|n) (3.28b)
=(Eet@) ) pn {m |€:x|n) (3.28¢)
=I" e w))dmn (3.28d)
=(I{#(®))dpn - (3.28¢)

The coupling depends on the local effective dielectric field
[Eq. (3.28b)]. Furthermore, we may define a state-
dependent average electric field [Eq. (3.28¢)] or dielectric
function (3.28d) or intensity (3.28¢). In Egs. (3.28d) and
(3.28¢) we have omitted explicit mention of the state
dependence, but it should be understood: the average { )
effectively refers to a limited region of space which gives
the main contribution to the matrix element.

We can now return to the combined problem of the
nonperturbative description of both the field and
Coulomb interaction. We first screen Coulomb and dipole
matrix elements as in Fig. 7 and replace the ordinary ma-
trix elements by the screened ones in order systematically
to include the many-electron linear response at frequency
. The Stark-shift self-energy in Eq. (3.14) will then ex-
plicitly depend on o as well as on pw, 2(pw)—Z(w,pw).

The presence of negative frequencies in the RPA expan-
sion (we do not restrict ourselves to forward-propagating
diagrams but include ground-state correlations) requires
that the generalization of (3.5) is a matrix equation, in-
volving an effective Stark-shift self-energy matrix
3 w,pw) (p=1,2,...N, u,v=1), defined in Fig. 8(a).
In the case of one-photon absorption (N=1), the two
components (Z'+,2'~) of the total electron-photon di-
pole operator are solutions of the following coupled equa-
tions [Fig. 8(b)]:

(3.29a)

(o)
wm+w gm' ()

> (w)

WDy — @

géi‘.(w) e:+ 2

D (o) (3.29b)

For N-photon absorption (N> 1) equations similar to
(3.29) may be derived for the effective one-photon one-
electron dipole matrix 2'*(w,pw) (p=2,3,...,N). A
systematic treatment can fairly easily be expressed in di-
agrammatic form, but the corresponding analytical ex-
pressions will be very bulky. The aim of the present paper
is, however, to demonstrate the role of many-electron
screening in the low-intensity limit (Stark shifts ~I), not
to present any complete treatment. We shall therefore in-
troduce a number of simplifications, some of which might
have to be reconsidered in connection with numerical cal-
culations or for reasons of consistency (sum rules, etc.).

To begin with, we only keep forward-propagating dia-
grams for 3*¥(w,pw), leaving only 2+ *(w,pw). Equation
(3.29) may then be generalized to the p-photon level [Fig.
8(c)] (Z2'* =2 from now on):

it o,po)

D! (o,po),
(‘)qi —pw " P

D )n0,p0)=dmpl0,p0)+ 3
g

(3.30)

(e}

(d)

FIG. 8. Many-electron formulation (2). (a) Stark-shift self-
energy matnx, (b) matrix equation for the one-photon matrix
element & 2,—((0 ) screened at frequency ® and Stark shifted,
(c) one-photon matrix element & ,,.,,(co,pw) screened at @
and pw and Stark shifted, (d) one-photon matrix element
dmn(w,pw) screened at @ and pw and not Stark shifted.
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where [Fig. 8(d)]
qui Vm“iq (pw )

dpn(@,p@) =0y (@) — 2 wéi _(pw)Z

q9

(@)

(3.31)
and where [Fig. 8(a)]

Vmiin (pw )Enq(w,["‘))
Zod (@,p0) =2 (0,p0)— ; Opi —PO ’
(3.32)

The Stark-shift self-energy 2,,,(w,pw) depends on the
screened dipole matrix elements

yn(©)d g (@,(p + Do)
3 , =T
D 7 e P T

Amn(@)dpg(@,(p —1)w)
@pi—(p — Do

(3.33)
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Vimiig(p®@) is a matrix element of the Coulomb interaction
[Fig. 7(c)] screened at frequency pw [given by an integral
equation similar to Eq. (3.23) with o —pw]. dp,(w,pw)
[Eq. (3.31), Fig. 8(d)] can also be written as the solution of
an integral equation

20, Vi
Ao (0,p0)=dpp(0)— S ——""d_(0,p0) .
mn\@,P %wgi_(pw)z gn\@,p

(3.34)

Equation (3.34) says that the screened electric field has fre-
quency components at pw, so that the pth photon will be
screened both at frequency o and pw. This is really an
example of nonlinear effects; the induced electric field will
have components at w,20, 3w, . . . (Fig. 5).

D} 0,pw) in Eq. (3.30) is the fundamental quantity
in the N-photon ionization matrix element [cf. Eq. (3.12)]

,@E,,,N_l(a),Na)) ... 9m2ml(w,2w)@mli(w,w)

DN w)= >

Note that Eq. (3.35) only represents a direct generalization
of Eq. (3.12) to include screening of the one-photon dipole
matrix elements, D' (pw)— 2 (w,po). A completely gen-
eral expression would also contain all the nonlinear com-
binations [e.g., Fig. 5(g)].

The approximate effects of the screening can easily be
extracted by introducing some further simplifications.
The purpose is to find approximate expressions for the di-
pole matrix elements in Eq. (3.35). First, we use the
Fredholm approach®®*” to obtain approximate solutions
of the integral equations. We introduce the definitions

> o,po)
=1-y — 3.36
Flw,po)=1 % o —po (3.36)
(pw)=1 Vi (3.37)
€.(po)= +§w,,i—pw , .
2'C‘)m' Vm’in
elpo)=1+ _. (3.38)
d ? whi —(pw)?
Equation (3.30) then becomes
D} p(@0,p®) >y (0,p0) /F(0,po) . (3.39)
Using Eq. (3.34), we further obtain
| dpn(@)/F(0,0) (p=1) (3.40)
D mn(@:p0) 4 () /e(po)F(w,pw) (p>1).  (3.41)

The difference between Eqgs. (3.40) and (3.41) arises be-
cause for p> 1 there are two independent screening mech-
anisms (independent in the present treatment) at » and
po.

In a similar way, Eq. (3.32) approximately becomes

IhH 0,p0)~32,,(0,p0) /€, (pw) . (3.42)

my_, [Omy i = (N =] (@0 —20)(0p ;—0) '

(3.35)

In the present approximation, the intensity dependence of
the dipole matrix elements only enters through F(w,pw).
To lowest order in the intensity I, Eq. (3.42) becomes

ShT(0,p0)~Ie; (pw) T, |dy(w) |2
q

eNp+w) e Np—1o)
wg—p+Do  w;—(p—1o |’
(3.43)
so that F(w,pw) in Eq. (3.36) may be written as
Flw,po)=1—1I | (e w))e pw)|*Blpo) (3.442)
=1—(Ig(w)) e (pw)|?Blpw)  (3.44b)
=1—Ig(w,p0))Bpo), (3.44c)
where
B(PCO)= _i(ﬂf‘)_)_
e, (pw)
dy, |2 -1
> ldng | | elpo)e=((p +1w)
nq ©ni—PO wgi—(p+ 1o
elpw)e”((p —1w)
+ .
g —(p — o
(3.45)

B(pw) is similar to the one-electron Stark-shift quantity
Bolpw) in Eq. (3.19), but with modifications due to the
dielectric functions. However, firstly, we suspect that a
more complete (systematic) treatment will replace €, (pw)
by e€(pw) in Eq. (3.45) (and elsewhere). Secondly, as long
as e(pw) varies slowly with energy, then e(pw)
~e((p +1)w)~€e((p — 1)w). Equation (3.45) will therefore
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effectively reduce to the Stark-shift expression By(pw)
describing noninteracting electrons.

The N-photon ionization current (3.1) from the ith sub-
shell has the explicit form

AN DIV | 2% (w)|*(e—g;—Now) , (3.46)

where Z%(w) is given by Eq. (3.30). A sum over the elec-
trons in the ith subshell is understood. With the approxi-
mate expressions (3.40) and (3.41) for the one-photon di-
pole matrix elements, we finally obtain

I (w;N;)=S(o;N)F oelw;N ;1) , (3.47)
where
Fodla;N;D IV | dY | 28(e—;—No) , (3.48)
SN = (e )V '(No) - - e '2w) i
’ F(o,Nw)" -+ Flo,20)F (0,0)
(3.49)

Foe{w;N;I) is the current obtained from lowest-order per-
turbation theory for the electron-dipole coupling, while
S(w;N) describes higher- (infinite) order dynamic effects
due to dressing of the electrons by the field and due to
many-electron screening.

The average dielectric function in Eq. (3.49) should be
interpreted according to

(e N))V=(eUw))y " (e Hw)){e ),

(3.50)

meaning that the screening is state dependent and may be
different for each dipole matrix element.

Equations (3.47)—(3.49) may also be written in a form
analogous to the one-electron equation (3.22),

J

D¥w)=(e| -~

as in fact we do in Sec. IV (see also Appendix A). From
Eq. (3.53), it is clear that it is the spatial extent of the
wave packet f dr"[G(r,r";pw)- -+ ]|i) that determines
which part of the screening function (effective field)
e \(r,w,pw) is effective.

An equation equivalent to Eq. (3.54) with
€ !(r,0,p0)=€"!(r,w) (only screening at ®) has been
used by Zangwill’? for calculating third-order nonlinear
polarizabilities in the rare gases (third-harmonic genera-
tion). We shall also use this simplification and neglect the
screening at pw (p=2) in the numerical applications in
the next section.

IV. CALCULATION OF TWO-PHOTON
SINGLE IONIZATION OF HELIUM

The theoretical methods presented in Sec. III have been
applied to the simplest case, the two-photon single ioniza-
tion of the helium 152 1S state in the weak-field limit (the
interaction with the electromagnetic field is treated per-
turbatively). The purpose of the calculation is not to ob-

G(r,r;pw)e (r,0,p0)-1G(r,r";(p — Do) - - -
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Il N; DI |dY | 28(e—¢;, —Nw) , (3.51)
where
N (I g(w,pw))
I=I |1—<1cffff ,pZ))B(Pw)IZ ’ 332
with
(Iglw,p))=I | (e w))e pw)|?
=I|{e N w,pa))|* (p>1) .53

(Ig(w,0))=I|{e w))|?
=(Iglw)) (p=1).

The result for interacting electrons in Egs. (3.51)—(3.53)
can therefore be directly obtained from the result for
noninteracting independent electrons in Eq. (3.22) essen-
tially by replacing the external field intensity I by a
screened, effective field intensity (I ;r(w,pw)).

Equations (3.47) and (3.51) have been designed to
demonstrate the role of screening and renormalization.
The idea is, of course, that one might be able to identify a
typical average effective field in a region where the N-
photon ionization amplitude essentially is formed.

The starting point for proper calculations is Eq. (3.30)
combined with Eqgs. (3.35) and (3.46). In that case, the
screened field will be properly evaluated within the dipole
matrix element in a state-dependent manner [Egs. (3.28a)
and (3.28b)] without reference to any average field. How-
ever, a better approach would then be first to perform the
intermediate sums, going over to a space representation
with Green’s functions (integration over coordinates is un-
derstood),

li), (3.54)

[

tain any accurate results which would anyway be difficult
to compare with experiment due to the very high photon
energy required (> 12 eV), but to analyze polarization ef-
fects on the two-photon absorption process when the pho-
ton energy is varied below and above the ionization
threshold.

A. One-electron approximation

In the central-field approximation, one-electron wave
functions are expanded in spherical harmonics:

Ynim (1,6,0)=— unl(r)le(e¢ 4.1
with u,; being the solution of the radial Schrédinger
equation (Ry units)

a* .z

— 525 v+

dr 2 I(Ir+1) unl(r)zenlunl(r) .

4.2)
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V(r) is the sum of the electrostatic potential ¥y (Hartree
term) and an exchange/correlation potential V,.. The
Hartree-Fock approximation neglects correlations but ac-
counts exactly for exchange effects. Here, we shall use a
local-density approximation (LDA) (Refs. 24, 29, 30, and
58) which contains local exchange and some part of the
correlations, describing the potential according to

Vie(r)~—p'/?. (4.3)

Due to the local-density approximation of the exchange
potential, there is no longer perfect cancellation between
the self-interaction from the direct term and the self-
interaction from the exchange term. In other words, an
electron at large distances sees a neutral atom ( ¥~ poten-
tial). Therefore, the LDA potential does not support any
Rydberg levels. In particular, for helium, which is an ex-
treme case, no bound p states exist. As a consequence, the
two-photon ionization probability will not show any reso-
nances due to bound excited states. However, very good
results have been obtained by using a LDA one-electron
basis set to calculate one-photon ionization cross sec-
tions.?#2%2° The LDA potential correctly describes the
continuum part of the spectrum; it also gives a good
description of the average oscillator-strength distribution
in the discrete region. For example, the dynamic polari-
zability is well described at low frequencies and above the
ionization threshold.

Although the local-density approximation has been ap-
plied to many atoms, it has never been used, as far as we
know, to calculate the one-photon ionization cross section
for helium. In order to check its validity for helium, we
have performed an RPA calculation with the LDA basis
set and calculated the photoionization cross section.

B. One-photon ionization cross section
The one-photon ionization cross section may be written
olw)=4maafo |dg,s(w) |2, 4.4)

where a is the fine-structure constant, a, the Bohr radius,
o the field frequency, and dep1s(@) the screened dipole
matrix element for the transition 1s—¢ep [Egs. (3.25) and
(3.26)]:

dpilo)=(ep |e r,0)er|1s) . 4.5)

The numerical methods used to calculate €~ !(r,w) are
described in Appendix A.

Figure 9 shows a plot of the photoionization cross sec-
tion (Mb) as a function of the photon energy (Ry). The
numerical result for the cross section (4.4) is represented
by the dot-dashed line. The dashed line corresponds to
the one-electron approximation [Eq. (4.4) with the usual
(not screened) dipole matrix element d,,;]. The dotted
line is an RPA calculation with a Hartree-Fock (HF)
one-electron basis.’® The solid line is an experimental re-
sult.% The ionization threshold given by the LDA poten-
tial (1.13 Ry) is much lower than the real one (1.81 Ry).
The part of the spectrum below 1.81 is an average repre-
sentation of the photoabsorption spectrum (transitions to-

Photoionization cross section (Mb)

Photon energy (Ry)

FIG. 9. Photoionization cross section of helium (Mb) as a

function of the photon energy in rydbergs; (— — —) one-
electron approximation with a LDA basis, (—.—.—. ) random-
phase approximation with a LDA basis, (. - - .) random-phase
approximation with a HF basis (Ref. 60) ( ) experimental

data (Ref. 59).

wards discrete states). From about 3 Ry, the local-density
RPA result is in very good agreement with experimental

data, and is even closer than the RPA result obtained with
a HF basis.

C. Two-photon ionization probability

The two-photon ionization rate for a linearly polarized
light can be written as

p=2mlac/ag)I /1) |d2g15(@) | 2+ |dL (@) |1,
(4.6)

where ¢ is the light velocity, I, a normalization factor
equal to 14.038x10'® Wcem™2, 1 the laser intensity in
Wem™2, dijs(w) the renormalized two-photon matrix
element (/ =s or d). From Eq. (3.54),

dglls(w)
=(el | e (1,0,20081G (1,1, 0)e " (r,0)&r' | 1s) ,

4.7)

with

G(rr0=T 122l 4.8)

n @npls—@

As already mentioned in Sec. III, we shall not consider the
screening at frequency 2w: €~ (r,w,20)~€"!(r,w). The
diagrams calculated within this approximation are
represented in Fig. 10(b). The diagrams related to the
screening at 2w which are represented in Fig. 10(b) involve
monopole or quadrupole Coulomb interactions and can be
disregarded in a first approximation as will be briefly dis-
cussed in Appendix B. The method used to calculate
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% \f @;\{@fv

FIG. 10. Diagrammatic representation of the two-photon
single-ionization amplitude (a) screened at o, (b) screened at w
and 2w.

€ !(r,w) and G(r,r',») when the photon is varied below
and above the ionization energy (involving real and com-
plex Green’s functions) are detailed in Appendix A.
Figure 11 shows a plot of the ionization rate divided by
the square of the laser intensity, p/I? in 10~'¢
s~!'W~2cm* units as a function of the photon energy
from 0.6 to 2.5 Ry. The solid line is the RPA calculation
and the dashed line corresponds to the one-electron ap-
proximation. In Fig. 12, the contributions of the continu-
um s and d transitions to the total rate have been separat-

1.81 25
T T — T
= 15712p 157! :
..l:' expt  expt E
> | ]
o i
3; I
2 | 1
~ :
] ' .
a )
ol o by -
0.57 1 15 2 25

Photon energy (Ry)

FIG. 11. Plot of the two-photon ionization rate divided by I?
(in 10~ s~!'W-2cm*) as a function of the photon energy (in
rydbergs); (— — —) one-electron approximation, ( )
random-phase approximation.

p/1? (arb. u.)

0.7 08 0.9 1
Photon energy (Ry)

FIG. 12. Contributions of the transitions 1s —&s and 1s —&d
to the two-photon ionization process; (— — —) one-electron ap-
proximation, ( ) random-phase approximation.

ed (the photon energy is varied from 0.6 to 1.0 Ry, i.e,
below the ionization threshold). The contribution of the
15 —¢d transition is dominant, except at threshold.

The unusual shape of the two-photon ionization rate
curve (absence of resonances and very low ionization
threshold) is due to the local-density approximation. The
LDA ionization threshold is at 1.13 Ry. The two-photon
LDA ionization cross section therefore starts at ®=0.57
Ry and shows pronounced structure around w=1.13 Ry.
For computational reasons, we have avoided the close vi-
cinity of the LDA threshold, which explains the gaps in
the curves. Moreover, since the experimental ionization
threshold is at 1.81 Ry and the two-photon threshold at
0.9 Ry (cf. Fig. 11), the photon-energy range in Fig. 11
may be divided into four regions.

(i) 0.57 <@ <0.90. The photon energy is smaller than
the real minimum energy required for a two-photon ioni-
zation (0.90 Ry). The spectrum is an average representa-
tion of the two-photon absorption spectrum (transitions to
discrete levels).

(i) 0.90 <w < 1.13. The intermediate state of the two-
photon transition lies in the discrete part of the spectrum
(both real and LDA).

(iii) 1.13<w < 1.81. The intermediate state is in the
discrete part of the real spectrum, but in the continuum of
the LDA spectrum. The result can be regarded as an
average representation of the two-photon ionization spec-
trum.

(iv) o> 1.81. The intermediate state lies in both the
real and LDA continua. The local-density approximation
is expected to give a good description of this region.

In summary, a realistic approximation to the average
two-photon ionization cross section for He starts at
©=0.90 Ry, follows first the solid curve in Fig. 11, then
the dash-dotted interpolation (the LDA threshold does not
exist in the real spectrum), and finally again the solid
curve. The 1s—np resonances in the 1.40—1.81-Ry re-
gion of the real spectrum are thus represented by an aver-
age cross section.

An essential result in Fig. 11 is that polarization effects
are not negligible at all. Their influence on the two-
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photon ionization rate depends on the photon energy. At
low energies, the external field is quasistatically screened
by polarization effects. For example, at 1 Ry, the two-
photon ionization rate is lowered by a factor of 1.4. This
effect is reversed around 1.5 Ry. This enhancement of the
two-photon ionization rate at large photon energies could
be much more important for heavier atoms such as xenon
or barium.

D. Comparison with other results

The only calculations that we are aware of for the two-
photon ionization probability of ground state He are those
of Victor** and Ritchie.* In Fig. 13, we have plotted our
result extrapolated around the LDA threshold (solid line),
one result obtained by Victor®® (solid circles) for
0.95 <w < 1.40, and one by Ritchie’* for 0.90 <w < 1.80
(dashed line). We have taken what we think are the most
accurate results obtained by these authors. Victor calcu-
lates the two-photon ionization rate of He within the
framework of the linearized time-dependent Hartree-Fock
(TDHF) approximation.%' The method used by Ritchie is
quite similar; he neglects the negative-frequency terms in
the TDHF coupled equations.

The TDHF and RPAE approaches have been shown to
be equivalent.®? The main difference between our result
(obtained by considering only the screening at , not non-
linear screening, i.e., at frequency 2w) and those of Victor
or, to a lesser extent, Ritchie is then the zeroth-order
monoelectronic basis set: LDA in our case, HF in the cal-
culation of Victor or Ritchie. The HF excited spectrum is
much closer to the experimental one than the LDA. Con-
sequently, the two-photon ionization rate calculated by
Ritchie exhibits resonances on the 1s2p and 1s3p states.
However, away from these resonances, i.e., for
0.90 <w < 1.40, the results represented in Fig. 13 are in
very good agreement. The two-photon LDA spectrum
can be viewed as (i) an extension of the HF spectrum to
the discrete absorption region (w <0.90) and above the
ionization limit (o > 1.81), (ii) an average of the HF spec-
trum in the region of the resonances on the 2p and 3p lev-
els.

T

N S S S Y

| S S S S R 1

0.6 0.90 1 15 181 2 25

Photon energy (Ry)

FIG. 13. Comparison between our result ( ) (LDRPA)
and calculations from Victor (Ref. 35) (e-e-¢ ) and Ritchie (Ref.
34) (— — —) (TDHPF).

This comparison proves the validity of the LDA poten-
tial for calculating two-photon ionization rates. More-
over, it shows the close similarity between different
theoretical approaches, the TDHF theory and the
random-phase approximation.

V. DISCUSSION OF THE IMPORTANCE

OF MANY-ELECTRON EFFECTS

IN MULTIPHOTON IONIZATION
Recent experiments*~!"'!7 have raised a number of very
interesting questions concerning, for example, (i) absence
of inner-shell ionization up to very high intensities, (ii)
multiple ionization’~!"!7 up to complete removal of the
external shell,®~!! (iii) deviations from power-law depen-
dence of the photoelectron current at high intensities,’ (iv)
pronounced variation of the average energy transfer with
atomic number (Fig. 2 of Ref. 10), and (v) nonlinear ef-
fects.

Most of these effects are connected with heavy atoms
with many electrons in the region of the outermost shell,
like Xe or U. These atoms are well known for their col-
lectivelike properties in single-photon ionization,?*?* and
in core-level spectra.> Many-electron effects can there-
fore be expected to play an important role also in multi-
photon ionization of these systems.

The present treatment, leading to the N-photon one-
electron ionization current in Egs. (3.47) and (3.51), ad-
dresses the role of many-electron screening within the
RPA (linear response). This focuses attention on the total
effective field and intensity at frequency o, and on the ef-
fective electron-photon coupling.

One of the major results so far is that the expression for
the one-electron current in Eq. (3.51) is valid also with in-
clusion of many-electron screening provided that the in-
tensity is associated with the effective field [Eq. (3.52)].
In fact, this is a result that one intuitively might expect to
find.

As an example, let us study the case of multiphoton
ionization of the 5p and 4d shells in Xe. The physics is
illustrated in Fig. 1, and has been qualitatively discussed
in Sec. II. The effective field is governed by €~ !(r,0,pw)
[~ Ur,0)e (pw)] as discussed in Eqs. (3.26)—(3.28)
and Eq. (3.53). Some previous studies?*?%% of the spatial
properties of €~ !(r,w) as a function of the frequency in
the case of the 4d shell in Ba have shown that, as long as
the frequency lies well below the 4d ionization threshold,
the dielectric function e~ !(r,w) strongly reduces the total
field inside the 4d shell. This behavior is a general
phenomenon and may be applied also to the 5p and 6s
shells of barium as well as to the 5p shell of Xe. All the
experiments so far have used photon energies (0.1—6 eV)
well below the 5p ionization energy of xenon (~12 eV).
We may then expect the field to be reduced in the outer-
shell 5p region and strongly reduced in the inner-
shell 4d region. We have performed explicit calculations
with the local-density random-phase approximation
(LDRPA) which show that in the 4d region the
dielectric function varies from (e w=0))4y=~0.2 to
(e w=6))4y~—0.2. In the 5p region, the correspond-
ing variation is from (e '(©=0))5,~0.7 to
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(e~ w=6))s5,~0.5. In the 4d region the effective inten-
sity is therefore reduced by a factor of 25 or more, while
in the 5p region there is a reduction of the effective inten-
sity at frequency @ by a factor of 2—4. We now discuss
in some detail the points (i)—(v) above.

(i) Inner-shell ionization. We conclude that direct mul-
tiphoton ionization of the 4d shell should largely be
prevented through screening by the 5s and 5p shells. We
suggest that this might explain why it is possible to have
high-order multielectron ionization of the 5p shell, with
energy transfers well exceeding the 4d ionization energy,
and still not observe any 4d-ionization (e.g., through
Auger emission): the effective intensity is strongly re-
duced in the 4d shell region due to the outer-shell screen-
ing.

These considerations on the spatial dependence of the
effective field may be generalized to any atom with
several electrons in the external shell and confirm what
has been already qualitatively discussed in Sec. II. Direct
inner-shell multiphoton ionization of atoms with a dense
outermost shell is a very improbable process because the
effective field seen by an inner electron is much weaker
than the external field (or the field experienced by an
outer electron). We think that the situation is somewhat
similar to the case of a metal surface or a metal particle,
surface plasmons screening the field and preventing it
from penetrating deeply into the metal.

(ii) Multiple ionization. Screening effects also reduce
multiphoton ionization in the external shell. Their impor-
tance is related to the number of electrons in the external
shell. The effective intensity experienced by a Xe 5p elec-
tron is reduced by a factor of 2—4 (0 =0—6 eV) compared
to the experimental intensity. On the other hand, the ef-
fective intensity for a Xe>* 5p electron or a Xe'* 5s elec-
tron coincides with the experimental intensity (no screen-
ing effect).

We assume that the dominating process for multiple
ionization of Xe is stepwise ionization, the electrons being
successively removed during the rise of the laser pulse. In
this picture, the relative ease with which highly charged
ions are removed might partly be understood in terms of
reduced screening; as the charge state increases during the
stripping, the number of electrons in the external shell
will decrease and the screening will be reduced. The ef-
fective intensity therefore increases and the ionization be-
comes more and more easy.

Let us investigate in greater detail the influence of
screening in, e.g., the multiple ionization of xenon at 532
nm.” The dependence of the number of ions created as a
function of the laser intensity is shown in Fig. 3 of Ref. 7.
We assume that these ions are created through stepwise
processes and that each step occurs in an intensity range
for which the preceding steps are saturated. Consequent-
ly, the experimental curves represent one-electron multi-
photon ionization processes which take place in different
atoms (Xe—Xe**). We now imagine that these curves are
drawn as a function of the effective intensity, i.e., the in-
tensity that the atomic electrons actually experience. The
intensity range over which the ions appear will then be ex-
panded by about a factor of 3 towards Jower intensities;
Xet will actually appear at about three times lower local
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intensity than suggested by the nominal laser intensity.
As a consequence, the screening reduces the laser (exter-
nal) intensity range in which the multiphoton ionization
processes are detected.

The introduction of the effective intensity allows us to
reduce the problem to a one-electron multiphoton ioniza-
tion problem. One might compare ionization cross sec-
tions calculated assuming that the electrons are indepen-
dent to experimental results provided the intensity is re-
placed by the effective intensity.

(iii) Photoelectron spectrum. We now present some
speculative ideas on the influence of many-electron
screening on the photoelectron spectrum obtained in one-
electron multiphoton ionization. The screening of the
field in the Xe 5p region should influence the absolute and
relative intensities of the N,N+1,...,N+S,... pho-
toelectron peaks from S5p emission [Fig. 2(a)]. One might
speculate that in (N +S)-photon ionization, the amplitude
will sample a region that extends further outside the 5p
shell for S> 0 than for S=0 and will therefore experience
a stronger effective field. This could lead to spectral
strength being shifted towards the higher-energy N +S
peaks in comparison with a model of noninteracting elec-
trons.

However, the disappearance of the first peaks in the
photoelectron spectrum has also been observed in neon
and helium® for which many-electron screening effects
are not very important. Although the role of many-
electron screening for creating an effective intensity would
deserve a careful investigation in the case of xenon, it cer-
tainly does not represent the fundamental mechanism
behind the deviations from power-law dependence (see,
e.g., Refs. 12—16). That problem is related to intensity re-
normalization @ la Eq. (3.52).

(iv) Influence of Z in multiphoton ionization. Finally,
we would like to make some suggestions, based on the im-
portance of screening, to interpret the strong variations of
the average energy transfer with atomic number, as dis-
cussed by Rhodes and co-workers.* 1

According to this analysis,” Xe and U stand out among
the investigated elements with very large energy transfers
(65 and 55 eV, respectively). The other rare gases have
2—3 times lower average energy transfers which can pos-
sibly (and simply) be understood in terms of their large
outer-shell ionization energies. In Xe, two-photon ioniza-
tion is possible (w~6.4 eV), while in Kr, Ar, and Ne,
three-photon absorption is necessary for ionization.

Yb presents an extreme at the other end with an aver-
age energy transfer about five times lower than for Xe.
First of all, 5p multiple ionization should be reduced due
to screening by the 6s shell and due to the large 5p ioniza-
tion energy. Secondly, the 4f electrons which have low
binding energies are well shielded from the laser field by
the 6s and 5p shells. Consequently, only the 6s? shell and
possibly a few S5p electrons can easily be removed from
Yb. The same should be true for the entire rare-earth se-
quence [e.g., Eu (Ref. 10) or Ca (Ref. 47)].

In this perspective, the large energy transfer in U looks
very interesting. Uranium has the ground-state configura-
tion 5d1°5/36s26p°6d'7s%. Arguing as in the case of Yb,
we would say that the 5f° electrons should be screened
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and essentially nonparticipating. This leaves 11 electrons
between the 6s and 7s shells. The experimental observa-
tion of U'%* (Ref. 10) then would mean that the n=6 and
7 shells essentially have been stripped. However, we also
note that if we only consider the shells with the lowest
binding energnes, there are 10 electrons in the 6p*; 5, 6d,
5f3, and 7s? shells. Moreover, the “valence”-electron dls-
tribution 5/*6d”7s? is determined by configuration in-
teraction, which may influence the screening arguments
above. It seems that Th (5f%d*7s?) should be an in-
teresting system to compare with.

The low energy transfer of iodine (about four times less
than Xe) seems quite anomalous. It might be due to a
combination of (interdependent) factors: lower 5p binding
energy, more efficient 5p screening, reduced number of 5p
electrons, multielectron resonance effects. In general, the
large variations in ion spectra and energy transfer point to
the necessity of being able to vary the photon energy in
order to separate resonance effects from effects of the
average electronic structure and dynamics. Detection of
photoelectrons should further make it possible to deter-
mine which shells are being ionized, like, e.g., whether the
4f and 5f electrons participate in the ionization of Eu,
Yb, and U. Moreover, in this way, one might be able to
observe chemical shifts of the orbital energies and draw
conclusions about the chemical state of the system (free
atoms, molecules, clusters, etc.), which could influence the
screening response and the ionization process in important
ways.

(v) Nonlinear effects. By considering N-photon ioniza-
tion of an atomic system, by definition We are studying
the nonlinear response of the system, ~I~. Moreover, by
including the dynamic Stark-shift effect, we go beyond a
limited power-series expansion in the intensity [Fig. 4, Eq.
(3.22)]. Nevertheless, in other respects, we have neglected
the nonlinear response, e.g., by omitting diagrams like
Fig. 5(a) [note, however, that we have included the non-
linear processes in Figs. 5(e) and 5(f)], and by neglecting
higher harmonics of the laser field.

Moreover, in the present treatment, the screened
electron-photon interaction in Figs. 7 and 8 has been tak-
en to be independent of the state of the system by ignoring
the Coulomb interaction between the electron-hole pairs
describing the polarizability and the electron-hole pairs al-
ready excited in the system [Fig. 14(a)]. Inclusion of the

(g)
FIG. 14. Effects of the Coulomb interaction in multielectron
excitations (see text).

Coulomb interaction leads to nonadditivity of the
electron-hole pair excitation energies and to state depen-
dence of the polarizability. For example, Fig. 14(b) de-
scribes a contribution to the screening of three photons
where the polarization bubbles do not interact with each
other. This diagram has been included through linear
screening of each individual electron-photon interaction,
and eventually includes resonance frequencies involving
only single-electron excitations. On the other hand, we
have neglected any corrections due to nonadditivity of
electron-hole pair excitation energies in multiple electron
excitations [Fig. 14(c)]. Multiple-electron excitations pro-
vide a mechanism for exciting large-amplitude collective
motion of, e.g., the 5p shell in Xe (collective “mode” with
several quanta) (cf. Refs. 43 and 44). The decay of this
multielectron excitation may proceed in a number of
ways, e.g., via stepwise energy transfer at the fundamental
frequency o [Fig. 14(c)] or at higher harmonics [Figs.
14(d) and 14(e)].

Finally, there is also the very important possibility of
resonant multiple ionization [Fig. 14(f)]. A multiply excit-
ed resonance can autoionize, and for a collective type of
resonance one can expect the ionization rate to be large.
There could therefore be strong competition between ioni-
zation on the one hand and recombination with generation
of higher harmonics on the other.

Szoke and Rhodes® have recently proposed that the
presence of intense higher harmonics generated from a
multiply excited collective excitation of the 5p shell in Xe
might be central to the problem of 4d inner-shell ioniza-
tion. Evidence for such inner-shell ionization has been
observed at intensities around 10'* Wcm™2 by Rhodes
and co-workers,!! who interpret line structures in their
photoelectron spectra in terms of 4d Auger lines.

Figures 14(b)—14(e) provide examples of 4d inner-shell
ionization driven by a 5p outer-shell multielectron reso-
nance with generation of higher harmonics, if we put

=4d and let all other hole lines be 5p. In this case, Fig.
14(f) describes the process that both the inner and the
outer shells become ionized at the same time (i.e., within
the same laser pulse).

Boyer and Rhodes!’ have also proposed a mechanism
for 4d ionization where the entire S5p shell is collectively
accelerated by the field towards the 4d shell. If this col-
lective excitation remains bound (large amplitude oscilla-
tion), then the diagrammatic processes in Figs.
14(c)—14(e) precisely correspond to this situation, describ-
ing energy transfer via different harmonics and multiple
fields. If, on the other hand, the multiple 5p excitation
becomes unbound (collective S5p ionization, as suggested by
Boyer and Rhodes'®), then Fig. 14(g) gives an example of
a possible diagrammatic process, where an essential part
involves 4d ionization via scattering by the 5p photoelec-
tron current.

The final question then becomes, What is the relevance
of using linear response for describing screening of a
pulsed laser field by atomic electrons? At sufficiently
high intensities, the answer obviously has to be none
whatsoever. However, the problem is that the nonlinear
response of a real atom is not well understood and, conse-
quently, the conditions for breakdown of linear response
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are not known. Moreover, the problem is a dynamic one,
because the laser pulse has a finite rise time and duration.
As long as those time scales are long compared with typi-
cal atomic (electronic) time scales, the external laser inten-
sity will effectively rise very slowly from zero towards its
peak value. Then linear response must necessarily be
relevant during at least the beginning of the laser pulse.

Another important point, as recently emphasized by
Lambropoulos,® is that much of the action takes place
long before a very intense pulse has had time to reach its
peak value. Lambropoulos® has shown that the first ioni-
zation stages of Xe (Xe*, Xe?*) are created on a time
scale of 0.1 ps at intensities of 103—10'* W cm—2, which
should lead to stepwise ionization of the outermost shell.
We conclude that, under these circumstances, it is diffi-
cult (impossible) to build up large-amplitude collective
motion of the 5p shell. We therefore suggest that up to
intensities of 10'3—10'* W cm ™2, this type of nonlinearity
may be neglected. On the other hand, inner-shell 4d ioni-
zation, if correctly identified,'! needs intensities approach-
ing 10> Wem™2 In this case, nonlinear effects can be
expected to be prominent,® at least if the pulse time is
sufficiently short that stepwise ionization does not have
time to occur until a large-amplitude motion has been ex-
cited. Possibly, there could be an intermediate situation
with high harmonics induced in a partially stripped Sp
shell.*3

In conclusion, we suggest that linear response and
linear screening of the external laser field is relevant and
important for laser intensities approaching the 10'*—10'
Wcm™2 range. We propose that it therefore must be tak-
en into account when describing multistep ionization of
atomic outer shells,*’ leading, e.g., to a reduction of the
effective intensity in the 5p region of Xe by a factor of 2
(w=0)to 4 (w=6¢eV).

We furthermore propose that in the inner-shell 4d re-
gion of Xe (and similar systems) the effective intensity
will be so low as to make impossible direct multiphoton
4d ionization. We suggest that inner-shell ionization
should not occur until the effective intensity increases to a
point where nonlinear effects and/or outer shell stripping
become important.

VI. CONCLUSION

As has been shown by recent experiments,”~!! the in-
teraction of a many-electron atom with a strong laser field
involves complex processes, multiple excitations and ioni-
zations. We have developed a formalism within the
framework of many-body perturbation theory and di-
agrammatic techniques, which enables us to describe mul-
tiple multiphoton ionization of many-electron atoms. In
this first paper, we have studied the influence of screening
effects on one-electron multiphoton ionization.

We have calculated the one-electron multiphoton ioni-
zation current including the Stark shift to first order in
the intensity and including many-electron polarization ef-
fects within the RPA. This is done by renormalizing the
electron-photon coupling both in the radiation and the
Coulomb fields. The key result obtained is the following:
the one-electron current has the same form for an
interacting-electron system as for a noninteracting-

electron system, but with the external laser intensity re-
placed by an effective local (space-dependent) intensity.
The influence of screening effects in multiphoton ioniza-
tion is therefore connected to the spatial variations of the
effective field which is experienced by the electrons.

The theory has been applied to calculations of one-
photon and two-photon ionization cross sections of heli-
um in the weak-field limit. The one-electron wave func-
tions are calculated using a LDA potential. The pho-
toionization cross section (LDRPA) calculated from 1.5
to 8 Ry is found to be in good agreement with the experi-
mental cross section®® and another similar calculation®
(RPAE). The two-photon ionization cross section is cal-
culated from 0.6 to 2.5 Ry. It shows good agreement with
other results’>3* obtained within the time-dependent
Hartree-Fock theory. Many-electron polarization effects
have an important influence on the two-photon ionization
process. The two-photon ionization cross section is
lowered at low photon energies (by a factor up to 1.4) and
increased at higher energies above 1.45 Ry. Such effects
could have a much more dramatic influence on multipho-
ton ionization of heavy atoms (Xe, U).

Finally, we have discussed in detail a number of recent
experimental results. We have emphasized the role of
many-electron screening effects on these results. The
main ideas can be summarized as follows. (i) Direct
inner-shell ionization is extremely reduced due to screen-
ing of the field by the outermost shell. (ii) Outer-shell
ionization is reduced due to screening by the other outer
electrons; the importance of this effect depends on the
number of electrons in the outer shell. In particular, dur-
ing the stripping of an atom (Xe) through stepwise multi-
ple ionization, the screening is progressively reduced and
this leads to enhanced yields of highly charged ions com-
pared to the lowest charged ions. Moreover, we have dis-
cussed the limitations of our treatment of many-electron
effects, i.e., in the framework of linear response, and we
have given some ideas about some possible extensions:
nonlinear effects, multielectron resonance effects, and col-
lective excitation and ionization processes.

This first investigation of the influence of many-
electron effects in multiphoton ionization is obviously
very encouraging. More extended numerical calculations
(other atoms, more electrons, more photons, etc.) would be
helpful to support some ideas presented in this paper and
to gain a better understanding of the problem. The study
of two-electron multiphoton ionization will be developed
in a forthcoming paper.
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APPENDIX A

This appendix describes the numerical methods used
for calculating screened one-photon and two-photon ma-
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trix elements. Radial, angular, and spin variables have
not been separated so far. In this appendix, we first deal
with the angular integration and spin summation of the
different quantities involved in the expressions for the
one- and two-photon ionization probabilities. Then we
present the numerical methods used to calculate the radial
parts of the response function €~ !(r,w) and the Green’s
function G (r,r',w). The last problem presented in this
appendix concerns the numerical calculation of
continuum-continuum dipole matrix elements.

1. Angular integration and spin summation

The coefficient due to the angular integration and spin
summation involved in the photoionization cross section
(Eq. 4.3) is

2
L1

00 O ’ (A1)

N;
CE,-='—3—(215+ 1)

where N; is the number of electrons of shell i, /;, and I,
are the orbital momenta of the initial and final states,
respectively. For helium, C, ;=%

The RPA expansion (Fig. 7) consists of an infinite
series of bubble diagrams. Two successive bubbles must
have hole levels with different quantum numbers.”-%63
Physically, this means that an electron-hole excitation
cannot interact with its own field (no self-interaction). As
a consequence, the coefficient involved in the RPA equa-
tion for a single channel i —¢ [e.g., Eq. (3.23)] is

L1
000

N;,—1
cei=—i3—~(215+1) (A2)

For helium, C epls= +. For a single electron, N; =1, there
is no interaction at all.

Lastly, the coefficients involved in the two-photon ioni-
zation rate are Cg,,Cpp15/2 With /=5 or d (0.1778 and
0.2222, respectively).

2. Radial integration

Having done these angular integrations and spin sum-
mations, we assume that the expressions below are related
to radial variables. The one- and two-photon radial ma-
trix elements can then be written as
d(w)=(e|e N ror|i), (A3a)
(A3b)

The response function (or inverse dielectric function) sat-
isfies the following equation [from Eq. (3.26)]:

d%(0)=(c| e WrwIrG(r,r o) (r o) |i) .

~ 20, YY) /r)dul0)
—1 nil £ ni ni
(ro)=1— gc,,,- ol —a? , (A4)
where
1 + * ’ ’ r<
YL(r)= fo un (r'uy(r')—-dr’, (A5)
r>

r . =inf{r,r'}, r, =sup{r,r’}. Equation (A4) is solved
by using the Fredholm approximation (cf. Sec. III A)
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The two-photon matrix element (A3b) requires the evalua-
tion of the Green’s function G (r,r’,») defined by
uy (Pu,(r')

Grro)=y——,

n Wy — @

(A8)

or equivalently, the wave packet (or
function)

ug(r)= fG(r,r',a))e“(r’,w)r’u,-(r’)dr' ,

n( )dm'
ua(r)= 2 u_i"_) i

n Wpi — @

“perturbed” wave

(A9a)
(A9b)

In both cases, the summation is performed explicitly over
intermediate states n which all lie in the continuum due to
the local-density approximation. About 250 points are
used over an energy range 0.02—20 Ry.

As soon as the photon energy o is greater than the ioni-
zation energy, the wave packet | @) (A9) has the behavior
of a continuum wave function and the two-photon matrix
element (e|e!(r,w)r |@) involves two functions oscil-
lating to infinity. In the last part of this appendix, we
describe the method used for calculating continuum-
continuum matrix elements. For simplicity, we deal with
unscreened matrix elements {u; |7 | u;).

3. Continuum-continuum matrix elements

Continuum wave functions are normalized so that (Ry
units)

Z.
u (r)=(1/7k)"*sin |kr +7' In(2kr)—I7 /24,

’

(A10)

with k =€!/2, Z; is the ionicity (for the local-density po-
tential, Z; =0) and 7, the phase shift.

The phase-amplitude development of a continuum wave
function is®

u (r)=(1/mz)""?sin [fzdr] , (A11)
with z solution of the differential equation
d?

2 _

z2=A42z17? drzz 1z (A12)
2Z;

A=kt =t 104D (A13)

r r

Continuum-continuum matrix elements are calculated by
the following method: the integration from O to a chosen
R is performed numerically; the integral from R to infini-
ty is then analytically approximated using the develop-
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ment (A11). Let u,,u; be two continuum wave functions
with energies €,,€,. The integral from R to infinity may
be written

f;w u(ryruy(rydr=1, —1I_ (A14)
with

To=— f;“’mcos(ui)dr, (A15)

zy=2z1%z,, (A16)

ve=[zedr. (A17)
I, is calculated by parts,®’
I,= 2;; sin(v4 )+ Zzli cos(vi):?r- 21:— + .

(A18)

with

x =(z,2,)1%. (A19)

This development usually converges with three terms.

ANNE L’HUILLIER, LARS JONSSON, AND GORAN WENDIN 33

Moreover, it was found that the value of R can be chosen
just outside the core region (about 10 a.u. for helium).

APPENDIX B

This appendix briefly discusses the relative importance
of polarization effects represented in Fig. 10. The dia-
grams 10(b) which have not been calculated involve a
monopole Coulomb interaction for the transition 1s—es
and a quadrupole Coulomb interaction for the transition
1s—ed. The ratios of monopole, dipole, and quadrupole
Coulomb interactions are 1:0.6:0.06 at a typical energy
value 1 Ry [the radial Slater integrals G'(1s,el) are ap-
proximately constant over a wide energy range]. These
ratios include the spin-summation—angular-integration
coefficient equal to 2/(2/ + 1). The contribution of quad-
rupole interaction is negligible. The total ionization rate
is mostly given by the transition 1s—ed, except just at
the threshold (Fig. 12) where the contribution of the tran-
sition 1s—es is important. Consequently, the contribu-
tion of correlation effects represented in Fig. 10(b) will
not much modify the ionization rate, except perhaps in
the threshold region (then in reality in the two-photon ab-
sorption spectrum).
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