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High-energy forward elastic scattering of electrons: Partial-wave approximations
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Partial-wave analysis is applied to a parametrized pseudostate excitation model of high-energy

electron-atom scattering. Consistency checks are carried out between asymptotic distorted-wave cal-

culations (for coupled differentia1 equations}, second-Born-approximation scattering amplitude cal-

culations, and partial-wave second-Born-approximation calculations. Closure formulas for partial-

wave amplitude sums are derived for a static model potential and for the second-Born-

approximation amplitude due to the asymptotic dipole excitation potential. Calculations using these

closure formulas in e + H and e + Ar models at 15 keV show cusplike forward elastic scattering

peaks, confirming recent exact second-Born-approximation results for an e + H pseudostate

model. Using parameters appropriate to ground-state rare-gas atoms, the computed forward peaks

are much too small to account for recent experimental observations. The theory indicates that these

structures increase in magnitude rapidly with atomic radius, suggesting that the observed strong for-

ward peaks may arise from excited atoms or ions in the electron beam path.

I. INTRODUCTION

Geiger and Moron-Leon' have reported experimental
observations of strong forward peaks, with structure simi-
lar to a Fraunhofer diffraction pattern, in the cross sec-
tion for elastic scattering of 15—25-keV electrons by rare-
gas atoms. A strong forward peak, whose magnitude in-
creases with impact energy, is reported for elastic scatter-
ing by He of 10—25-keV electrons.

In order to see if such diffraction peaks might follow
from a realistic theory, exact second-Born-approximation
calculations ' and partial-wave calculations were carried
out for a polarization pseudostate model of atomic hydro-

gen. Although a forward elastic scattering peak is ob-
tained in these calculations, its magnitude agrees with that
expected from prior second-Born-approximation calcula-
tions, much too small to agree with the experimental
data. These theoretical results differ by several orders of
magnitude from earlier partial-wave calculations by
Mohr. In the present paper, the pseudostate model is
used to examine the relationship between the partial-wave
expansion and second-Born-approximation theory.

Because the experimental data' appear to disagree with
Born-approximation theory, it is important to make sure
that there is no fundamental error made in truncating the
Born-approximation expansion at low order. The present
partial-wave calculations agree with the second Born ap-
proxirnation for extreme forward elastic scattering in the
high-energy limit, confirming analysis of the Born-
approximation expansion. In the present work, the
methodology ensures that residual sums of partial-wave
series are not neglected. Such neglect might be a serious
source of error, since the relevant series are very slowly
convergent. The present systematic treatment of high-

order partial waves may account for the large difference
between present results and those of Mohr. Although the
present results exclude interpretation of the observed for-
ward scattering peaks' as elastic scattering frotn
ground-state atoms, they also indicate that very much
larger effects would be obtained if excited atoms were
present in the path of the electron beam.

The detailed analysis given here of relations between
partial-wave calculations and second-Born-approximation
or optical potential theory is itself of interest, since it can
be used at much lower scattering energies to provide clo-
sure formulas for partial-wave sums.

The theoretical model is described in Sec. II. Partial-
wave analysis and approximations used here are discussed
in Sec. III. Asymptotic distorted-wave calculations' are
described in Sec. IV. Results of partial-wave calculations
are presented in Sec. V and discussed in Sec. VI.

II. DESCRIPTION OF MODEL

Electron-impact excitation from an atomic orbital s
state to a p state (dipole excitation pseudostate) is
modeled. The target radial wave functions, uo(r) and
uz(r), respectively, define a reduced transition moment

p= —(uy i
r

i
uo),

in atomic units, and correspond to an excitation energy

The momentum or wave number of the scattered electron
in the ground state and pseudostate channel, respectively,
is determined by
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k~=2(E —Eo)=2E;, (3)

kr
——2(E E—

p ) =2(E; b—Ep ) . (&)

Here E; is the incident energy in the ground-state chan-
nel, and E is the total energy.

The excitation process is described in first order by dif-
ferential equations that couple the channel orbital func-
tion fl(r) of the ground state, for partial-wave angular
momentum, I, to pseudostate channel orbital functions

gi (r), where I'=1+1. Following Burke et al. ,
" the

close-coupling equations (without exchange) can be de-
rived for coupled magnetic substates (lm), (l'm'). With
the assumption that fl and gl are independent of m or
m', these equations can be combined with vector coupling
coefficients to give reduced differential equations for the
channel orbital functions. In the asymptotic region,
where r is large enough to justify neglect of exponentially
decreasing potential functions, the reduced equations are

dr
I~

l(1+1) ki f ( )
r

d2

dl'
I

where

, tri igi i«)+-ri+igi+i(r)]~3 r

I'(I'+1)
+k gl (r)

i yi fl(r), I'=I+1, (5b)
2

3 r

uoo(r)= —e ' 1+—
r

»ro(r) = —e " r+ r +2+ —+ ———2r 2 2 10 2 1

9 9 r r 2

ri- l
= f1/(21 +1)]'"

yl+ i = [(I+ 1)/(21 + 1)]'

Note that gl i does not appear if 1=0.
For agreement with the analytic pseudostate model of

atomic hydrogen, Eqs. (5) must be modified at small r
The right-hand member of Eq. (5a} for the ground-state
channel is augmented by two terms,

2
2uoo«)fl «)+ W»po«) g )'I'gl «»

I'

where

tial b,ufo(r) is important only for partial waves of low or-
der, I & kro, where ro is an effective ground-state atomic
radius. To simplify the calculations, this short-range cut-
off is simulated by computing matrix elements of the un-
screened potential p/r when I )kro, using a scaling ap-
proximation to estimate the screened matrix elements for
smaller I.

III. PARTIAI -%'AVE APPROXIMATIONS

At low impact energies it is feasible to integrate Eqs. (5)
numerically, including short-range potentials for low I
values. At high energies, the number of partial waves that
must be considered becomes large, and numerical integra-
tion of rapidly oscillatory functions becomes increasingly
difficult. The practical approach is to integrate the dif-
ferential equations only for small I, making use of the
partial-wave Born approximation for larger I. At any
given impact energy, the partial-wave Born approximation
is accurate for sufficiently large l.

The elastic scattering amplitude f(8) is expressed in
terms of partial-wave transition matrix elements Til by
the sum

21+1f(8)= g TOPl(cos8) .
1=0

(10)

to the truncated sum computed with T0 elements.
Equation (12) was used by Thompson' to sum partial-

wave amplitudes for the static polarization potential of
rare-gas atoms. If the static electric dipole polarizability
is a, f' "(8) and TiI

" for the static polarization poten-
tial give

1 1 . 0
bf(8)=nak ———sin—

3 2 2

Closure formulas for this sum can be derived when both

f(8) and Tii can be evaluated up to some order of Born
approximation, with values given by f' '(8) and Tll ',

respectively. If TlI
' is an accurate approximation to the

true Tll for I greater than some value le, then Eq. (10}can
be replaced by

l~

f(8)=f' '(8)+ g (Tll —Tll ')Pl(cos8),
1=0

which truncates the partial-wave sum. This can be ex-
pressed as a closure correction

l~

4f (8)=f' '(8) QTii 'P—l(cos8) (12)
1=0 k

Equation {9), an exact result for the pseudostate model,
provides a smooth cutoff for 1/r at small r in the dipole
transition potential. Similarly, in Eq. (5b), 1/r should be
replaced by 1/r +b,ufo(r) at small r.

In the present work, concerned with elastic scattering in
the ground-state channel, the short-range potential uzi(r)
in the pseudostate channels is neglected. In contrast,
uoo(r), acting in the ground-state channel, is taken into ac-
count explicitly. The off-diagonal dipole screening poten-

8
1

i (21+3)(21—1)

making use of the formulas

2krak

(21 +3)(21+ 1)(21—1)

(13)

I )0 (14)
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00 1
—,
' sin(8/2) = —g Pi(cos8) . (15)

V'"'(r) =—'a —r + r s+ 0 (r 6)

p

in terms of the static dipole polarizability

Singularities due to the r potential cancel here between
the two terms of f' "(8)—(1/k)Tpp"

At impact energies of interest here (15—35 keV), Eq.
(14) becomes a good approximation only for very large
values of I. An estimate of Is can be obtained by consid-
ering the optical potential valid in the elastic scattering
channel for solutions of Eqs. (5}. When asymptotic solu-
tions are generated, using the method of Burke and
Schey' or of Gailitis, ' the right-hand side of Eq. (5a) can
be converted directly into an asymptotic expansion of the
elastic optical potential. ' For energies above the excita-
tion threshold Ep, the leading terms at large r are

From Eqs. (5) the required first-Born-approximation tran-
sition matrix element is

'(kp, k) = — yl Fi —Fi, I'=1+1,(aii 2p
P9 r

(23)

where FI is a regular solution of the radial free-particle
equation, such that

dipole excitation potentials of Eqs. (5), can be evaluated in

closed form. Details are given in Appendix A. Partial-
wave analysis of f~~ '(8) leads to formulas for T-matrix
elements,

ReT('( ' ———PI, Q ~ Tji "(k',k) ~, (21)
vr 0 E' —6 Ip

where P denotes a principal value integral, and

a= ', p /b, E~—. (17) F,(k, r) =k'"rj'((kr) . (24)

Equation (14) is a valid estimate of Tii only for I values
greater than Iz ——kr~, where rz is the impact parameter
beyond which the r term in V'P' is dominant, and can
be estimated as the value for which the r and r
terms have equal magnitude. This implies

ls=krs=2k /b, Ep . (18}

For sufficiently small impact energy, both Is and rs
are small. In this limit the screened polarization potential

V' '(ir) = —,
' a[r +b—upp(r)]', (19)

18
AEp —4, 0 (20)

At 15 keV, the value of ls, from Eq. (18), is 5270 and the
impact parameter rz is 159ao.

Since the imaginary part of the optical potential
represents flux loss to inelastic scattering, the expected ef-
fect on the elastic scattering amplitude is to reduce its
magnitude, in analogy to scattering by a black disk of ra-
dius rz In the .partial-wave sum, the magnitude of Ts
should be reduced for I &Is. If this cutoff were sharp,
the real part of the elastic scattering amplitude would
contain the truncated sum over partial-wave amplitudes
given by Eq. (13). This functional form describes a for-
ward peak, decreasing as a linear function of momentum
transfer at 8=0, with diffraction structure concentrated
within an angle 2m /Is determined by the residual term in
a truncated expansion of Eq. (15). Since ls increases with
k, the magnitude of this forward peak necessarily de-
creases with increasing impact energy.

As an alternative to evaluating explicit partial-wave
sums for large Is, it is possible to use Eq. (11) for the
second-Born-approximation scattering amplitude. The in-
direct amplitude fr' '(8), appropriate to the asymptotic

a bounded function with correct asymptotic behavior, pro-
vides an effective potential with no free parameters. This
is not a useful approximation at the energies considered
here, for which Is is very large. In Hartree atomic units
the excitation energy of the hydrogen pseudostate is

In order to ensure unitarity (flux conservation), partial-
wave calculations should be carried out in terms of the
reactance matrix It.~ ~ rather than the transition matrix
Tpi. Unitarity of the scattering matrix is assured if the K
matrix is real and symmetric. Analysis of the scattering
equations gives exact formulas, derived from matrix
Lippmann-Schwinger equations, ' for elements of the
3)&3 K matrix,

2p, 1&n= — ~ ~i —, griliv'3 r
(25)

2p, 1
I( I'I ~ ~l' l I'fl

3 r2
(26)

Elements Ki i are not used here ( I'=1+1). When elastic
scattering is weak, f&(r) can be approximated by F~(k, r),
and Eq. (26) reduces to

+I'I Tl'l(81) (81) (27}

f's "(cos-'x)F,(x)dx,k +~
ll 2 ) P

also discussed in Appendix B.

(29)

given by Eq. (23). Similarly, when the solution of Eqs. (5)
is expressed in terms of a principal-value Green's func-
tion, Eq. (25) reduces to

g (B2) ReT(82)a = e a

given by Eq. (21).
The integral for TIIi ", Eq. (23), can be evaluated in

closed form, as shown in Appendix B. If rp is an effec-
tive atomic radius, TI i

"must be modified for I & krp to
take into account the screening of 1/r by b,uzp(r). This
behavior is simulated by use of a scaling formula, dis-
cussed in Appendix B. Evaluation of ReT~~ ' or KI'~ ' is
also discussed in Appendix B. Because an explicit formu-
la is known for fr' '(8), alternative values of ReTIi and
ImT~~ can be obtained by inverting the partial-eave ex-
pansion, to give
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The present analysis indicates that for given k three

ranges of / must be considered. For / & kro, short-range

potentials cannot be neglected. In this range TII
" is

computed for the static potential Uoo(r), Eq. (8). Evalua-

tion of the required integrals is discussed in Appendix C.
Since both f' "(8) and Tii "can be evaluated for Uoo(r),

Eq. (11) is used to complete the sum of partial waves

/&kro T.he screening of the dipole transition potential
due to b Uro(r), Eq. (9), is taken into account for / & kro by
scaling the matrix elements T~ I ", as described in Appen-
dix B.

Consistent with identifying Eqs. (Cl) and (21) as esti-
mates of K-matrix elements, which can be denoted by
Kg(0) and Kg(p), respectively, these elements are com-
bined for / &kro by adding effective phase shifts. The
implied formula is

Ku(0)+ K0(p )

1 Ka(0)K—ii (p)
(30)

In preliminary calculations, used to verify the formulas
given here over a large range of / values, the residual sum
over partial-wave amplitudes for / &/s with /s estimated

by Eq. (18) was replaced by (13). Equations (31) and (23)
were evaluated in the intermediate range kro&/&/s.
This provided a check on the final calculations reported
here, in which fz ' was used for closure in Eq. (11), and
convergence of the partial-wave sum was found with
much smaller /s & kro.

IV. ASYMPTOTIC DISTORTED-WAVE
CALCULATIONS

At very small scattering angles, short-range potentials
do not produce angular structure in the differential cross
section. Hence, in seeking an explanation of an observed
forward scattering peak apparently much greater in mag-
nitude than that found in second-Born-approximation am-
plitude calculations, exact treatment of short-range poten-
tials is not required. To examine the validity of Born ap-
proximations for KIP ' and for transition elements Kjf ",
calculations were carried out using an asymptotic
distorted-wave model (ADW), to be described here.

The coupled differential equations, Eqs. (5) can be
solved accurately for r & ro using a combination of
methods. For sufficiently large r, the Gailitis expansion'
is used, with convergence accelerated by converting the re-
sulting series in powers of r ' into continued fractions. '

Solutions are carried out from ro out to the Gailitis boun-

dary rG by an R-matrix propagator method. ' The essen-
tial approximation in the AD% method is to replace the
R matrix at ro by the diagonal matrix constructed from
logarithmic derivatives of regular functions Fi(k, ro)
This is equivalent to neglecting all short-range potentials
except the centrifugal and Coulomb terms used to define
the functions Ei. This approximation becomes accurate
for sufficiently large / at any given value of k. Results
obtained are strictly unitary and are numerically accurate
for a well-defined model described by long-range poten-
tials cut off internally at ro

ADW calculations were carried out to examine the
dependence of Kii and Kii on /. Results for k =10ao '

and I= 10, 20, and 30 are shown in Table I. Born approx-
imation matrix elements Ki'i ' and Ki'1 ", /'&/, are in-

cluded in the table, together with Kii "(pol) from Eq.
(14). These results demonstrate the internal consistency of
using EiP2' for diagonal elements and Ki'f" for nondiag-
onal elements of the E matrix. With ro 1.0ao, sh——ort-
range potentials are neglected in the Born-approximation
matrix elements, since kro ——10, while the potentials inside
ro are set to zero in the ADW approximation. The good
agreement of these two sets of results, even for /=10, jus-
tifies use of the Born approximation for / & kro, especially
when much higher / values must be considered.

Table I includes values of Kii "(pol) for the static po-
larization potential. Clearly this is not a useful approxi-
mation to Kii for /&30. Since /s ——478 for k =10ao ',
this agrees with expectations, since the static polarization
potential is not a good approximation to the optical poten-
tial in the range of r relevant to the / values considered in
Table I.

The differences between AD W and Born-
approximation results are insignificant at /=20 and 30,
but not negligible at /=10, for the data shown in Table I.
Even at /=10, the error in the largest elements, Ki i for
the dipole transition potential, is on the order of 10%
while the El~ element is small. In the calculations dis-
cussed below, Kl'i " for the static potential UOO(r), which
is much larger than Kii

' for / & kro, is added into Ka, so
the relative error in Ei~

' is unimportant.

V. PARTIAL-%'AVE BORN CALCULATIONS

E matrices were computed including elements Kl'I

and Kii" for /&kro. For / &kro, KiI "(voo) was added
in using Eq. (30), and elements Ki i" were scaled to ac-
count for short-range screening of the dipole transition

TABLE I. I( -matrix elements computed by ADW and Born approximations K~ "if p&q, E~( ' if p =q; k = 10a0 '.

i=30

l, l
I —1,1

/ —1,/ —1

1+1,1
1+1,1 —1

1+1,1+1
K' "(pol)

AD%'

0.277 36—3
0.72696—1

0.579 17—2
0.540 78 —1

—0.500 54—3
—0.607 49—2

Born

0.19702 —3
0.81444—1

0.83005—2
0.565 81 —1

0.00
—0.571 07—2

0.15405

AD%'

0.147 14—3
0.439 848 —1

0.163 79—2
0.261 07—1

—0.265 98 —3
—0.158 94—2

Born

0.147 82 —3
0.439 36—1

0.171 88 —2
0.260 98—1

0.00
—0, 151 50—2

0.205 61—1

AD&

0.11879—3
0.305 75 —1

0.62002 —3
0.15903—1

—0.15921 —3
—0.679 59—3

Born

0.11938—3
0.305 74 —1

0.64003 —3
0.15902—1

0.00
—0.658 07—3

0.623 51 —1
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uuu(r) =— e '(1+rolr) . (31)

The first-Born-approximation scattering amplitude for
uuo(r), for elastic momentum transfer Eu, is

1+I(.' /4 (1+% /4)
(32)

In analogy to the use of Eq. (13) for the polarization po-
tential, Eq. (12) is used in the present calculations to sum
partial-wave scattering amplitude contributions from
uuu(r) for I ~ kru.

The residual sum of partial-wave amplitudes, Eq. (13),
which determines the forward scattering peak, is directly
proportional to the static dipole polarizability a. Electric
dipole excitation at all energies is constrained by the sum
rule, that total oscillator strength f~ equals the number
of electrons accessible in an excitation process. When all
dipole excitation is concentrated in a single pseudostate,

potential. In preliminary calculations at 15 keV, j'-
matrix elements were computed on a grid of I values up to
1=2600. T matrices were computed from these 3X3 K
matrices, ensuring unitarity. The T-matrix elements were
interpolated to I values between the grid points. The sum-
mation formula, Eq. (11}, was used only for uou (with
lu=kru) and for the static polarization potential (with
1~ ——2600). Equation (14} was found to be a reasonable
approximation to ReT~I for l&2600. These calculations
were used to check the formalism and to verify conver-
gence. In the final calculations reported here, Eq. (11)
was used for fp '(8). Adequate convergence was found
for I &kro Th. e reported results used lii ——100, greater
than kru but much smaller than lii required if Eq. (13) is
to be used for bf ' "(pol).

The static screened Coulomb potential of ground-state
atomic hydrogen is given by uuu(r), Eq. (8). To model
other atoms, allowance must be made for different values
of ro, the atomic radius, and of f„„the oscillator
strength contributing to inelastic electron scattering at
given impact energy. If it is assumed that ru —au for hy-
drogen, and that all electrons not contributing to f„,can
be condensed with the nucleus into an effective point
charge +f~„the resulting model static potential is

these two parameters are related to the reduced transition
moment p and excitation energy &Fp of the pseudostate
by the formulas

, p2—/bF
=2 2fosc =

3 I ~Ep

(33)

In the present work, ru is taken to be 1.0au for hydro-
gen and 1.8au for argon, while a is given its experimental
value (4.5ao for hydrogen, 11.07au for argon' ). Two
models have been used here for atomic hydrogen. Model
1 assumes

bE&"' ——
4, ——0.41860 a.u. , (35)

the excitation energy of the exact dipole pseudostate.
This implies, given a =4.5ao,

f'"=18'(—„}'=0.78853 .

Model 2 adjusts AEp to make f,=1. The value is

b.E' '=0.47140 a.u.

(36)

(37)

Model 1: a=11.07, f =2.02965, b,Ep —0.42819,
Model 2: a= 11.07, f= 18.0, bE = 1.275 15,

(38)

Results of calculations for e + H scattering at 15 keV
are summarized in Table II and in Fig. 1. For compar-
ison, Fig. 1 includes (graph 82) the second-Born-
approximation elastic differential cross section computed
from the pseudostate model. The present results show a
forward elastic peak (below 4 mrad) of essentially the
same magnitude and shape as the 82 result. The differ-
ence in magnitude between the three calculations shown in
Fig. 1 is due to different assumptions and approximations
in the treatment of short-range potentials, which are not
the principal concern of the present work. The main
point established by the present calculations is that exact
unitarization and reasonable changes of total oscillator
strength and of the relative strength of short-range poten-
tials have no significant effect on the magnitude and an-
gular dependence of the forward elastic scattering peak, as
computed in the second Born approximation.

Similar calculations were carried out with parameters
intended to model atomic Ar. These parameters are

TABLE II. e + H scattering amplitudes at 15 keV. Differential cross sections in units ao/sr.

Model 1, f,=0.78853
Ref (8) Imf (8) do/dII Ref (8)

Model 2, f = 1.0
Imf (8)

0
2
4
6
8

10
12
14
16
18
20

0.876 52
0.791 88
0.783 75
0.776 50
0.767 39
0.756 19
0.742 98
0.727 93
0.711 25
0.693 16
0.673 90

0.286 20
0.19626
0.15449
0.13073
0.114 14
0.10143
0.091 14
0.082 52
0.075 13
0.068 67
0.062 96

0.850 19
0.665 59
0.638 13
0.62004
0.601 92
0.582 11
0.560 33
0.536 69
0.511 52
0.485 19
0.458 11

1.098 52
1.004 56
0.993 77
0.98444
0.972 85
0.958 63
0.941 86
0.922 77
0.901 61
0.878 67
0.854 25

0.31974
0.222 60
0.17938
0.15246
0.13370
0.11933
0.107 70
0.097 96
0.089 61
0.082 31
0.075 85

1.308 98
1.06049
1.01975
0.992 37
0.964 31
0.933 20
0.898 70
0.861 10
0.82093
0.778 84
0.735 49
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1.4-- 3200

2800

1.2
do
dO,

{a02/sr'

1.0

2400

dg
dQ 50—

e +Ar
15 kev

0.8 45

0.6

0 2 4 6 8
8 {mrad)

10 12 14 30

FIG. 1. H-atom models: differential elastic cross section in

the forward direction.

25 I I

6 8
8 {mrad)

I I

10 12 14

all in atomic units. In model 1, the pseudostate excitation
energy is that of the dipole-allowed transition 3p~4s,
which limits the oscillator strength to the small value
shown. Model 2 is an extreme alternative, associating the
observed static polarizability with the excitation of all 18
electrons.

Results of these calculations are given in Table III and
in Fig. 2. At 15 keV, in model 1, the forward peak is
similar in shape and in angular extent to that found for
hydrogen. In model 2„ the forward peak is hardly visible
because of a much larger shorter-range background,
which contains a large contribution from the model static
potential, Eq. (31). In both cases the extreme forward
peak is small relative to the background.

A generalized optical theorem follows directly from Eq.
(A12). This is built into the present results through use of
the closure formula, Eq. (11), for fz '(8). For e +H,
models 1 and 2, and for e + Ar, model 1, the differen-
tial cross sections shown in Figs. 1 and 2 are closely ap-
proximated by the first-Born-approximation cross section

FIG. 2. Ar-atom models: differential elastic cross section in
the forward direction.

for the static potential for angles greater than 4 mrad.
From Eq. (32), f' "(0) is faro, which determines the
relative magnitudes of the cross sections in the different
models. In the case of e + Ar, model 2, Uoo(r) is so
large that unitarity corrections reduce the magnitude of
the computed cross section to roughly 10% below first
Born approximation.

VI. DISCUSSION AND CONCLUSIONS

The principal result of the present work is to verify for
e + H scattering in the keV energy range that the
second-Born-approximation elastic scattering amplitude is
substantially correct at very small scattering angles.
Hence, the qualitative implications of exact calculations
of f' 2'(8) for a pseudostate model of atomic hydrogen
are supported. It appears not to be possible to interpret
recent experimental data' showing a forward elastic peak

TABLE III. e + Ar scattering amplitudes at 15 keV. Differential cross sections in units a20isr.

8
mrad

Model 1, f =2.02965
Ref (8) Imf (8) der id 0

Model 2, f =18.0
Ref (8) Imf (8) do id0

0
2

6
8

10
12
14
16
18
20

6.777 57
6.533 41
6.419 10
6.251 15
6.030 80
5.767 63
5.472 87
5.15776
4.832 63
4.506 37
4.186 14

0.822 20
0.599 32
0.49401
0.433 94
0.391 88
0.35949
0.333 13
0.31091
0.291 69
0.27476
0.259 64

46.6115
43.0447
41.4489
39.2652
36.5241
33.3948
30.0632
26.6991
23.4394
20.3828
17.5912

52.0933
51.3486
50.3013
48.8026
46.8592
44.5479
41.9649
39.2085
36.3699
33.5273
30.7440

12.6007
12.3745
12.0814
11.8546
11.6624
11.4837
11.3077
11.1288
10.9438
10.7511
10.5497

2872.49
2789.81
2676.18
2522.23
2331.80
2116.39
1888.91
1661.16
1442.54
1239.67
1056.49
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Reef (8)=ma(ck ,Ko)+0 (Eo) . —— (39)

much stronger than the f' "background, to be the result
of single elastic collisions between electrons and ground-
state atoms. The discrepancy of roughly two orders of
magnitude between f' '(8) and partial-wave calculations

by Mohr, who used a similar model for hydrogen at 35
keV impact energy, remains unexplained.

The present parametric treatment of short-range poten-
tials is not intended to be quantitatively accurate. The
simplified formulas used here make calculations feasible
for a wide range of parameters. In the case of e + Ar
scattering, this flexibility has been used to consider two
extreme excitation models. In both cases, the incremental
forward elastic scattering peak is small compared with the
background, due primarily to the short-range static poten-
tial. This indicates that qualitative conclusions based on
exact second-Born-approximation calculations for a pseu-
dostate model of hydrogen are valid for rare-gas atoms in
general.

The present partial-wave calculations are unitarized by
constructing the T matrix for each / value from a real
symmetric E matrix. Except at low / values, effects of
unitarization are found to be negligible. The effects of
different treatments of the short-range potentials are
much more important.

In the present calculations, numerical solutions of the
coupled differential equations of the pseudostate model
merge smoothly into partial-wave Born-approximation re-
sults for high / values. For / & kro, where ro is an effec-
tive atomic radius, exact Born-approximation amplitude
calculations and partial-wave Born-approximation calcu-
lations using asymptotic potentials are found to be com-
patible. Amplitude fo " for the static potential and f&~2'

for the asymptotic dipole transition potential provide ac-
curate summation formulas to complete truncated
partial-wave expansions.

The present calculations show that elastic scattering at
high impact energies is described by a cusplike forward
peak in the differential cross section, superimposed on a
more smoothly varying background due to the short-range
static potential. This peak is described by f~ '(8), given
explicitly here by Eq. (A15}. In the present examples,
since f~

' is small compared with the static scattering
amplitude f0 ", the forward peak in the differential cross
section arises primarily from the cross term between
Ref&

~' and f0 ", so that 1m' ' does not contribute sig-
nificantly. Moreover, since Imf(8) varies quadratically
with momentum transfer Eo, cusp behavior (linear varia-
tion with Ko) occurs only in Ref (8).

The present analysis identifies this forward cusp with
the residual partial-wave sum due to the asymptotic polar-
ization potential, given here by Eq. (13). For impact ener-
gies above the excitation threshold ~~& the excitation pro-
cess reduces the magnitude of matrix elements ReT~I
below values appropriate to the static polarization poten-
tial, given by Eq. (14). This effectively removes terms
/ &/ii from the partial-wave sum for /~ estimated by Eq.
(18), leaving the residual amplitude hf(8) of Eq. (13) as
an approxiination to Ref~(8).

Both Eqs. (13) and (A15) can be expanded about Eo——0
in the form

From Eq. (A15), the constant c is

c (82)=&E~ /2k

and from Eqs. (14) and (15),

8 l
3 i~, (2/+3}(2/ —1)

(40)

(41)

1

(2/+ 3)(2/ —1)
(42)

If Eq. (13) is to be used by itself to approximate
Ref& i'(8), /s should be determined by equating c(82)
and c(pol). This results in the estimate

k
lg ——— (43)
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smaller than Eq. (18}but with the same dependence on en-

ergy parameters.
Equation (39) establishes the essential behavior of the

forward elastic scattering peak. Incremental magmtude
(above the short-range background) and initial slope with
respect to momentum transfer are proportional to the
static polarizability. From Eq. (40), the magnitude de-
creases with increasing impact energy.

Experimental data on electron scattering by rare-gas
atoms, indicating a forward elastic peak much larger than
found here for models of H and Ar, cannot be reconciled
with the present results for ground-state atoms. However,
since the magnitude of the forward peak is proportional to
p, where p, is the reduced transition moment, a much
larger effect might be observed if a significant population
of excited atoms were present. For Rydberg states p
scales as n for principal quantum number n. For atomic
hydrogen, a relative population of 2&&10 in the n=3
states would produce a larger contribution to the forward
elastic cross section than does unit population in the
ground state.

From Eq. (A15) and the optical theorem, similarly large
factors affect the total inelastic cross section for scattering
by excited atoms. The measured differential elastic cross
section would depend on the relative steady-state popula-
tion of excited atoms in the beam path. Two recent
crossed-beam experiments2'z2 have failed to reproduce the
forward elastic scattering enhancement reported by Geiger
and Mor6n-l. e6n. ' These new results agree with theory
for scattering by ground-state atoms. However, they do
not rule out possible observation of excited atoms or ions
under different experimental conditions.
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APPENDIX A: SECOND BORN APPROXIMATION
FOR THE DIPOLE EXCITATION POTENTIAL

Following standard definitions and analysis, the in-

direct second-Born-approximation elastic scattering am-

plitude, due to the p/r off-diagonal potential in Eq. (15),
1S

f(82)(g)

d
11m q (B1) t' 4 (B) t,

277 &~P+ q —kp —l 6'

2

f(82)(g) P
P

k +kP+i —ln
P

&0 S+k &0
1n

S S —kEQ
(A12)

(Al) S =(k —kp) +k»K() . (A13)

where
r

2p l 4'll
' 1/2

F) (t), (A2) Imf(8 '(g)= y y ~

T'
I=0 k I'= I+1

(A14)

Partial-wave analysis of Eqs. (Al) and (A2) gives a form
of the generalized optical theorem

with

t=k —q, t'=k' —q, (A3)

for incident electron momentum k and final momentum
k'. Using

where the left-hand term is given by Eq. (A12) and matrix
elements Tl l "are defined by Eq. (23).

In the high-energy limit, the closure approximation for
f(82) gjves6, 7

P

I

g F) (t') Y( (t) =
m

and the definition of momentum transfer,

Ep ——4kisin (g/2),

(A4)

(A5)

f (82)(g) it
P

k +kp
k k —kP

Eq. (Al) reduces to

f(82)(g) d&q t +(t') K()—
37r' q' kp i—e —t (t')' (A6)

Qt(pr~~tt}=
1 d'q 1

q' p2 ie [—(q ——ir)2+A, ]
(A7)

depend only on the magnitude of ~ and are
T

Q) (p, k, it) = —ln
K P —K+lk

1
Q2(p, l, ,it) =

(a +Ap, 2p, k—i)— ,

In terms of these integrals,

f,""(g)= " 2Q, (k, ,o,k)
3

(A9}

Equation (A6) can be evaluated in terms of Dalitz in-

tegrals. 23 26 The integrals required here, defined by

Kp 5+k»Kp
ln

S S —kpEp

(A15)
which differs from Eq. (A12) by reducing the coefficient
of Q) in Eq. (A10) to unity. This difference can be traced
to the present use of the singular unscreened form p/r2
for the dipole transition potential in Eqs. (5). When the
smooth cutoff given by Eq. (9) is included, numerical
values of f»

' agree with Eq. (A15) rather than with Eq.
(A12). These two formulas are equivalent when used as
closure formulas for partial-wave sums, since they differ
only by a term independent of scattering angle. Since
nonsingular transition potentials occur in any physical ap-
plication of this formalism, Eq. (A15) should be used in
preference to Eq. (A12). The agreement between forward
scattering structures computed here (model 2} and calcula-
tions using the nonsingular transition potential (B2), as
shown in Fig. 1, verifies that use of Eq. (A15) does not in-
troduce an error here.

APPENDIX B: TRANSITION MATRIX ELEMENTS
IN THE PARTIAL-VPAVE BORN APPROXIMATION

where

—Kp J du Q2(k», A(u), ~(u)), (A10) From Eqs. (6) and (24), Eq. (23) can be expressed as

Tl l(kp, k)
1/2

A, (u)=Epu(l —u),
x(u) =k Kpu (1.—u) . — (A 1 1)

The final integral in Eq. (A10) can be evaluated analytical-
ly to give

2p
v/3 2i+ 1

ao

Jl'+ 1/2(kpr}Jl+ (/2(kr)0 p

I'=I+ l . (B1)
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1/2

(82)

The final integral here is evidently greater than or equal
to unity, approaching this limit when z=l. The in-

tegrand is positive definite. In the present work this in-

tegral is evaluated numerically after removing the singu-
larity at t= 1 by transforming the integration variable to
x =(1—i)'".

For I'=I + l,

Ti~i i(kp, k) =—
(+3/2

[3(/+1)(2/+1)]'"

f 1 l —t
dt

l —zt
(83)

In this case, the final integral is less than or equal to uni-

The integral here is known2 in the form of the product of
a constant and a hypergeometric function. Using an in-

tegral representation of the hypergeometric function for
/'=/ —1, and with z =kz/k so that z& 1,

( —1/2

p
[3/(2/+1)]'

ty, approaching this limit when z=l. This integral is
evaluated numerically after transforming to x =t'~ .It
obviously becomes very small for large /, so that ri+i i
vanishes relative to Ti i i for large /. This behavior is ex-

pected in the classical limit, since an incident classical
electron that loses linear momentum at large impact pa-
rameter in forward scattering must also lose angular
momentum.

In preliminary calculations used to verify Eqs. (A12)
and (A14), ReriI ' (or K~P2') was evaluated directly
from Eq. (21) by numerical integration of the principal-
value integral. The integrand requires values of
Ti i(k', k} for general values of k'. If k'&k, Eqs. (82}
and (83) are valid. If k'& k, interchanging / and /' in Eq.
(Bl) leads to the same formulas, with k and k' inter-
changed.

From Eqs. (82) and (83}, Trl(k', k) varies as a high
power of k&/k& on both sides of k'=k for large /. In
the limit of very large / this causes the integrand of Eq.
(21) to be dominated by values near e' —e (or k'=k) so
that Eq. (21) approaches Eq. (14) for large /.

In the final calculations reported here, both ReTjP '

and Im TiI
' were computed by Eq. (29). The quadrature

interval ( —1, +1}was first mapped onto itself, superim-
posing intervals ( —1,0) and (0, +1) at mirror points.
Then the range (0,1) was divided geometrically into n

subintervals

(() ) (1 2
—n+3 1 2 n+2) —(1 2

—n+2 1 2
—n+1) (1 2 n+1 1—) (84)

Calculations with 48 Gauss quadrature points in each of
ten subintervals appeared to converge to eight significant
decimals for values of / up to 100.

For values of / &kro, Ti i should be modified to take
into account the effect of the short-range screening poten-
tial, Eq. (9). Since analytic formulas are not available, a
simple approximation was used in the present work. If
screening is assumed to reduce the integrand of Eq. (81)
to zero for r & ro, then for small / and sufficiently large
k, asymptotic expressions can be used for the spherical
Bessel function factors. This leads to the formula

where

h(/, n, P)= f dz j (iz)z" e

It is convenient to break Eq. (C3) into two integrals

h (/, n, P) =hi+ h»,

where

I
hi(/, n, p)= f dzj (iz)z"e

(C3}

(C5)

&pi =-[/& /(2/+1)]' )& const,

which was used in the present work for / & kro, with the
constant determined from T~ i for / =kro.

APPENDIX C:
MATRIX ELEMENTS OF THE STATIC POTENTIAL

The scattering amplitude fo "(0) for the model static
potential Uoo(r) of Eq. (31) is given by Eq. (32). The cor-
responding partial-wave transition matrix elements are

h»(/, n, P) = f dzgi (z)z "e (C6)

For z & /, ji(z) can be computed accurately as a finite sum
of inverse powers of z multiplying sinz and cosz. Hence
hii is a sum of real and complex exponential integral
functions, and was evaluated in this form in the present
work. The inner integrals h~ have monotonically increas-
ing integrands. They were computed by numerical quad-
rature after converting to the integration variable

Tjp"= f dr r kj I (kr)e (1+ro/r) (Cl) r =(z//)" +'+' . (C7)

h (/, 1,P)+ „h(/, 2,P}
kro

This has the effect of smoothing the rapid power law vari-
ation of the integrand.
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