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A comparison is given between an exact numerical calculation and two approximate analytic ex-

pressions for the Mott correction to energy loss of heavy ions. A complete tabulation of the Mott
correction is given for use when the approximate expressions are not valid. The validity of possible

relativistic corrections to the Bloch correction is discussed. A comparison of the calculations to
some recent experiments is given.

I. INTRODUCTION

Corrections to the traditional Bethe formula for energy
loss of heavy ions are of interest to experimental nuclear
physics and cosmic ray physics. Any corrections which
are not proportional to Z where Z is the atomic number
of the ion are of particular importance since Z~ scaling is
used in many experimental particle identification tech-
niques. Bohr's original classical energy loss expression
contained a term proportional to Z lnZ and this was
reconciled with Bethe's formula by Bloch's calculation'
which reduces to Bethe's formula for ctlp « 1

(a/Z= fine-structure constant, p= velocity of ion/c) and
to Bohr's formula when a/p» 1. In the relativistic case,
the fact that the cross section for Coulomb scattering of
electrons (the Mott cross section) is not proportional to
Z leads to an additional non-Z correction to energy
loss. This Mott correction was first calculated by Eby
and Morgan ' numerically and several approximate
analytical expressions have been proposed '" for this
correction. Ahlen then redid Bloch's original calculation
with some modifications and concluded that in addition
to the nonrelativistic Bloch correction and the Mott
correction there is a relativistic Bloch correction which
depends on an undetermined parameter 8o. Recently, An-
derson et al. have done a calculation based on a method
of Cox, Golovchenko, and Goland and this reproduces
both the Bloch and Mott corrections exactly without any
relativistic Bloch correction. The method of Ref. 6 per-
mits a greatly simplified calculation of the Mott correc-
tion, reducing the problem to the numerical summation of
an infinite series, rather than the extensive numerical in-
tegration required in Refs. 1 and 2.

This paper presents a complete tabulation of the Mott
correction which is now feasible due to the simplified
method of Anderson et al. It also gives a comparison of
some of the approximate expressions for the Mott correc-
tion due to Ahlen and Morgan and Eby to the exact for-
mula so that the range of validity of these approximate

expressions can be accurately determined. A discussion of
the relation of the method of Anderson et al. to Bloch's
original calculation as redone by Ahlen is also given as
well as a discussion of Ahlen's relativistic Bloch correc-
tion. Results of a recent experiment with relativistic gold
ions are compared with the calculation.

II. THEORY

The contribution to energy loss from close collisions in
which electron binding energy can be neglected is given by

dE/dX=N I dT(Tdo/dT), (1)

where g is an energy above which electron binding energy
can be neglected, do/dT is the cross section for energy
loss, T,„=2mc p /(1 —p ) is the maximum energy
transfer to an electron of mass m, pc is the incident ion
velocity, and N is the number of electrons per unit volume
of absorber. Using the relation between the energy
transfer T and the center-of-mass scattering angle 8,
T =T,„sin (8/2), we have

dE 7r

=No.T,„d8 sin8(1 cos8)(dcr/d—Q), (2)

where do /d Q is the electron-scattering cross section in
the rest frame of the ion and 8o is the c.m. scattering an-
gle corresponding to g. The Mott correction as originally
defined is given by

I d8 sin8(1 —cos8)Ill
g g

do
dQ FB

(3)

where (=2rrZ e /mu and (da'/dQ)Fii is the first Born
approximation expression for (der/dQ)~, « This was.
originally calculated in Refs. 2 and 3 by computing
(dcr/dQ)~«, numerically and then performing the in-
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tegral numerically. The numerical calculation of
(dcrjdQ)M«, was further used to evaluate the response of
particle detectors which do not respond directly to
dE/dX such as emulsions, ion chambers, and Cherenkov

detectors. ' Andersen et al. pointed out that the integral
in the expression for 4 can be done analytically in the
limit 8o-+0. That is, if we take the phase shift expression
for (da/dQ)M«, and (da/dQ)Fa

da l

Mat t 4K

2 2
QO oo

g [(21+1)(e ' —1}+l(e ' ' e—')P((8)] + g (e ' ' e—')P((8)
l =0 l=0

do Z e"(1—p ) [1 pz . 2(8/2)]
4m U sin (8/2)

(5)

[1—P sin (8/ )],

where

and

y (21+1}(e "—1)P,(8)
dQ s F2 r o

(7)

where PP are associated Legendre functions, 5(,5 ( are
the Coulomb field expressions for the phase shifts, U =Pc,

(1 Pz)1/2 '

zis, I +1+(a'Ip 1 (P&+)

p, +1+lajp r(p, +,+(a /P)

z~s, , I ia'/—p I"(P(+1—Ia/p) ~/( ()——l-1 e
p( iaIP 1 (p—i+1+la/P)

2(s„ I'( I + 1 i ajp)—
1 (I+1+ia/P)

1

( 1 Pz)1/2

and p( ——(I —a }'/, then the integrals can be done using
standard relations for integrals of Legendre functions.
The result is

p p' ~ I 1
[(I+1)'—(a/p)'] (I +1) (I +1)'—(a'/p)

2 2az ( o [(I+1) +(a/P)2] (21+1}(21+3)[(I+1) +(a'/P) ]

(I+1)(1+2) 2((s( —s)+)) l(1+1) 2((s ( )
—s ( z)

(9)

where the second term in do/dQFa directly gives the +P /2 term. This series can be summed numerically and pro-
duces results which agree with previous calculations in the cases where results are available. The approximate forms of

which have been suggested are

4&( ——maP+ a + 1+Pz[H( —,
' —ln2) —0.8990]

42 ——(ap)(1.725+0.52 cosX)+a (3.246 —0.451p )+a (1.522p+0. 987/p)

+a"(4.569—0.494P2 —2.696/Pz)+ a'(1.254P+0.222/P —l. 170/P'),
r

I ( —,
' ia/P)f'(1+i—a/P)

cosX =Re
D —,

' +ia/P) f'(1 i a/P)—

where 4~ is due to Morgan and Eby and N2 to Ahlen. '

can be computml by a different method by noting that d(T/dQFB in Eq. (5) can be obtained by letting p) =I in Eq.
4 for all P. When Eq. (4) is then used in Eq. (3), we find

pz + (I +1)(1+2) zns, s, +, ) zi(s, s, +—,)—
1(1+1) zi(s, ) s, ,) z—ns, , s, ,)—
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where the second term in each set of parentheses is evaluated for pi =1. This expression can be calculated in two ways.
We can use the same numerical method to calculate the first and second term in both brackets or we can use the analyti-
cal expressions for the second terms in each bracket as given by Eqs. (8). The result of this latter procedure is

p ~ (I+1)(1+2)R (
2i(s, —s, +, ') 1(1+1)R (

2i'~s (,—s i, ))

2 2, (21+3) 2l+1
2 & 2

[(I +1}—aa'/P ][(1+2) +aa'/P ]—(I + l)(1 +2)

1(1+1)
21+1

[(I+ 1)'+(a/p)'] [(I+2)'+ (a'/p)']

(I +aa'/p )[(I+1) —aa'/p ]—1(l + 1)
a2 (at)2

[I +(a/p) ][(1+1)'+(a'/p)']

Both of these alternate expressions have been computed
and give good argument with Eq. (9) except for the ab-
sence of the term p /2. This is because the second term
in Eq. (6) gives a finite contribution to Eq. (3) in the limit
80~0 while the first term in Eq. (6) gives an infinite con-
tribution in Eq. (3) in the limit 80~0 and only results in a
finite number when subtracted from the der/dQM, « terms
in Eq. (3). In this subtraction of two infinite terms in the
limit 80-+0, the finite p /2 term is apparently lost. How-
ever, both 4~/2+p /2 and 4" /2+ p /2 give good
agreement with 4 /2 and also with the approximate ex-
pression for 4i/2 and 4z/2 in their region of vahdity.
This gives us an additional check of the numerical accura-
cy in the calculation.

To calculate the total dE/dX, Ref. 6 used a trick sug-
gested by Lindhard and used by Cox, Golovchenko, and
Goland. If the phase shift expression for der/dQs is
used in Eq. (2), then in the limit 80~0 the integral can be
done analytically but it diverges. One then truncates the
series in I at an I,„such that the collision duration
equals a characteristic orbit time and obtains the usual
nonrelativistic Bethe formula plus the complete Bloch
correction, which arises from relatively small I values so
that the series for the Bloch correction does not need to be
truncated. In the relativistic case, the procedure of Ref. 6
can be made more explicit in the following way. If we as-
sume that there is a correspondence between I and the im-
pact parameter b such that

fil =myob,

then truncating the series in Eq. (2} corresponds to limit-
ing the collisions to impact parameters less than
bo fail, „/myu. Thi——s can then be joined to distant col-
lision expressions such as those of Ahlen. Specifically, if
der/dQ~ in Eq (7) is su.bstituted in Eq. (2) and the in-
tegrals done in the limit Ho~0 we have, following Ref. 7,
for large l,„

dE/dX~ ——2Ng(lnl, „+C&s )

QPlU6o=2K( ln

where

a2 co 1

p & 0 [(I+1) +(a/p) ](I+1)
Combining this with Ahlen's formula for distant col-
lisions (see also Jackson" )

dE/dXD ——2Ng ln
' —p /2

d =X+dx+ ~'

2mU=2K( ln I —P'+4 /2+4s (10)

as in Ref. 6. A term in lny and —p2/2 comes from both
distant and close collisions as it should. This type of ap-
proximation should be valid as long as I,„ is large and
thus R/muybo is small.

Ahlen's relativistic Bloch correction contains the pa-
rameter 80. It is based on the third Born approxiination
wave functions for the range of 8& 80 which gives rise to
the Bloch correction. If 80 is taken sufficiently small then
the relativistic Bloch correction is negligible and Ahlen's
calculation agrees with Eq. (10}. On the other hand, if the
result depends on Ho then Bloch's procedure of joining re-
sults from the three regimes would seem to break down.

III. RESULTS

Figs. 1—8 show a comparison of 4, 4i, and 42 for a
range of Z and P. 4& is a better approximation to 4~ for
low Z and moderate p than 42. For large Z and
moderate p, however, 42 is the better approximation.
Both approximations begin to fail for Z/p&100 as is
clear from Figs. 1 and 2. This is as expected as is stated

and defining the empirically determined average ioniza-
tion potential I by

i'( w )
1.123

we find
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FIG. 9. Values of Z and p for which use of 4~ and 4, give
an energy loss which differs by 1' from that computed using

FIG. 7. 4 vs P for Z =60.

in Ref. 4. This is further illustrated in Fig. 9 where the
values of Z and P, for which the error in dE/dX from
Eq. (10) due to the use of 4i or 42 instead of 4, is l%%uo.

We see this occurs in the regions of Z/P-100. For the
cases in which 4~ and 42 are not good approximations we
have included a tabulation of 4 /2 in Table I. This table
includes values of 4 for lower values of P than have pre-
viously been tabulated. The simplified numerical method
described here makes these calculations feasible in this re-
gime. The expressions for 4' /2+ p /2 and 4" /2+ pz/2
give nearly the same values as in Table I. They are both
typically smaller than 4 /2 by several percent but agree
with each other to a five figure accuracy. This gives a
further check on the accuracy of the calculation. Several
hundred terms in the series for 4 gives about a three sig-
nificant figure accuracy.

This tabulation of 4 should be useful in dE/dX cal-
culations and especially in range correction calculations
where one must follow the slowing ion to low P. A
misuse of 42 outside its region of validity will give in-
correct range values since 42 becomes large and negative
for low P as seen from the figures.

Figure 10 shows the results of an experimental calibra-
tion of the HEAO-3 Heavy Cosmic Ray Experiment ion
chambers at the Bevalac (Ref. 14) using a relativistic zsMn
and 7&Au beam. Previous calculations of energy deposit
show that energy loss is nearly equal to energy deposit for
the energies used in the experiment. The figure indicates
that our calculation with the Mott correction only is in
better agreement with the data than the Mott+ Bloch
corrections. We have also calculated Ahlen's relativistic
Bloch correction (referred to as Cii in Ref. 5) for three
values of the parameter Ho. For Ho=0.01 Cg has a negli-
gible effect on the calculation and the curve for
Mott+ Bloch+ CR coincides with that of Mott+ Bloch
corrections. For 6' ——0. 1, CR nearly cancels the Mott and
Bloch correction and the data for q9Au correspond to the
data for 2sMn, i.e., essentially no non-Z effect. For
Ho=0. 05, CR reduces the Mott+ Bloch curve as shown
in the figure. The theoretical Mn curve is normalized to 1

at 1 GeV/nuc, i.e., it gives the ratio of (dE/dXM„)'
to [dE/dXM„(E=1 GeV/nuc)]' . The theoretical Au
curve is the ratio of 79(dE/dXA„) —to the quantity
[dE/dXM„(E =1 GeV/nuc )]' . The experimental Mn

Au DATA SCALED DOWN
BY (2Sj79)

2 ~ 79 {h4ott )

Z - 79 {Mott + B{OCH)

Z 79 {hyatt + BLOCH+ CR)eo-.09
2 25

I

400

0
0

FIG. 8. 4 vs P for Z =90.

FIG. 10. Ion chamber response from an experiment using

25Mn and 79Au compared with theory. The Au data are scaled
down by a factor of —„.The absorber was a 90% argon —10%
methane mixture (by partial pressure) for which I=191 eV was
used.
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TABLE I. Mott correction to energy loss (4 /2).

10 30 50 70 80 90

0.01
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.99

0.0001
0.001
0.002
0.004
0.005
0.006
0.007
0.008
0.009
0.011
0.012

0.0004
0.016
0.031
0.044
0.056
0.068
0.079
0.091
0.102
0.114
0.125

0.0004
0.027
0.066
0.098
0.127
0.153
0.177
0.202
0.225
0.249
0.270

0.0004
0.033
0.092
0.150
0.201
0.247
0.289
0.329
0.367
0.403
0.436

0.0004
0.036
0.110
0.192
0.270
0.341
0.407
0.467
0.523
0.577
0.624

0.0004
0.037
0.123
0.225
0.331
0.432
0.525
0.611
0.691
0.766
0.831

0.0004
0.038
0.132
0.252
0.383
0.514
0.639
0.756
0.866
0.968
1.05

0.0004
0.038
0.137
0.272
0.426
0.586
0.745
0.899
1.04
1.18
1.30

0.0004
0.038
0.140
0.286
0.459
0.647
0.841
1.03
1.21
1.39
1.55

0.0004
0.037
0.139
0.292
0.481
0.694
0.921
1.15
1.38
1.61
1.81

0.0003
0.035
0.136
0.291
0.490
0.723
0.979
1.25
1.53
1.81
2.06

curve is the ratio of (IM„)'~ to the quantity [IM„(E=1
GeV/nuc)]'~i taken directly from Ref. 14. The experi-
mental Au points are the ratio of » (IA„)' to the quanti-

ty [IM„(E=1 GeV/nuc)]' from Ref. 14 where I is the
ion chamber output. The lower energies in the figure
were obtained by placing absorbers in the beam and calcu-
lating the energy loss using a computer program which in-
cluded the relativistic Bloch correction. Our calculations
indicate that the difference in dE/dX (Mott) and dE/dX
(Mott + Bloch+ Cz) for 80——0. 1 amounts to about 12%
in this energy range for Z =79. Use of the Mott correc-
tion only would shift the data points to the left for Au rel-
ative to the initial energy of 1009 MeV/nuc. For exam-
ple, the point at 600 MeV would be shifted to the left by
about 50 MeV giving better agreement with the upper
theoretical curve in Fig. 10. If the Mott+ Bloch correc-
tion is used, the corresponding difference between dE/dX
(Mott + Bloch) and dE/dX (Mott + Bloch + CR) is
about 6% in this energy range for Z=79. The double ar-
rows in the figure indicate how the data would be shifted
for these possibilities. Errors in the initial energy deter-
mination of the Au or Mn beam would shift the upper ex-
perimental curve horizontally relative to the lower one,
possibly improving the agreement with theory.

We do not believe that this data provides a definitive
test of the validity of the Mott, Bloch, and relativistic
Bloch corrections. Comparison of dE/dX with ion
chamber output requires two assumptions: (i) Energy
deposit is equal to energy loss and (ii) ion chamber
response is proportional to energy deposit. %e believe the
first assumption is valid in this experimental situation be-
cause of the detailed calculations for the identical detector
configuration given in Ref. 9. The second assumption has
yet to be tested in this energy and charge region. It is pos-
sible that the 81och and relativistic Bloch corrections are
present in the energy-loss corrections but not in the ion
chamber response. The high-energy delta rays for which
the Mott correction is largest will definitely contribute to

ion chamber output if they do not escape from the ion
chamber (and this effect is accounted for in the calcula-
tions of Ref. 9 for the data considered here). For the
Bloch corrections, which are quantum-mechanical effects
related to the construction of a wave packet in the original
Bloch calculation, it is less clear how these might affect
ion chamber output. A definitive test of these higher-
order energy-lass corrections would require a direct mea-
surement of particle energy (e.g., by using a magnetic
field) before and after traversing suitable absorber materi-
al for a range of energies and charges. The kind of experi-
mental comparison described here may aid in the develop-
ment of models of ion chamber response which could im-
prove detector charge resolution in experiments such as
the HEAO experiment discussed here.

IV. CONCI. USION

We have shown that the validity of the two approxi-
mate expressions for the Mott correction is restricted to
Z/P(100 for a 1/o accuracy in dE/dX, as expected.
When this condition is not satisfied, we have given a tabu-
lation of the Mott correction which should be of use both
in accelerator and cosmic ray experiments involving heavy
ions. In particular, these tables can be used in range cal-
culations applicable to experiments such as those of Ahlen
and Tarle, ' Waddington et al.,' and Waddington et al. '

The first two of these indicated an agreement with the
Mott+ Bloch+ Cz corrections to range while the third
was consistent with the Mott + Bloch corrections as
described here.

%e have shown that the HEAO-3 detector calibration
gives better agreement with the theory if the Mott correc-
tion only is used than if either the Mott and Bloch or
Mott, Bloch, and relativistic Bloch corrections are used.
This may be useful for constructing models of ion
chamber response for relativistic heavy nuclei.
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