Low-energy scattering parameters for van der Waals perturbation theory

L. P. Benofy
Physics Department, Saint Louis University, St. Louis, Missouri 63103
E. Buendía and R. Guardiola
Departamento de Física Nuclear, Universidad de Granada, Granada, Spain
M. de Llano
Physics Department, North Dakota State University, Fargo, North Dakota 58105
(Received 9 December 1985)

Abstract

The low-energy two-body scattering S - and P-wave parameters, together with a shape-dependent S-wave quantity, which appear in the well-known low-density expansions for the ground-state energy of many-boson and many-fermion systems, are accurately calculated for several central pair potentials for spin-polarized atoms, helium atoms, and nucleons. An integral-equation method allowing accurate determination of the coefficients of the above-mentioned parameters expanded in powers of the attraction strength of the pair potential is presented and applied. The results are needed for perturbation studies of ground-state energies of various quantum many-body systems.

I. INTRODUCTION

Few Monte Carlo computer determinations, ${ }^{1}$ whether of the variational or Green-function variety, for the ground-state energy as a function of particle density have become available for the various many-body systems interacting even via a simple two-body central potential. The reason is twofold: (a) The simulations are expensive in terms of computer time and (b) the Green-function case for fermions is still beset with serious theoretical difficulties.

In recent years, modern extrapolation techniques, such as the Padé approximant, ${ }^{2}$ have been applied ${ }^{3}$ to the wellknown low-density expansions for the ground-state energy of many-boson ${ }^{4}$ and many-fermion ${ }^{5}$ systems in attempts to generate, at the necessary intermediate densities, reliable equations of state for such substances in a simple, inexpensive manner. The Pade techniques are widely known to be very efficient for this purpose even in cases where the original series are divergent.

For fermions the (at best asymptotic) expansion known to date for the energy per particle is

$$
\begin{align*}
& E / N \simeq \frac{3}{5} \frac{\hbar^{2} k_{F}^{2}}{2 m}\left[1+C_{1} k_{F} a+C_{2}\left(k_{F} a\right)^{2}+\left[\frac{1}{2} C_{3} \frac{r_{0}}{a}+C_{4} \frac{A_{1}(0)}{a^{3}}+C_{5}\right)\left(k_{F} a\right)^{3}\right. \\
&\left.+C_{6}\left(k_{F} a\right)^{4} \ln \left|k_{F} a\right|+\left[\frac{1}{2} C_{7} \frac{r_{0}}{a}+C_{8} \frac{A_{0}^{\prime \prime}(0)}{a^{3}}+C_{9}\right]\left(k_{F} a\right)^{4}+o\left(\left(k_{F} a\right)^{4}\right)\right] . \tag{1}
\end{align*}
$$

Here m is the particle mass, and $\hbar k_{F}$ is the Fermi momentum of the ideal gas at a particle density $n=N / V=v k_{F}^{3} / 6 \pi^{2}$, with v the number of different fermion species (i.e., spin and isospin degeneracy). The C_{i} 's are pure numbers as given in Ref. 6, while a, r_{0}, and $A_{1}(0)$ are the well-known scattering (potential-shapeindependent) parameters of the effective range theory ${ }^{7}$ which gives, for each partial wave $l=0,1, \ldots$, the lowenergy result
$k^{2 l+1} \cot \delta_{l}(k) \simeq-\frac{1}{A_{l}(0)}+\frac{1}{2} r_{l} k^{2}+O\left(k^{4}\right)$ as $k \rightarrow 0$,
where $A_{0}(0) \equiv a$ (S-wave scattering length) and $\delta_{l}(k)$ is the l th partial-wave scattering phase shift. Also appearing in (1) is the shape-dependent S-wave quantity ${ }^{5}$

$$
\begin{equation*}
A_{0}^{\prime \prime}(0) \equiv-\frac{1}{3} \int_{0}^{\infty} d r r^{3} v(r) u_{0}(r) \tag{3}
\end{equation*}
$$

where $v(r)$ is $2 \mu / \hbar^{2}$ times the central potential-energy function $V(r)$ through which the particles interact, $\mu \equiv m / 2$, and $u_{0}(r)$ is the S-wave, zero-energy radial wave function.

The low-density expression for the energy per particle in the ground state of boson systems is analogous to (1) but somewhat simpler, although it involves an unknown coefficient in the term corresponding to the $\left(k_{F} a\right)^{4}$ term for fermions. The unknown coefficient contains threebody cluster terms and thus depends on the shape of the boson-boson interaction (just as its counterpart for fermions is shape dependent), and an interesting form has been proposed for it. ${ }^{8}$

For either case, fermion or boson, it is useful to separate the potential function $v(r)$ into a positive part $v_{\text {core }}(r)$ and a negative part $v_{\text {att }}(r)$, so that

$$
\begin{equation*}
v(r)=v_{\text {core }}(r)+\lambda v_{\text {att }}(r) \tag{4}
\end{equation*}
$$

with λ a real, dimensionless parameter. The actual pair potential, of course, corresponds to the case $\lambda=1$. Expansion of $a, r_{0}, A_{1}(0)$, and $A_{0}^{\prime \prime}(0)$ in powers of λ, and substitution into (1) or into the corresponding boson expression, clearly leads in either case to an energy expression

$$
\begin{equation*}
E / N \simeq \sum_{i=0}^{\infty} \varepsilon_{i}(n) \lambda^{i} \tag{5}
\end{equation*}
$$

which is really a double series, in density n and in attractive coupling λ. The energy per particle is now in the form of a perturbation scheme not about the ideal gas, as in (1), but about a fluid of purely repulsive particles interacting via $v_{\text {core }}(r)$. The rearrangement (5) is essentially the perturbation treatment suggested, but never formulated, by van der Waals more than a hundred years ago. This scheme is actively being applied at present ${ }^{3,6}$ but clearly requires knowledge of the various expansion coefficients for $a, r_{0}, A_{1}(0)$, and $A_{0}^{\prime \prime}(0)$ for diverse two-body potentials. The λ power series of these parameters may or may not diverge for the physically relevant value $\lambda=1$; this will be restricted in the double series (5) but later dealt with by Padé methods and generalizations thereof.

In this paper we conclude two previous studies that very precisely determined ${ }^{9}$ these coefficients for several potentials and calculated ${ }^{10}$ for the Lennard-Jones interaction between helium atoms the aforementioned expansion coefficients up to 14th order. In Sec. II we list the central potentials to be treated; in Sec. III we quote the values determined for the various scattering parameters. Section IV contains a new integral-equation method for calculating the corresponding expansion coefficients of these parameters and Sec. V states our results to sixth order. Results up to 19 th order are available upon request from the University of Granada although perturbation studies carried out so far suggest the unlikelihood of having to go beyond sixth order.

II. PAIR CENTRAL POTENTIALS

We shall be interested in solutions of the radial Schrödinger equation, with $u_{l}(0)=0$,

$$
\begin{equation*}
u_{l}^{\prime \prime}(r)+\frac{m}{\hbar^{2}}[E-V(r)] u_{l}(r)-\frac{l(l+1)}{r^{2}} u_{l}(r)=0 \tag{6}
\end{equation*}
$$

for various pair central potentials $V(r)$, to be listed below. These potentials represent the interaction (a) between spin-polarized hydrogen $\mathbf{H} \downarrow$, deuterium $\mathrm{D} \downarrow$, and tritium $\mathrm{T} \downarrow$ and (b) between ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ atoms, as well as (c) between nucleons. The values of \hbar^{2} / m used are given in Table I.

The pair central potentials $V(r)$ considered in Eq. (1) are the following.
(a) The Lennard-Jones (LJ) potential, given by

$$
\begin{equation*}
V(r)=4 \epsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left[\frac{\sigma}{r}\right)^{6}\right] \tag{7}
\end{equation*}
$$

TABLE I. Values of \hbar^{2} / m for the different particles considered in Eq. (6), in units $K \AA^{2}$ for all cases except the last entry which is in $\operatorname{MeVF}^{2}\left(1 \mathrm{~F}=10^{-13} \mathrm{~cm}\right)$.

Particle	\hbar^{2} / m
$\mathrm{H} \downarrow$	48.133716
$\mathrm{D} \downarrow$	24.078181
$\mathrm{~T} \downarrow$	16.08971
${ }^{3} \mathrm{He}$	16.085775
${ }^{4} \mathrm{He}$	12.120904
Nucleon	41.5129306

with $^{11} \epsilon=6.46 \mathrm{~K}, \sigma=3.69 \AA$ for the spin-polarized atoms listed in Table I and $\epsilon=10.22 \mathrm{~K}, \sigma=2.556 \AA$ for the helium atoms.
(b) The Kolos-Wolniewicz (KW) potential is found in the form of numerical tables in the literature. ${ }^{12}$ However, a simple parametrization is the so-called Silvera fit given by Friend and Etters ${ }^{13}$ and is of the form

$$
\begin{align*}
V(r) & =A e^{-\left(a_{1} r+a_{2} r^{2}\right)}-B f(r)\left(\frac{C_{6}}{r^{6}}+\frac{C_{8}}{r^{8}}+\frac{C_{10}}{r^{10}}\right), \\
f(r) & \equiv e^{-(D / r-1)^{2}} \quad(r \leq D) \tag{8}\\
& \equiv 1 \quad(r \geq D),
\end{align*}
$$

where the constants $A, B, D, a_{1}, a_{2}, C_{6}, C_{8}$, and C_{10} are found in Ref. 13. A more accurate representation of the KW data of Ref. 12 has been devised by Uang and Stwalley ${ }^{14}$ who use a cubic spline fit. It has the form [with $x \equiv r / R$ and R defined so that $V(R) \equiv 0$]

$$
\begin{align*}
V(r) & =A e^{-a_{1}(x-1)}+B \quad(0 \leq x \leq a) \\
& =\sum_{\alpha=0}^{3} A_{i \alpha}\left(x-x_{i}\right)^{\alpha} \quad(a \leq x \leq b) \\
& =-\left(\frac{C_{6}}{x^{6}}+\frac{C_{8}}{x^{8}}+\frac{C_{10}}{x^{10}}\right)(r \geq b) \tag{9}
\end{align*}
$$

the values of the dimensionless parameters (rounded off to nine digits) being $A=76384.2397, B=43$ 130.2264, $a_{1}=17.53177216, \quad C_{6}=18.4180095, \quad C_{8}=7.32626846$, $C_{10}=4.02144056, \quad a=0.144156961, \quad b=1.72988353$. We have further refined the spline parameters A_{i}, x_{i} of Ref. 14 so as to yield 16 -digit instead of only 10 -digit accuracy.
(c) The Aziz et al. potential, presently considered the most accurate $\mathrm{He}-\mathrm{He}$ potential, is of the form, with $x \equiv r / r_{m}$ and $r_{m}=2.9673$ A ,

$$
\begin{align*}
& V(r)=\epsilon A e^{-\alpha x}-F(x)\left[\frac{C_{6}}{x^{6}}+\frac{C_{8}}{x^{8}}+\frac{C_{10}}{x^{10}}\right], \\
& F(x)=\left\{\begin{array}{l}
e^{-(D / x-1)^{2}} \\
1 \quad(x \geq D)
\end{array}\right. \tag{10}
\end{align*}
$$

with the unspecified parameters given in Ref. 15.
(d) The two-Gaussian nucleon-nucleon potential, which is of the form

$$
\begin{equation*}
V(r)=2200 e^{-1.5 r^{2}}-66 e^{-0.1449 r^{2}} \mathrm{MeV} \tag{11}
\end{equation*}
$$

TABLE II. Interparticle separation R at which the various pair central potentials change sign, in \AA except for the last entry, which is in $\mathrm{F}\left(1 \mathrm{~F}=10^{-13} \mathrm{~cm}\right)$. For LJ potentials, $R=\sigma$ by inspection of Eq. (7).

Potential	R
KW (Sil)	3.6874439
KW (Stw)	3.6708394
Aziz et al.	2.6385037
Two-Gaussian	1.6086251

if r is in Fermi (F) units. It was devised in Ref. 16 as a model nuclear potential for the various reasons given there.

In Table II we list the values of R at which the abovementioned potentials change sign, i.e., $V(R)=0$. We note a difference as of the third digit between the two parametrizations of the KW potential, with "Sil" referring to Ref. 13 and "Stw" to Ref. 14.

III. DIRECT DETERMINATION OF SCATTERING PARAMETERS

The usual way of determining a, r_{0}, and $A_{1}(0)$ for a given potential involves first calculating the phase shift $\delta_{l}(k)$ for small wave number k by solving the Schrödinger equation for small scattering energies. Second, one graphs the left-hand side of Eq. (2) versus k^{2} for small k; the slope yields $r_{0} / 2$ while the intercept at $k^{2}=0$ gives $-1 / A_{l}(0)$. This graphical method ${ }^{14}$ is indirect and not very accurate. Far more accurate is the direct method which employs for a, r_{0}, and $A_{1}(0)$ integral expressions similar to Eq. (3). This was carried out for the LJ, KW, and Aziz et al. potentials in Ref. 9. In Ref. 10 were calculated, in addition, the coefficients up to order 14 of the λ expansion of $a, r_{0}, A_{1}(0)$, and $A_{0}^{\prime \prime}(0)$ for the LJ potential for ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$. The method used in Ref. 10 for the determination of these expansions depends critically on the special structure of the LJ potential and cannot be used for the other (physically more interesting) interactions which require a straight numerical approach to be discussed in Sec. IV. However, the fact that the LJ potential is asymptotically of the same form as most of the other potentials has made Ref. 10 of great help in ascertaining the goodness of the various numerical approaches. From these comparisons the integral-equation method turned out to be precise and stable, thus ensuring that noise arising from numerical approximations is negligible in all results to be presented below.

IV. INTEGRAL-EQUATION METHOD

A scheme more powerful and elegant than that used in Ref. 10 for the calculation of the λ-expansion coefficients of $a, r_{0}, A_{1}(0)$, and $A_{0}^{\prime \prime}(0)$ will now be presented and applied. The method can be illustrated in some detail for one of the necessary parameters, a, the S-wave scattering length. We start with the zero-energy S-wave radial function, which from Eq. (6) satisfies

$$
\begin{align*}
& u_{0}^{\prime \prime}(r)=v(r) u_{0}(r) \\
& v(r) \equiv \frac{m}{\hbar^{2}} V(r) \tag{12}
\end{align*}
$$

The radial function must obey the conditions

$$
\begin{equation*}
u_{0}(0)=0 \text { and } \lim _{r \rightarrow \infty} u_{0}(r)=r-a \tag{13}
\end{equation*}
$$

so that the above partial-wave equation may be recast into integral form as

$$
\begin{align*}
u_{0}(r)= & r-\int_{0}^{r} d r^{\prime} r^{\prime} v\left(r^{\prime}\right) u_{0}\left(r^{\prime}\right) \\
& -r \int_{r}^{\infty} d r^{\prime} v\left(r^{\prime}\right) u_{0}\left(r^{\prime}\right) \tag{14}
\end{align*}
$$

From the integral equation, as the $r \rightarrow \infty$ limit is taken, the scattering length a can clearly be identified as

$$
\begin{equation*}
a=\int_{0}^{\infty} d r r v(r) u_{0}(r) \tag{15}
\end{equation*}
$$

This expression for a suggests that once the expansions of $v(r)$ and $u_{0}(r)$ in powers of λ are known, the expansion of a will also be known. More explicitly, combining Eq. (4) with the expansion

$$
\begin{equation*}
u_{0}(r)=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} u_{0 k}(r) \tag{16}
\end{equation*}
$$

we have
$v(r) u_{0}(r)=\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}\left[v_{\text {core }}(r) u_{0 n}(r)+n v_{\text {att }}(r) u_{0 n-1}(r)\right]$.

If

$$
a=\sum_{n=0}^{\infty} \frac{\lambda^{n}}{n!}\left(\frac{d^{n} a}{d \lambda^{n}}\right)_{\lambda=0}
$$

then Eqs. (15) and (17) give

$$
\begin{align*}
\left(\frac{d^{n} a}{d \lambda^{n}}\right)_{\lambda=0}= & \int_{0}^{R} d r r v_{\text {core }}(r) u_{0 n}(r) \\
& +n \int_{R}^{\infty} d r r v_{\mathrm{att}}(r) u_{0 n-1}(r) \tag{18}
\end{align*}
$$

To complete the scheme $u_{0 n}(r)$ must be found. For the determination of $u_{0 n}(r)$ one may contemplate using either the differential or the integral equation satisfied by $u_{0}(r)$. For all $u_{0 n}(r)$ inside the range of the repulsive core, $r \leq R$, the differential-equation approach proves useful. By substituting the expansion for $u_{0}(r)$ into the partial-wave equation one obtains

$$
u_{0 n}^{\prime \prime}(r)= \begin{cases}v_{\text {core }}(r) u_{0 n}(r) & (r \leq R) \tag{19}\\ n v_{\text {att }}(r) u_{0 n-1}(r) & (r \geq R)\end{cases}
$$

Since $u_{0}(r)$ and $u_{0}^{\prime}(r)$ are both continuous in r, one must insist on continuity for $u_{0 n}(r)$ and $u_{0 n}^{\prime}(r)$, even at $r=R$. From Eq. (19) it is immediately clear that for $r \leq R$ the $u_{0 n}(r)$ are proportional to each other for all n if $u_{0 n}(0)=0$, which follows from $u_{0}(0)=0$. Numerical integration may be used to obtain $u_{00}(r)$ which is determined fully if $u_{00}(0)=0$ and [$\left.u_{00}^{\prime}(r)\right]_{r=R}=1$ are imposed. The latter condition is necessary since $u_{00}^{\prime \prime}(r)=0$ and
$u_{00}(r)=r-a_{0}$ for $r \geq R$ by convention in normalization. Now from Eq. (15), a_{0}, the unperturbed S-wave scattering length, is given by

$$
\begin{equation*}
a_{0}=\int_{0}^{R} d r r v_{\text {core }}(r) u_{00}(r) \tag{20}
\end{equation*}
$$

But consistency requires that

$$
\begin{equation*}
u_{0 n}(r)=u_{00}(r)\left[u_{0 n}^{\prime}(r)\right]_{r=R} \tag{21}
\end{equation*}
$$

It is important to note that from the integral equation (14) satisfied by $u_{0}(r)$ one has

$$
\begin{equation*}
\left[u_{0}^{\prime}(r)\right]_{r=R}=1-\int_{R}^{\infty} d r v(r) u_{0}(r) \tag{22}
\end{equation*}
$$

which upon expansion in powers of λ gives

$$
\begin{equation*}
\left[u_{0 n}^{\prime}(r)\right]_{r=R}=-n \int_{R}^{\infty} d r^{\prime} v_{\mathrm{att}}\left(r^{\prime}\right) u_{0 n-1}\left(r^{\prime}\right) \tag{23}
\end{equation*}
$$

With the help of this relation and Eq. (18) an important term in ($\left.d^{n} a / d \lambda^{n}\right)_{\lambda=0}$ may be rewritten as

$$
\begin{equation*}
\int_{0}^{R} d r r v_{\text {core }}(r) u_{0 n}(r)=-n a_{0} \int_{R}^{\infty} d r v_{\mathrm{att}}(r) u_{0 n-1}(r) \tag{24}
\end{equation*}
$$

so that
$\left(d^{n} a / d \lambda^{n}\right)_{\lambda=0}=n \int_{R}^{\infty} d r\left(r-a_{0}\right) v_{\text {att }}(r) u_{0 n-1}(r)$.
Now it clearly becomes important to find $u_{0 n}(r)$ outside the repulsive core of the two-body interaction $r \geq R$. From the integral equation (14) for $u_{0}(r)$ with $r \geq R$, upon expansion in powers of λ one gets for $n \geq 1$

$$
\begin{align*}
u_{0 n}(r)= & -n\left(r-a_{0}\right) \int_{r}^{\infty} d r^{\prime} v_{\mathrm{att}}\left(r^{\prime}\right) v_{0 n-1}\left(r^{\prime}\right) \\
& -n \int_{R}^{r} d r^{\prime}\left(r^{\prime}-a_{0}\right) v_{\mathrm{att}}\left(r^{\prime}\right) u_{0 n-1}\left(r^{\prime}\right) \tag{26}
\end{align*}
$$

with the help of Eq. (24). Clearly, starting with $u_{00}(r)=r-a_{0}$ for $r \geq R$, it is possible to generate successively all $u_{0 n}(r)$ and, through Eq. (25), all derivatives of a.

It is now straightforward to use the $u_{0 n}(r)$ and the various pieces in finding the expansion in powers of λ for the effective range ${ }^{7}$

$$
\begin{equation*}
r_{0} \equiv \frac{2}{a^{2}} \int_{0}^{\infty} d r\left[(r-a)^{2}-u_{0}^{2}(r)\right] \tag{27}
\end{equation*}
$$

as well as for $A_{0}^{\prime \prime}(0)$ given by Eq. (3). For example,

$$
\begin{align*}
& \left(\frac{d^{n} A_{0}^{\prime \prime}(0)}{d \lambda^{n}}\right)_{\lambda=0} \\
& \quad=-n \int_{R}^{\infty} d r\left[\frac{r^{3}}{3}+A_{0}^{\prime \prime}(0)\right) v_{\mathrm{att}}(r) u_{0 n-1}(r) \tag{28}
\end{align*}
$$

where

$$
\begin{equation*}
A_{00}^{\prime \prime}(0) \equiv-\frac{1}{3} \int_{0}^{R} d r r^{3} v_{\text {core }}(r) u_{00}(r) \tag{29}
\end{equation*}
$$

The development for the P-wave scattering length $A_{1}(0)$ is analogous to that of a. By definition ${ }^{7}$

$$
\begin{equation*}
A_{1}(0) \equiv \frac{1}{3} \int_{0}^{\infty} d r r^{2} v(r) u_{1}(r) \tag{30}
\end{equation*}
$$

where $u_{1}(r)$ is the zero-energy P-wave radial function satisfying Eq. (6) with $E=0$. The boundary conditions here are $u_{1}(0)=0$ and $u_{1}(r) \rightarrow r^{2} / 3-A_{1}(0) / r$, as $r \rightarrow \infty$. Then

$$
\begin{align*}
& \left(\frac{d^{n} A_{1}(0)}{d \lambda^{n}}\right)_{\lambda=0} \\
& \quad=n \int_{R}^{\infty} d r\left(\frac{r^{2}}{3}-\frac{A_{10}(0)}{r}\right) v_{\mathrm{att}}(r) u_{1 n-1}(r), \tag{31}
\end{align*}
$$

where

$$
\begin{equation*}
A_{10}(0) \equiv \frac{1}{3} \int_{0}^{R} d r r^{2} v_{\text {core }}(r) u_{10}(r) \tag{32}
\end{equation*}
$$

and

$$
\begin{align*}
u_{1 n}(r)= & -n\left(\frac{r^{2}}{3}-\frac{A_{10}(0)}{r}\right) \int_{r}^{\infty} \frac{d r^{\prime}}{r^{\prime}} v_{\mathrm{att}}\left(r^{\prime}\right) u_{1 n-1}\left(r^{\prime}\right) \\
& -n \frac{1}{r} \int_{R}^{r} d r^{\prime}\left(\frac{\left(r^{\prime}\right)^{2}}{3}-\frac{A_{10}(0)}{r^{\prime}}\right) v_{\mathrm{att}}\left(r^{\prime}\right) u_{1 n-1}\left(r^{\prime}\right) \tag{33}
\end{align*}
$$

provided $r \geq R$ and

$$
u_{10}(r)=\frac{r^{2}}{3}-\frac{A_{10}(0)}{r} \text { for } r \geq R
$$

On the other hand, for $r \leq R$ one simply has to solve

$$
\begin{equation*}
u_{0}^{\prime \prime}(r)-\left(\frac{2}{r^{2}}+v_{\text {core }}(r)\right] u_{10}(r)=0 \tag{34}
\end{equation*}
$$

V. RESULTS

Using the method just outlined, one can very accurately deduce the coefficients of the λ expansions of a, r_{0}, $A_{1}(0)$, and $A_{0}^{\prime \prime}(0)$ for the various potentials listed in Sec. II. Tables III-XI list the results, rounded off to nine significant digits, for up to order 6 in the λ expansions given by

$$
\begin{align*}
& a=\sum_{n=0}^{\infty} a_{n} \lambda^{n}, \quad r_{0}=\sum_{n=0}^{\infty} r_{0 n} \lambda^{n} \tag{35}\\
& A_{1}(0)=\sum_{n=0}^{\infty} A_{1 n}(0) \lambda^{n}, \quad A_{0}^{\prime \prime}(0)=\sum_{n=0}^{\infty} A_{0 n}^{\prime \prime}(0) \lambda^{n}
\end{align*}
$$

We have not listed the results for ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ with the LJ potential as these are found in Ref. 10. Note, however, that in this latter reference lengths are in $\sigma=2.556-\mathrm{A}$ units, whereas in the present paper they are in angstrom units.

TABLE III. First seven coefficients of the λ expansions [Eq. (36)] for two spin-polarized hydrogen atoms $\mathrm{H} \downarrow$, interacting via the LJ potential [Eq. (7)].

n	$a_{n}(\AA)$	$r_{0 n}(\AA)$	$A_{0 n}^{\prime \prime}(0)\left(\AA^{3}\right)$	$A_{1 n}(0)\left(\AA^{3}\right)$
0	2.84129547	1.89145163	-7.90957381	7.66548113
1	-1.50783058	6.78684181	65.7670497	-29.9376995
2	-0.476483648	11.0431371	12.1820324	-2.70322833
3	-0.170703769	14.1260173	4.22395129	-0.487168762
4	-0.0619603782	16.17809550	1.52701295	-0.0932526332
5	-0.0225296216	17.4105772	0.554926659	-0.0180326265
6	-0.0081941821	18.0072935	0.201813809	-0.00349396188

TABLE IV. Same as Table III but for D_{\downarrow}.

n	$a_{n}(\AA)$	$r_{0 n}(\AA)$	$\boldsymbol{A}_{0 n}^{\prime \prime}(0)\left(\AA^{3}\right)$	$\boldsymbol{A}_{1 n}(0)\left(\AA^{3}\right)$
0	2.95706531	1.96945882	-8.8546612	8.63423000
1	-2.79673138	11.9850662	128.124374	-58.7344586
2	-1.64077178	35.0311205	43.7261108	-10.0161201
3	-1.09772828	81.0393438	28.2640847	-3.44205252
4	-0.744955410	168.116389	19.0965413	-1.25940145
5	-0.506570565	327.907944	12.9772275	-0.465817639
6	-0.344573948	614.842214	8.82634484	-0.172666736

TABLE V. Same as Table III but for $\mathrm{T} \downarrow$.

n	$a_{n}(\AA)$	$r_{0 n}(\AA)$	$A_{0 n}^{\prime \prime}(0)\left(\AA^{3}\right)$	$\boldsymbol{A}_{1 n}(0)\left(\AA^{3}\right)$
0	3.02035609	2.01204287	-9.40121745	9.19717070
1	-4.01467086	16.7937873	189.018731	-86.9529125
2	-3.37937289	69.2544240	92.1873660	-21.4620206
3	-3.25434309	226.859185	85.6897222	-10.7319012
4	-3.18105890	666.996981	83.3728600	-5.72148271
5	-3.11613845	1844.41898	81.6142671	-3.08471675
6	-3.05356709	4903.80126	79.9666501	-1.66690558

TABLE VI. Same as Table III but for the KW (Stw) potential of Eq. (9).

n	$a_{n}(\AA)$	$r_{0 n}(\AA)$	$A_{0 n}^{\prime \prime}(0)\left(\AA^{3}\right)$	$A_{1 n}(0)\left(\AA^{3}\right)$
0	2.72895857	1.81432701	-7.15418243	6.80680132
1	-1.35925915	5.39247421	51.2387129	-23.7097699
2	-0.427170825	8.49099155	9.56920627	-2.22031148
3	-0.149354116	10.4727371	3.26930943	-0.394442635
4	-5.27374815	11.5248311	1.15158184	-7.37087289
5	-1.86443233	11.9005231	0.407129911	-1.38822459
6	-6.59229887	11.8015490	0.144000064	-2.61825286

TABLE VII. Same as Table VI but for two $\mathrm{D} \downarrow$ atoms.

n	$a_{n}(\AA)$	$r_{0 n}(\AA)$	$A_{0 n}^{\prime \prime}(0)\left(\AA^{3}\right)$	$A_{1 n}(0)\left(\AA^{3}\right)$
0	2.86886248	1.50516356	-8.19153921	7.89375257
1	-2.47157000	7.80508949	98.9574465	-46.2219971
2	-1.42284691	22.0449479	33.4128781	-8.08312367
3	-0.917776498	48.5642409	21.0114874	-2.71870332
4	-0.598624571	95.1641435	13.6576019	-0.964591364
5	-0.391039424	174.727259	8.91578990	-0.345170415
6	-0.255500703	307.867667	5.82389046	-0.123711582

TABLE VIII. Same as Table VI but for two $T \downarrow$ atoms.

n	$a_{n}(\AA)$	$r_{0 n}(\AA)$	$A_{0 n}^{\prime \prime}(0)\left(\AA^{3}\right)$	$A_{1 n}(0)\left(\AA^{3}\right)$
0	2.94333529	1.95984628	-8.78656157	8.51828103
1	-3.51268550	12.6793331	145.342748	-68.1904568
2	-2.88208211	48.5845333	69.4446336	-17.1487123
3	-2.66008876	148.290369	62.3958620	-8.35812942
4	-2.48484309	405.190903	58.0360157	-4.30428431
5	-2.32534758	1040.08113	54.2377569	-2.23657050
6	-2.17709885	2565.40750	50.7297316	-1.16411887

TABLE IX. Same as Table III but for two ${ }^{3} \mathrm{He}$ atoms interacting via the Aziz et al. potential of Eq. (10).

n	$a_{n}(\AA)$	$r_{0 n}(\AA)$	$A_{0 n}^{\prime \prime}(0)\left(\AA^{3}\right)$	$A_{1 n}(0)\left(\AA^{3}\right)$
0	2.11166165	1.40613041	-3.24026754	3.14535134
1	-2.14403878	7.71419676	45.4619684	-21.3321656
2	-1.46845451	25.1260564	18.4870592	-4.54539079
3	-1.14423845	64.8004913	13.9600677	-1.88034872
4	-0.903612578	149.681756	10.9817925	-0.822171617
5	-0.714883057	324.867555	8.68310053	-0.362747291
6	-0.565725722	677.586700	6.87053582	-0.160318810

TABLE X. Same as Table IX but for two ${ }^{4} \mathrm{He}$ atoms.

n	$a_{n}(\AA)$	$r_{0 n}(\AA)$	$A_{0 n}^{\prime \prime}(0)\left(\AA^{3}\right)$	$A_{1 n}(0)\left(\AA^{3}\right)$
0	2.14631758	1.42951616	-3.38985006	3.30152688
1	-2.74982842	9.72027848	59.5955869	-28.0390975
2	-2.41636079	40.0586701	30.9764786	-7.71473953
3	-2.42243575	131.178615	30.0713349	-4.14201759
4	-2.46257034	385.064680	30.4472808	-2.35315864
5	-2.50816799	1062.38934	30.9932391	-1.34938363
6	-2.55533403	2817.20631	31.5733764	-0.775160422

TABLE XI. Same as Table III but for two nucleons interacting via the two-Gaussian potential defined in Eq. (11).

n	$a_{n}(\mathrm{~F})$	$r_{0 n}(\mathrm{~F})$	$A_{0 n}^{\prime \prime}(0)\left(\mathrm{F}^{3}\right)$	$A_{1 n}(0)\left(\mathrm{F}^{3}\right)$
0	0.988877189	0.643620820	-0.404350425	0.334752409
1	-4.81002916	23.3601932	30.1830468	-13.4199018
2	-7.92296933	377.914898	44.2812743	-7.11427830
3	-13.6453413	3931.85137	75.3626737	-4.62658256
4	-23.6106638	35236.8248	130.213444	-3.12194015
5	-40.8771312	292554.639	225.397213	-2.12386807
6	-70.7757383	2318362.37	390.249402	-1.44766019

ACKNOWLEDGMENTS

One of us (L.P.B.) thanks Professor J. L. Gammel for suggesting the integral-equation approach presented here. Another one of us (M. de Ll.) is grateful to Professor W.
C. Stwalley for very pertinent discussions. The work of L.P.B. was supported in part by National Science Foundation (NSF) Grant No. INT-84-01865. The work of E.B. and R.G. was supported by Comisión Asesora de Investigación Científica y Técnica (CAICYT), Spain.
${ }^{1}$ D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer, Berlin, 1979).
${ }^{2}$ G. A. Baker, Jr. and P. Graves-Morris, Padé Approximants, Vols. 13 and 14 of Encyclopedia of Mathematics and Its Applications, edited by G.-C. Rota (Addison-Wesley, Reading, Mass., 1981).
${ }^{3}$ G. A. Baker, Jr., M. de Llano, and J. Pineda, Phys. Rev. B 24, 6304 (1981).
${ }^{4}$ H. M. Hugenholtz and D. Pines, Phys. Rev. 116, 489 (1959).
${ }^{5}$ G. A. Baker, Jr., Rev. Mod. Phys. 43, 479 (1971).
${ }^{6}$ G. A. Baker, Jr., L. P. Benofy, M. Fortes, M. de Llano, S. M. Peltier, and A. Plastino, Phys. Rev. A 26, 3575 (1982).
${ }^{7}$ P. Roman, Advanced Quantum Theory (Addison-Wesley, Reading, Mass., 1965), p. 90.
${ }^{8}$ M. Fortes, M. de Llano, and J. del Río, in Condensed Matter Theories, edited by F. B. Malik (Plenum, New York, 1985).
${ }^{9}$ G. Gutiérrez, M. de Llano, and W. C. Stwalley, Phys. Rev. B 29, 5211 (1984).
${ }^{10}$ E. Buendía, R. Guardiola, and M. de Llano, Phys. Rev. A 30, 941 (1984).
${ }^{11}$ W. C. Stwalley and L. H. Nosanow, Phys. Rev. Lett. 36, 910 (1976).
${ }^{12}$ W. Kolos and L. J. Wolniewicz, Chem. Phys. Lett. 24, 457 (1974); D. M. Bishop and S. K. Shih, J. Chem. Phys. 64, 162 (1976).
${ }^{13}$ D. G. Friend and R. D. Etters, J. Low Temp. Phys. 39, 409 (1980).
${ }^{14}$ Y. H. Uang and W. C. Stwalley, J. Phys. (Paris) 41, C7 (1980).
${ }^{15}$ R. A. Aziz, V. P. S. Nain, J. S. Carley, V. L. Taylor, and G. T. McConville, J. Chem. Phys. 70, 4330 (1979).
${ }^{16}$ M. de Llano, A. Plastino, and J. B. Zabolitzky, Phys. Rev. C 20, 2418 (1979).

