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Low-energy scattering parameters for van der Waals perturbation theory
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The low-energy two-body scattering S- and P-wave parameters, together with a shape-dependent
S-wave quantity, which appear in the we11-known low-density expansions for the ground-state ener-

gy of many-boson and many-fermion systems, are accurately calculated for several central pair po-
tentials for spin-polarized atoms, helium atoms, and nucleons. An integral-equation method allow-

ing accurate determination of the coefficients of the above-mentioned parameters expanded in

powers of the attraction strength of the pair potential is presented and applied. The results are
needed for perturbation studies of ground-state energies of various quantum many-body systems.

I. INTRODUCTION

Few Monte Carlo computer determinations, ' whether
of the variational or Green-function variety, for the
ground-state energy as a function of particle density have
become available for the various many-body systems in-
teracting even via a simple two-body central potential.
The reason is twofold: (a) The simulations are expensive
in terms of computer time and (b) the Green-function case
for fermions is still beset with serious theoretical difficul-
ties.

In recent years, modern extrapolation techniques, such
as the Pade approximant, 2 have been applied to the well-
known low-density expansions for the ground-state energy
of many-boson and many-fermion systems in attempts
to generate, at the necessary intermediate densities, reli-
able equations of state for such substances in a simple,
inexpensive manner. The Pade techniques are widely
known to be very efficient for this purpose even in cases
where the original series are divergent.

For fermions the (at best asymptotic) expansion known
to date for the energy per particle is

r
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Here m is the particle mass, and AkF is the Fermi
momentum of the ideal gas at a particle density
n =N/V=vkF3/6', with v the number of different fer-
mion species (i.e., spin and isospin degeneracy). The C; s
are pure numbers as given in Ref. 6, while a, ro, and
A, (0} are the well-known scattering (potential-shape-
independent) parameters of the effective range theory
which gives, for each partial wave I =0, 1, . . . , the low-
energy result

k '+'cot5I(k)= — + ,
'

rrk +O(k ) as k—~0, (2)
AI(0)

where Ao(0}=a (S-wave scattering length) and 5r(k} is
the 1th partial-wave scattering phase shift. Also appear-
ing in (1) is the shape-dependent S-wave quantity

OC

Ao'(0):———, dr r U(r)uo(r),
0

where u(r) is 2p/fi2 times the central potential-energy
function V(r) through which the particles interact,
p—:m /2, and uo(r) is the S-wave, zero-energy radial wave
function.

The low-density expression for the energy per particle
in the ground state of boson systems is analogous to (1)
but somewhat simpler, although it involves an unknown
coefficient in the term corresponding to the (kFa) term
for fermions. The unknown coefficient contains three-
body cluster terms and thus depends on the shape of the
boson-boson interaction (just as its counterpart for fer-
mions is shape dependent), and an interesting form has
been proposed for it.
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For either case, fermion or boson, it is useful to
separate the potential function u(r) into a positive part
u~~(r) and a negative part u,«(r), so that

TABLE I. Va1ues of A /m for the different particles con-
sidered in Eq. (6), in units K A ~ for all cases except the last en-

try mhich is in MeVF (1 F=10 ' cm).

u(r)=u „(r)+Au„„(r) (4) Particle

with A, a real, dimensionless parameter. The actual pair
potential, of course, corresponds to the case A, = l. Expan-
sion of a, rc, A, (0), and Ao (0) in powers of A, , and sub-
stitution into (1) or into the corresponding boson expres-
sion, clearly leads in either case to an energy expression

Hg

Dg
Tg
He

4He

Nucleon

48.133716
24.078 181
16.089 71
16.085 775
12.120904
41.512 9306

E/N= g e;(n)iV
i=p

(5)

which is really a double series, in density n and in attrac-
tive coupling A, . The energy per particle is now in the
farm of a perturbation scheme not about the ideal gas, as
in (1), but about a fiuid of purely repulsive particles in-
teracting via u~„(r). The rairrangement (5) is essentially
the perturbation treatment suggested, but never formulat-
ed, by van der Waals more than a hundred years ago.
This scheme is actively being applied at present ' but
clearly requires knowledge of the various expansion coef-
ficients far a, rc, Ai(0), and Ac'(0) for diverse two-body
potentials. The A, power series of these parameters may or
may not diverge for the physically relevant value A, =l;
this will be restricted in the double series (5) but later
dealt with by Pade methods and generalizations thereof.

In this paper we conclude two previous studies that
very precisely determined these coefficients for several
potentials and calculated' for the Lennard-Jones interac-
tion between helium atoms the aforementioned expansion
coefficients up to 14th order. In Sec. II we list the central
potentials to be treated; in Sec. III we quote the values
determined for the various scattering parameters. Section
IV contains a new integral-equation method for calculat-
ing the corresponding expansion coefficients of these pa-
rameters and Sec. V states our results to sixth order. Re-
sults up to 19th order are available upon request from the
University of Granada although perturbation studies car-
ried out so far suggest the unlikelihood of having to go
beyond sixth order.

II. PAIR CENTRAL POTENTIALS

We shall be interested in salutions of the radial
Schrodinger equation, with ui(0) =0,

u/" (r)+ [E—V(r) jui(r)—1 (l + 1)
p 2 ui(r) =0 (6}

for various pair central potentials V(r), to be listed below.
These potentials represent the interaction (a} between
spin-polarized hydrogen H), deuterium Dl, and tritium
Tl and (b) between He and He atoms, as well as (c) be-
twmn nucleons. The values of fP/m used are given in
Table E.

The pair central potentials V(r) considered in Eq. (1)
are the fallowing.

(a) The Lennard-Jones (LJ) potential, given by
12 6

V(r) =4e (7)

0
with" e=6.46 K, tr=3. 69 A for the spin-polarized atoms
listed in Table I and e= 10.22 K, o =2.556 A for the heli-
um atoms.

(b) The Kolos-Wolniewicz (KW) potential is found in
the form of numerical tables in the literature. '~ However,
a simple parametrization is the so-called Silvera fit given

by Friend and Etters' and is of the form

f(r):e' " —" (r &D)

p6 ~s y
lp

(8)

Cs Cio
x6 xs x"+ + (r &b), (9)

the values of the dimensionless parameters (rounded off to
nine digits) being A =76384.2397, B =43 130.2264,
a

&
——17.531 772 16, C6 ——18.4180095, Cs ——7.326 268 46,

Cic ——4.02144056, a =0.144156961, b =1.72988353.
We have further refined the spline parameters A;,x; of
Ref. 14 so as to yield 16-digit instead of only 10-digit ac-
curacy.

(c) The Aziz et al. potential, presently considered the
inost accurate He-He potential, is of the form, with
x =r/r~ and r~—=2.9673 A,

Cs C~o
V(r) =eAe F(x) + +—

(10)
e (Dtx —1)—

F( )-
1 (x&D)

with the unspecified parameters given in Ref. 15.
(d) The two-Gaussian nucleon-nucleon potential, which

is of the form

V(r)=2200e ' " —66e ' ' MeV

—:1 (r &D),

where the constants A, 8, D, a(, a2, C6, Cs, and C)p are
found in Ref. 13. A more accurate representation of the
KW data of Ref. 12 has been devised by Uang and Stwal-
ley' who use a cubic spline fit. It has the form [with
x =r/R and R defined so that V(R)—=0]

V(r)=Ae ' +B (0&x &a)
3

= g A;«(x —x;) (a &x &b)
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TABLE II. Interparticle separation 8 at which the various
O

pair central potentials change sign, in A except for the last en-

try, which is in F {IF=10 ' cm}. For LJ potentials, R =o by

inspection of Eq. (7).

u p'(r) = u (r)up(r),

u(r)= V(r) .
(12)

Potential

K%' {Sil)
K%' {Stm}
Aziz et al.
Toro-Gaussian

3.687 4439
3.670 8394
2.638 5037
1.608 6251

The radial function must obey the conditions

up(0)=0 and lim up(r)=r —a
T —+ oo

(13)

so that the above partial-wave equation may be recast into
integral form as

if r is in Fermi (F) units. It was devised in Ref. 16 as a
model nuclear potential for the various reasons given
there.

In Table II we list the values of R at which the above-
mentioned potentials change sign, i.e., V(R) =0. We note
a difference as of the third digit between the two
parametrizations of the KW potential, with "Sil" refer-
ring to Ref. 13 and "Stw" to Ref. 14.

III. DIRECT DETERMINATION
OF SCATTERING PARAMETERS

The usual way of determining a, rp, and Ai(0) for a
given potential involves first calculating the phase shift
5i(k) for small wave number k by solving the Schrodinger
equation for small scattering energies. Second, one graphs
the left-hand side of Eq. (2) versus k~ for small k; the
slope yields rp/2 while the intercept at ki=0 gives
—I/Ai(0}. This graphical method' is indirect and not
very accurate. Far more accurate is the direct method
which employs for a, rp, and 2 i(0) integral expressions
similar to Eq. (3). This was carried out for the LJ, KW,
and Aziz et al. potentials in Ref. 9. In Ref 10 we.re cal-
culated, in addition, the coefficients up to order 14 of the
A, expansion of a, rp, A, (0), and Ap'(0) for the LJ poten-
tial for He and He. The method used in Ref. 10 for the
determination of these expansions depends critically on
the special structure of the LJ potential and cannot be
used for the other (physically more interesting) interac-
tions which require a straight numerical approach to be
discussed in Sec. IV. However, the fact that the LJ poten-
tial is asymptotically of the same form as most of the oth-
er potentials has made Ref. 10 of great help in ascertain-
ing the goodness of the various numerical approaches.
From these comparisons the integral-equation method
turned out to be precise and stable, thus ensuring that
noise arising from numerical approximations is negligible
in all results to be presented below.

IV. INTEGRAL-EQUATION METHOD

A scheme more powerful and elegant than that used in
Ref. 10 for the calculation of the A,-expansion coefficients
of a, rp, Ai(0), and Ap'(0) will now be presented and ap-
plied. The method can be illustrated in some detail for
one of the necessary parameters, a, the S-wave scattering
length. %'e start with the zero-energy S-wave radial func-
tion, which from Eq. (6) satisfies

u(r)up(r) = g [u„„(r)up„(r)+nu,«(r)up„~(r)] .core

m gtl d alaa=+
d)i,"

then Eqs. (15) and (17) give

dna ii
dr ru„„,(r)up„(r)

i.=p

+n f dr ru„, (r)up„ i(r) .

To complete the scheme up„(r) must be found. For the
determination of up„(r) one may contemplate using either
the differential or the integral equation satisfied by up(r).
For all up„(r) inside the range of the repulsive core, r & R,
the differential-equation approach proves useful. By sub-
stituting the expansion for up(r) into the partial-wave
equation one obtains

up„(r) = u,«,(r)up„(r} (r &R)

nu„, (r)up„, (r) (r &R) . (19)

Since up(r) and up(r) are both continuous in r, one must
insist on continuity for up„(r) and up„(r), even at r =R.
From Eq. (19) it is immediately clear that for r &R the
up„(r) are proportional to each other for all n if
up„(0) =0, which follows from up(0) =0. Numerical in-
tegration may be used to obtain upp(r) which is deter-
mined fully if upp(0) =0 and [uop(r)]„n ——1 are imposed.
The latter condition is necessary since up'p(r)=0 and

up(r)= r — dr'r'u(r')up(r')
0

—r f dr'u(r')up(r') .

From the integral equation, as the r~ao limit is taken,
the scattering length a can clearly be identified as

a= dr ru(r)up(r) .
G

This expression for a suggests that once the expansions of
u (r) and up(r) in powers of I, are known, the expansion of
a will also be known. More explicitly, combining Eq. (4)
with the expansion

gk
up(r) = g upk(r) (16)

k=o k'

we have
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upp(r}=r —ap for r &R by convention in normalization.
Now from Eq. (15), ap, the unperturbed S-wave scattering
length, is given by

R
ap —— dr rv~«(r)u pp(r) . (20)

0

But consistency requires that

(21)

It is important to note that from the integral equation (14)
satisfied by up(r) one has

[up(r)]„a =1—f dr v(r)up(r), (22)

which upon expansion in powers of A, gives

[u p„(r)]„a—— n —f dr'v, «(r')up„ 1(r') . (23)

With the help of this relation and Eq. (18}an important
term in (d "a/d A.")i p may be rewritten as

fR 00

drrv „(r)up„(r)= nap — dr «v(tr) u„p(1r),

Ai(0)—= —,
' f drr v(r)ui(r),

0
(30)

d"A i(0)
dA,

A ip(0)=n f dr ——
3 r v,«(r)ui, 1(r), (31)

where

R
A ip(0):——, dr r v „(r)uip(r),

0
(32)

where u, (r) is the zero-energy I'-wave radial function
satisfying Eq. (6) with E=0. The boundary conditions
here are ui(0)=0 and u, (r)~r /3 A—, (0)/r, as r +oc. —
Then

so that

(24)
r A lp(0) ~ dr

ui„(r) = n- , v„,(r')u, „,(r')r T' r

(d "a/dA")i p. n ——dr(r —ap)v, «(r)up„ 1(r) .
R

(25) A ip(0)
v tt(" )ul —1(" )

Now it clearly becomes important to find up„(r) outside
the repulsive core of the two-body interaction r&R.
From the integral equation (14) for up(r) with r &R, upon
expansion in powers of A, one gets for n & 1

provided r )R and

(33)

up (r) = n(r ——ap) dr'v, «(r')vp 1(r')
P

nd—r'(r' —a11)v„,(r')up„ 1(r ') (26)

r
u ip(r) =

3

A ip(0)
for r&R .

On the other hand, for r & R one simply has to solve

with the help of Eq. (24). Clearly, starting with
u pp(r) =r —ap for r & R, it is possible to generate succes-
sively all up„(r) and, through Eq. (25), all derivatives of a.

It is now straightforward to use the up„(r) and the vari-
ous pieces in finding the expansion in powers of A, for the
effective range

up(r)— 2 +v„„(r) u, 11(r)=0 .
702

V. RESULTS

(34)

r0=
00

dr [(r —a) —up(r)]2 2

g 0

as well as for A p'(0) given by Eq. (3). For example,

d "A p'(0)

dA,

(27)
Using the method just outlined, one can very accurately

deduce the coefficients of the k expansions of a, rp,
Ai(0}, and Ap'(0) for the various potentials listed in Sec.
II. Tables III—XI list the results, rounded off to nine sig-
nificant digits, for up to order 6 in the A, expansions given
by

a= gaV, rp= Qrp A,",

where

00 r= —n dr —+A p'(0) v,«(r)up„1(r), (28)
R

n=0

Ai(0)= g Ai„(0)A,", Ap'(0)= g Ap'„(0)A," .

R
Ap'p(0)—:——, dr r'v (r)upp(r) .

0

The developinent for the I'-wave scattering length
Ai(0) is analogous to that of a. By definition

We have not listed the results for He and He with the I.J
potential as these are found in Ref. 10. Note, however,
that in this latter reference lengths are in t7=2.556-A
units, whereas in the present paper they are in angstrom
units.
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Ai„(0} (A }

TABLE III. First seven coefficients of the A. expansions [Eq. (36}] for two spin-polarized hydrogen
atoms Hl, interacting via the LJ potential [Eq. (7)j.

rI a„(A) rp„(A) Ao'„(0} (A )

2.841 295 47
—1.507 830 58
—0.476483 64 8
—0.170703 769
—0.061 960 378 2
—0.022 529 621 6
—0.008 194 182 1

1.891 451 63
6.786 841 81

11.043 137 1

14.126017 3
16.178095 50
17.410 577 2

18.007 293 5

—7.909 573 81
65.767 049 7
12.182 032 4
4.223 951 29
1.527 012 95
0.554 926 659
0.201 813 809

7.665 481 13
—29.937 699 5
—2.703 228 33
—0.487 168 762
—0.093 252 633 2
—0.018032 626 5
—0.003 493 961 88

TABLE IV. Same as Table III but for D1.

a„(A)
2.957 065 31

—2.796 731 38
—1.640 771 78
—1.097 728 28
—0.744 955 410
—0.506 570 565
—0.344 573 948

ro. (A)

1.969 458 82
11.985 066 2
35.031 120 5
81.039 343 8

168.116389
327.907 944
614.842 214

Ao'„(0) (A )

—8.854 6612
128.124 374
43.726 1108

28.264 084 7
19.096 541 3
12.977 227 5

8.826 344 84

W, „(O) (A )

8.634 23000
—58.734 458 6
—10.016 120 1

—3.442 052 52
—1.259 401 45
—0.465 817 639
—0.172 666 736

TABLE V. Same as Table III but for Tl.

a„(A)
3.020 35609

—4.014 670 86
—3.379 372 89
—3.254 343 09
—3.181058 90
—3.11613845
—3.053 567 09

rp„(A)

2.012042 87
16.793 787 3
69.254424 0

226.859 185
666.996 981

1844.418 98
4903.801 26

ap'„(0} (A')

—9.401 21745
189.018 731
92.187 366 0
85.689 722 2
83.372 8600
81.614267 1

79.966 650 1

A)„(0) (A )

9.197 17070
—86.952 912 5
—21.462 020 6
—10.731 901 2
—5.721 482 71
—3.084 71675
—1.666 905 58

TABLE VI. Same as Table III but for the KW (Stw) potential of Eq. (9).

a„(A) ron (A) ~o'n(0) «') ~,„(0) (A'')

2.728 958 57
—1,359 259 15
—0.427 170 825
—0.149 354 116
—5.273 748 15
—1.864 432 33
—6.592 298 87

1.814 327 01
5.392 474 21
8.490 991 55

10.472 737 1

11.524 831 1

11.900 523 1

11.801 549 0

—7.154 182 43
51.238 712 9
9.569 206 27
3.269 309 43
1.151 581 84
0.407 129 911
0.144 000 064

6.806 801 32
—23.709 769 9
—2.220 31148
—0.394442 635
—7.370 872 89
—1.388 224 59
—2.618 252 86

TABLE VII. Same as Table VI but for two D1 atoms.

2.868 862 48
—2.471 570 00
—1.422 846 91
—0.917776 498
—0.598 624 571
—0.391 039 424
—0.255 500 703

ro„(A)

1.505 163 56
7.805 089 49

22.044 947 9
48.564 240 9
95.164 143 5

174.727 259
307.867 667

Ap'„(0} (A }

—8.191 539 21
98.957 446 5

33.412 878 1

21.011487 4
13.657 601 9
8.915788 90
5.823 89046

7.893 752 57
—46.221 997 1

—8.083 123 67
—2.718 703 32
—0.964 591 364
—0.345 170415
—0.123 711 582
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TABLE VIII. Same as Table VI but for two T& atoms.

a„(A}
2.943 335 29

—3.512 685 50
—2.882 082 11
—2.660088 76
—2.484 843 09
—2.325 347 58
—2.177098 8S

ro„(A)

1.959 846 28
12.679 333 1

48.584 533 3
148.290 369
405.190903

1040.081 13
2565.407 50

Ao'„(0) (A )

—8.786 561 57
145.342 748
69.~~~ 633 6
62.395 862 0
58.036015 7
54.237 756 9
50.729 731 6

A] (0) (A }

8.518281 03
—68.190456 8
—17.148 712 3
—8.35812942
—4.304 284 31
—2.236 570 50
—1.164 11887

TABLE IX. Same as Table III but for two He atoms interacting via the Aziz et al. potential of Eq.
(10).

a„(A)
2.111661 65

—2.144038 78
—1.468 454 51
—1.144 238 45
—0.903 612 578
—0.714 883 057
—0.565 725 722

ro„(A)

1.406 13041
7.714 19676

25.1260564
64.800 491 3

149.681 756
324.867 555
677.586 700

A,"„(0) (A')

—3.240 267 54
45.461 968 4
18.487 059 2
13.960067 7
10.981 792 5

8.683 10053
6.870 S35 82

A, „(0) (A')

3.145 351 34
—21.332 165 6
—4.545 39079
—1.880 348 72
—0.822 171 617
—0.362 747 291
—0.160318810

TABLE X. Same as Table IX but for two He atoms.

a„(A)
2.146 31758

—2.749 828 42
—2.416360 79
—2.422 435 75
—2.462 570 34
—2.508 167 99
—2.555 33403

ro„{A)

1.429 516 16
9.720 278 48

40.058 670 1

131.178 615
385.064 680

1062.389 34
2817.206 31

A 0'„(0) (A )

—3.389 85006
59.595 586 9
30.976478 6
30.071 334 9
30.447 280 8
30.993 239 1

31.573 3764

Ai (0) (A )

3.301 526 88
—28.039097 5
—7.714739 53
—4.142 017 59
—2.353 158 64
—1.349 383 63
—0.775 160422

TABLE XI. Same as Table III but for two nucleons interacting via the two-Gaussian potential de-
fined in Eq. (111.

a„ (F)

0.988 877 189
—4.810029 16
—7.922 969 33

—13.645 341 3
—23.610663 8
—40.877 1312
—70.775 738 3

0.643 620 820
23.360 1932

377.914898
3931.851 37

35 236.824 8
292 554.639

2318 362.37

Ao'„(0) (F )

—0.404 350425
30.183046 8
44.281 274 3
75.362 673 7

130.213 ~~ ~

225.397 213
390.249 402

A(„(0) {F )

0.334 752 409
—13.419901 8
—7.114278 30
—4.626 582 56
—3.121 940 15
—2.123 868 07
—1.447 660 19
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