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Low-energy scattering parameters for van der Waals perturbation theory
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The low-energy two-body scattering S- and P-wave parameters, together with a shape-dependent
S-wave quantity, which appear in the well-known low-density expansions for the ground-state ener-
gy of many-boson and many-fermion systems, are accurately calculated for several central pair po-
tentials for spin-polarized atoms, helium atoms, and nucleons. An integral-equation method allow-
ing accurate determination of the coefficients of the above-mentioned parameters expanded in
powers of the attraction strength of the pair potential is presented and applied. The results are
needed for perturbation studies of ground-state energies of various quantum many-body systems.

I. INTRODUCTION

Few Monte Carlo computer determinations,! whether
of the variational or Green-function variety, for the
ground-state energy as a function of particle density have
become available for the various many-body systems in-
teracting even via a simple two-body central potential.
The reason is twofold: (a) The simulations are expensive
in terms of computer time and (b) the Green-function case
for fermions is still beset with serious theoretical difficul-
ties.

In recent years, modern extrapolation techniques, such
as the Padé approximant,? have been applied® to the well-
known low-density expansions for the ground-state energy
of many-boson* and many-fermion® systems in attempts
to generate, at the necessary intermediate densities, reli-
able equations of state for such substances in a simple,
inexpensive manner. The Padé techniques are widely
known to be very efficient for this purpose even in cases
where the original series are divergent.

For fermions the (at best asymptotic) expansion known
to date for the energy per particle is

3 #k} 1 . ro A,(0)
E/N~3— 14+C kpa+C,(kga )+ 3C37+C4T+C5 (kra)?
r 0(0)
+ Cslkra)'In | kpa | + %c77°+cg—°3—+c9 (kpa)*+o((kpa)*) | . (1)
a
[
Here m is the particle mass, and fiky is the Fermi A50)=—1 fow dr P (rug(r) , 3)

momentum of the ideal gas at a particle density
n=N/V=vk}/6m* with v the number of different fer-
mion species (i.e., spin and isospin degeneracy). The C;’s
are pure numbers as given in Ref. 6, while a, ry, and
A,(0) are the well-known scattering (potential-shape-
independent) parameters of the effective range theory’
which gives, for each partial wave [ =0,1, ..., the low-
energy result

k¥ +cotd;(k)~— +3rk*+0(kY) ask—0, (2

1
A4,(0)
where Ay(0)=a (S-wave scattering length) and §;(k) is
the /th partial-wave scattering phase shift. Also appear-
ing in (1) is the shape-dependent S-wave quantity’
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where v(r) is 2u/#* times the central potential-energy
function V(r) through which the particles interact,
p=m/2, and uy(r) is the S-wave, zero-energy radial wave
function.

The low-density expression for the energy per particle
in the ground state of boson systems is analogous to (1)
but somewhat simpler, although it involves an unknown
coefficient in the term corresponding to the (kra)* term
for fermions. The unknown coefficient contains three-
body cluster terms and thus depends on the shape of the
boson-boson interaction (just as its counterpart for fer-
mions is shape dependent), and an interesting form has
been proposed for it.®
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For either case, fermion or boson, it is useful to
separate the potential function v(r) into a positive part
Vcore(7) and a negative part v,,(r), so that

V(7)) =Vcore(F) 4+ Avay () 4)

with A a real, dimensionless parameter. The actual pair
potential, of course, corresponds to the case A=1. Expan-
sion of a, ry, A;(0), and Ag(0) in powers of A, and sub-
stitution into (1) or into the corresponding boson expres-
sion, clearly leads in either case to an energy expression

E/N= S g(mh (5)
i=0

which is really a double series, in density » and in attrac-
tive coupling A. The energy per particle is now in the
form of a perturbation scheme not about the ideal gas, as
in (1), but about a fluid of purely repulsive particles in-
teracting via v y.(7). The rearrangement (5) is essentially
the perturbation treatment suggested, but never formulat-
ed, by van der Waals more than a hundred years ago.
This scheme is actively being applied at present®® but
clearly requires knowledge of the various expansion coef-
ficients for a, ry, 4,(0), and Ag(0) for diverse two-body
potentials. The A power series of these parameters may or
may not diverge for the physically relevant value A=1;
this will be restricted in the double series (5) but later
dealt with by Padé methods and generalizations thereof.

In this paper we conclude two previous studies that
very precisely determined® these coefficients for several
potentials and calculated!® for the Lennard-Jones interac-
tion between helium atoms the aforementioned expansion
coefficients up to 14th order. In Sec. II we list the central
potentials to be treated; in Sec. III we quote the values
determined for the various scattering parameters. Section
IV contains a new integral-equation method for calculat-
ing the corresponding expansion coefficients of these pa-
rameters and Sec. V states our results to sixth order. Re-
sults up to 19th order are available upon request from the
University of Granada although perturbation studies car-
ried out so far suggest the unlikelihood of having to go
beyond sixth order.

II. PAIR CENTRAL POTENTIALS

We shall be interested in solutions of the radial
Schrodinger equation, with 4;(0)=0,
uj'(r)+ %[E—V(r)]u,(r)—ﬂl#)—u,(r)zo (6)
#i r
for various pair central potentials ¥ (r), to be listed below.
These potentials represent the interaction (a) between
spin-polarized hydrogen H|, deuterium D/, and tritium
T! and (b) between 3He and “He atoms, as well as (c) be-
tween nucleons. The values of #2/m used are given in
Table I.
The pair central potentials ¥V (r) considered in Eq. (1)
are the following.
(a) The Lennard-Jones (LJ) potential, given by
12 6
g
r

Vir)=4e
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TABLE 1. Values of ﬁz/izz for the different particles con-
sidered in Eq. (6), in units K A 2 for all cases except the last en-
try which is in MeV F? (1 F=10"" cm).

Particle #/m
H! 48.133716
D! 24.078 181
Ti 16.08971
‘He 16.085775
“‘He 12.120904

Nucleon 41.5129306

with!! €=6.46 K, 0=3.69 A for the spin-polarized atoms
listed in Table I and €=10.22 K, 0=2.556 A for the heli-
um atoms.

(b) The Kolos-Wolniewicz (KW) potential is found in
the form of numerical tables in the literature.!? However,
a simple parametrization is the so-called Silvera fit given
by Friend and Etters!® and is of the form

- r2 C C C
V(r)=Ade V% )——Bf(r) _66+_Ts+____11(())
r r r

’

(8)
f(,)Ee—(D/r—n2 (r<D)

=1 (r>D),

where the constants A4, B, D, a,, a,, Cg, Cg, and Cyq are
found in Ref. 13. A more accurate representation of the
KW data of Ref. 12 has been devised by Uang and Stwal-
ley!* who use a cubic spline fit. It has the form [with
x=r/R and R defined so that V(R)=0]

Vin=de “*""41B (0<x<a)

3
= 2 A,-,,(x —-x,')a (a <x Sb)

a=0

G G Cu

= — -+ _
xG x8 xlO

(r>b), 9)

the values of the dimensionless parameters (rounded off to
nine digits) being A4 =76384.2397, B =43130.2264,
a,=17.53177216, C4=18.4180095, C3=7.326268 46,
C1p=4.02144056, a =0.144156961, b =1.72988353.
We have further refined the spline parameters 4;,x; of
Ref. 14 so as to yield 16-digit instead of only 10-digit ac-
curacy.

(c) The Aziz et al. potential, presently considered the
most accurate He-He potential, is of the form, with
x=r/r, and r,, =2.9673 A,

Cs Cs Cxol

V(r)=€ede  *—F(x) 'x_6‘+ o +W

(10)
e—-(D/x——I)z (x <D)

with the unspecified parameters given in Ref. 15.
(d) The two-Gaussian nucleon-nucleon potential, which
is of the form

V(r)=2200e -5 — 66e —0- 144 Mev (11)
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TABLE II. Interparticle separation °R at which the various
pair central potentials change sign, in A except for the last en-
try, which is in F (1 F=10""3 cm). For LJ potentials, R = by
inspection of Eq. (7).

Potential R
KW (Sil) 3.687 4439
KW (Stw) 3.6708394
Aziz et al. 2.638 5037

Two-Gaussian 1.608 6251

if r is in Fermi (F) units. It was devised in Ref. 16 as a
model nuclear potential for the various reasons given
there.

In Table II we list the values of R at which the above-
mentioned potentials change sign, i.e., ¥(R)=0. We note
a difference as of the third digit between the two
parametrizations of the KW potential, with “Sil” refer-
ring to Ref. 13 and “Stw” to Ref. 14.

III. DIRECT DETERMINATION
OF SCATTERING PARAMETERS

The usual way of determining a, ry, and A4,(0) for a
given potential involves first calculating the phase shift
8;(k) for small wave number k by solving the Schrodinger
equation for small scattering energies. Second, one graphs
the left-hand side of Eq. (2) versus k2 for small k; the
slope yields r,/2 while the intercept at k*=0 gives
—1/4,(0). This graphical method'* is indirect and not
very accurate. Far more accurate is the direct method
which employs for a, ry, and A4,(0) integral expressions
similar to Eq. (3). This was carried out for the LJ, KW,
and Aziz et al. potentials in Ref. 9. In Ref. 10 were cal-
culated, in addition, the coefficients up to order 14 of the
A expansion of a, ry, 4,(0), and A4;(0) for the LJ poten-
tial for *He and “He. The method used in Ref. 10 for the
determination of these expansions depends critically on
the special structure of the LJ potential and cannot be
used for the other (physically more interesting) interac-
tions which require a straight numerical approach to be
discussed in Sec. IV. However, the fact that the LJ poten-
tial is asymptotically of the same form as most of the oth-
er potentials has made Ref. 10 of great help in ascertain-
ing the goodness of the various numerical approaches.
From these comparisons the integral-equation method
turned out to be precise and stable, thus ensuring that
noise arising from numerical approximations is negligible
in all results to be presented below.

IV. INTEGRAL-EQUATION METHOD

A scheme more powerful and elegant than that used in
Ref. 10 for the calculation of the A-expansion coefficients
of a, ry, 4,(0), and A (0) will now be presented and ap-
plied. The method can be illustrated in some detail for
one of the necessary parameters, a, the S-wave scattering
length. We start with the zero-energy S-wave radial func-
tion, which from Eq. (6) satisfies

ug(r)=v(rug(r),

(12)
v(r)= é';— Vir).
The radial function must obey the conditions
up(0)=0 and lim uy(r)=r—a, (13)

r— oo

so that the above partial-wave equation may be recast into
integral form as

ug(r)=r— fordr'r’u(r')uo(r')
—r [Tdro(ruer) . (14)

From the integral equation, as the r— oo limit is taken,
the scattering length a can clearly be identified as

a= fo“’drru(r)uo(r). (15)

This expression for a suggests that once the expansions of
v(r) and uy(r) in powers of A are known, the expansion of
a will also be known. More explicitly, combining Eq. (4)
with the expansion

@ k

ug(r)= 3, %—'uOk(r), (16)
k=0 K!

we have

o n
v(Pugr)= 3, %'-[vcm(r)uo,,(r)+nvm(r)u0,,_,(r)] .
n=0 """

(17)
If

< A" |d"a
a= —
n§0 n! | dA"

then Egs. (15) and (17) give

’

A=0

d"a
aat

R
= fo ar rvcore(rug,(r)
A=0

+n [ dr g (riugy _y(r) . (18)

To complete the scheme u(,(r) must be found. For the
determination of u,(r) one may contemplate using either
the differential or the integral equation satisfied by uy(r).
For all ug,(r) inside the range of the repulsive core, r <R,
the differential-equation approach proves useful. By sub-
stituting the expansion for u(r) into the partial-wave
equation one obtains

ut (1) vcore(r)uOn(r) (I‘SR)

On NV (Pugy _1(r) (r>R). (19)
Since uy(r) and uy(r) are both continuous in 7, one must
insist on continuity for ug,(r) and ug,(r), even at r =R.
From Eq. (19) it is immediately clear that for » <R the
ugn(r) are proportional to each other for all n if
u9,(0)=0, which follows from u,(0)=0. Numerical in-
tegration may be used to obtain uyy(r) which is deter-
mined fully if #¢,(0)=0 and [uy(7)], g =1 are imposed.
The latter condition is necessary since uyy(r)=0 and
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ugolr)=r —ay for r >R by convention in normalization.
Now from Egq. (15), ag, the unperturbed S-wave scattering
length, is given by

R

ag= fo dr rvgore(Pugo(r) . (20
But consistency requires that

uon(r)=uogo(r)uon(r)], =z - 21

It is important to note that from the integral equation (14)
satisfied by uq(r) one has

[up(M ], =1— [ dro(ru(r, (22)
which upon expansion in powers of A gives
[utn(N ] o =—n [ drva(riue, 1) . 3)

With the help of this relation and Eq. (18) an important
term in (d"a /dA"), ¢ may be rewritten as

“a - “d )

Sy dr rocone(ruon(r=—nao [ " drva(riuon (1),
(24)

so that

(d"a/dA_o=n [, dr(r —agWu(Puon_i(r) . (25)

Now it clearly becomes important to find ug,(7) outside
the repulsive core of the two-body interaction r>R.
From the integral equation (14) for uy(r) with » > R, upon
expansion in powers of A one gets for n > 1

Ugp(r)=—n(r —ayp) frw dr'v (r"ve, —1(r")

—n f}:dr’(r’—ao)vm(r’)uo,,_l(r') (26)

with the help of Eq. (24). Clearly, starting with
uy(r)=r —ay for r >R, it is possible to generate succes-
sively all u,(r) and, through Eq. (25), all derivatives of a.

It is now straightforward to use the u,(r) and the vari-
ous pieces in finding the expansion in powers of A for the
effective range’

ro==5 [, drlr —aP—u}(r)] @7

as well as for A3 (0) given by Eq. (3). For example,

d"A45(0)
dat

A=0

S L
=—n [ dr | T+ 450 [va(ruon_s(r),  (28)

where

Ap(0)=—+ fORdr F3Vcore(Pttgo(r) . (29)

The development for the P-wave scattering length
A,(0) is analogous to that of a. By definition’

A= [T drrivnun), (30)

where u,;(r) is the zero-energy P-wave radial function
satisfying Eq. (6) with E =0. The boundary conditions
here are u;(0)=0 and u,(r)—r?/3—A4,(0)/r, as r— .
Then

d"A4,(0)
2 S P

® 2 Ay,(0)
=n fR dr [%——12‘— }vm(r)ul,,_l(r) ’ (31)

where
R
Ap(O=T [ dr rivge(nu(r) (32)

and

r2 Ay(0)

3 r

1 pr,, | ()2 Ap(0)
—n— fRdr{ 3 T,

Ui (r)=—n

o dr’
L7 v )

Vae(F g 1 (')

(33)
provided r > R and

r2 AIQ(O)
“10(")=‘3—*—

forr>R .
On the other hand, for » <R one simply has to solve

ug(r)— u10(r)=0. (34)

2
=5 +Vcore(r)
r

V. RESULTS

Using the method just outlined, one can very accurately
deduce the coefficients of the A expansions of a, r,
A,(0), and A4 (0) for the various potentials listed in Sec.
II. Tables III—XI list the results, rounded off to nine sig-
nificant digits, for up to order 6 in the A expansions given
by

a= Y a,A", ro= i ronA",
= "= . (35)
A(0)= 2 A, (0A", A5(0)= 2 Ag (0A™ .

n=0 n=0

We have not listed the results for *He and *He with the LJ
potential as these are found in Ref. 10. Note, however,
that in this latter reference lengths are in 0=2.556-A
units, whereas in the present paper they are in angstrom
units.
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TABLE III. First seven coefficients of the A expansions [Eq. (36)] for two spin-polarized hydrogen
atoms H |, interacting via the LJ potential [Eq. (7)].

n a, (A) Fon (A) A5 (0) (A?) A1,(0) (A?)
0 2.84129547 1.89145163 —7.909573 81 7.665481 13
1 —1.50783058 6.786 841 81 65.767049 7 —29.9376995
2 —0.476483 648 11.0431371 12.1820324 —2.70322833
3 —0.170703 769 14.1260173 422395129 —0.487 168762
4 —0.0619603782 16.178 095 50 1.52701295 ~0.0932526332
5 —0.0225296216 17.4105772 0.554 926 659 —0.0180326265
6 —0.0081941821 18.007293 5 0.201 813 809 —0.003493961 88
TABLE IV. Same as Table III but for D|.
n a, (A) ron (A) A5 (0) (A?) A1,(0) (A3)
0 2.957065 31 1.969 458 82 —8.8546612 8.634 23000
1 —2.79673138 11.985066 2 128.124 374 —58.7344586
2 —1.64077178 35.0311205 43.7261108 —10.0161201
3 —1.09772828 81.0393438 28.264084 7 —3.44205252
4 —0.744955410 168.116 389 19.096 541 3 —1.259401 45
5 —0.506 570 565 327.907 944 12.9772275 —0.465817 639
6 —0.344 573948 614.842214 8.826 344 84 —0.172 666736
TABLE V. Same as Table III but for T|.
n a, (A) ron (A) A5 (0) (A3) A1,(0) (A3)
0 3.02035609 2.012042 87 —9.40121745 9.19717070
1 —4.01467086 16.7937873 189.018 731 —86.9529125
2 —3.37937289 69.2544240 92.187 3660 —21.4620206
3 —3.25434309 226.859 185 85.6897222 —10.7319012
4 —3.18105890 666.996 981 83.3728600 —5.72148271
5 —3.11613845 1844.418 98 81.6142671 —3.08471675
6 —3.05356709 4903.801 26 79.966 650 1 —1.666 905 58
TABLE VI. Same as Table III but for the KW (Stw) potential of Eq. (9).
n a, (A) ron (A) A5n(0) (A% A1,(0) (AY)
0 2.728958 57 1.81432701 —7.15418243 6.806 801 32
1 —1.35925915 539247421 51.2387129 —23.7097699
2 —0.427170825 8.490991 55 9.569 20627 —2.22031148
3 —0.149354 116 10.4727371 3.269 30943 —0.394442 635
4 527374815 11.524 8311 1.15158184 —7.370872 89
5 —1.864 43233 11.900523 1 0.407 129911 —1.38822459
6 —6.592298 87 11.801 5490 0.144 000 064 —2.61825286
TABLE VII. Same as Table VI but for two D| atoms.
n a, (A) Fon (A) A (0) (A A,,(0) (A3)
0 2.868 862 48 1.505 163 56 —8.19153921 7.893752 57
1 —2.47157000 7.805089 49 98.957 446 5 —46.221997 1
2 —1.42284691 22.0449479 33.412878 1 —8.08312367
3 —0.917776 498 48.564 2409 21.0114874 —2.718703 32
4 —0.598 624 571 95.164 143 5 13.657 6019 —0.964 591 364
5 —0.391039424 174.727 259 8.91578890 —0.345170415
6 —0.255500703 307.867 667 5.823 89046 —0.123711582
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TABLE VIII. Same as Table VI but for two T! atoms.

[

n a, (A) ron (A) A5 (0) (A?) A1,(0) (A7)
0 2.943 33529 1.959 84628 —8.786 56157 8.51828103
1 —3.51268550 12.679333 1 145.342 748 —68.190456 8
2 —2.88208211 48.584 5333 69.444 6336 —17.1487123
3 —2.66008876 148.290 369 62.3958620 —8.35812942
4 —2.484 84309 405.190903 58.0360157 —4.304284 31
5 —2.32534758 1040.081 13 54.2377569 —2.23657050
6 —2.177098 85 2565.407 50 50.7297316 —1.16411887

TABLE IX. Same as Table III but for two *He atoms interacting via the Aziz et al. potential of Eq.

(10).
n a, (A) ron (A) Ao (0) (A3) A1,(0) (A3
0 2.111 66165 1.406 13041 —3.240267 54 3.14535134
1 —2.14403878 7.714196 76 45.461968 4 —21.3321656

2 —1.468 45451 25.126056 4 18.4870592 —4.54539079
3 —1.14423845 64.800491 3 13.9600677 —1.88034872
4 —0.903612578 149.681756 10.9817925 —0.822171617
5 —0.714 883057 324.867 555 8.683 10053 —0.362747291
6 —0.565725722 677.586 700 6.87053582 —0.160318 810

TABLE X. Same as Table IX but for two “He atoms.

n a, (A) ron (A) A5 (0) (A3) A,(0) (A?)
0 2.14631758 1.42951616 —3.389 85006 3.30152688
1 —2.749 82842 9.720278 48 59.595 5869 —28.039097 5

2 —2.41636079 40.058670 1 30.9764786 —7.71473953
3 —2.42243575 131.178 615 30.0713349 —4.142017 59
4 —2.46257034 385.064 680 30.4472808 235315864
5 —2.508 16799 1062.389 34 30.993239 1 —1.349383 63
6 —2.55533403 2817.206 31 31.5733764 —0.775 160422

TABLE XI. Same as Table III but for two nucleons interacting via the two-Gaussian potential de-

fined in Eq. (11).

n a, (F) ron (F) Aos(0) (F?) A1,(0) (F?)

0 0.988 877 189 0.643 620 820 —0.404 350425 0.334 752409
1 —4.810029 16 23.3601932 30.183046 8 —13.4199018

2 —7.92296933 377.914 898 44.2812743 —7.114278 30
3 —13.6453413 3931.85137 75.3626737 —4.62658256
4 —23.610663 8 35236.8248 130.213 444 —3.12194015
5 —40.8771312 292 554.639 225.397213 —2.12386807
6 —70.7757383 2318 362.37 390.249 402 —1.44766019
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