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Electric and magnetic nuclear shielding tensors: A study of the water molecule
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We introduce a series of new linear-response tensors which enable one to estimate the actual elec-
tric and magnetic fields at the nuclei of a molecule immersed in an external, spatially uniform,
periodical electromagnetic field. The analysis is extended to the case of an electric field gradient.
These tensors may be called electromagnetic nuclear shieldings. They possess interesting properties
and fulfill a series of general sum rules and equations, showing the deep relations among the elec-
tromagnetic properties of molecules. An accurate numerical test has been performed on the water
molecule, with use of the random-phase approximation to decouple the polarization propagator

equations.

I. INTRODUCTION

In previous papers we have introduced the idea of stat-
ic! and dynamic? electric shielding at the nuclei of a mole-
cule immersed in a spatially uniform external electric
field.3—® We have also shown the general relations exist-
ing between the electric shielding and other second-order
molecular properties, namely electric polarizability, mag-
netic susceptibility, force constants, and infrared intensi-
ty.>!0 The present paper is aimed at generalizing the con-
cept of nuclear shielding in the presence of electromagnet-
ic radiation: to this end the idea of dynamic electromag-
netic shielding tensors is introduced.

Using infinitesimal canonical transformations of the
time-dependent Hamiltonian, and the related off-diagonal
hypervirial relations,'! a series of quantum-mechanical
sum rules can be proven, showing that the electric and
magnetic properties of molecules are deeply interconnect-
ed.

The new tensors are examined in Sec. II. Section III
shows that the electromagnetic shieldings can be given a
complex representation, which may be useful to study ab-
sorption and emission processes. The effects of an electric
field gradient are analyzed in Sec. IV. The results of an
extended basis calculations on the water molecule are dis-
cussed in Sec. V.

II. THEORY

Let ¥)=j), j=0,1,2,..., be the eigenfunctions of
the clamped-nuclei, time-independent Hamiltonian H, of
a molecule having n electrons, with coordinates r;, canon-
ical momenta p;, i =1,2,...,n, charge —e, and N nu-
clei, with coordinates R;, charge Z;e, I =1,2,...,N. In
the presence of electromagnetic radiation, the first-order
time-dependent Hamiltonians, within the length and an-
gular momentum gauges, are written

ker
c

HE=hE-E(r,0), E=Eos |w |1 —

hE=—p=eR, (2)

R= i T, (3)
i=1

HB®=h®B(r,0), B=kxE, 4)

hP=_m= 2;CL, (5)

L= i L, Li=r;Xp;, (6)

i=1

retaining the notation of a previous paper.!! E,B are the
electric and magnetic vectors of the perturbing radiation,
a monochromatic linearly polarized plane wave traveling
in the direction of the unit vector k. Within the dipole
approximation the fields are spatially uniform over the
molecular dimensions, and can be put equal to the value
they have at the origin of the coordinate system:

E(r,0)~E(0,0) , (7
B(r,0)=~B(0,0) . (8)

We recall that the dipole approximation can be justified
for wavelengths much larger than the molecular size. In
some cases, however, this limitation is physically mean-
ingless and must be relaxed, including also multipole
terms in (1).

We will be interested in the average values, correct
through first order in the perturbing radiation, of opera-
tors T which may themselves involve the perturbation,
thus, in obvious notation,

T=T0+T1+ RN

From propagator theory,'? or, equivalently, from time-
dependent perturbation theory,'>!* the general expression
for the diagonal matrix elements of such an observable in
the perturbed state ¥, is then, correct through first order,
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(T)o=(a|Tola)+(a|T, |a>+% é)
J a

— 2l wpRel{a| To|))(j|u]a)) E+oRe((a | To[))(j|m|a) B

—Im({a | To|j){j|pla))E—Im({a|Ty|j){j|m|a))B]

using the Gaussian unit system. In (9) E,B are partial
derivatives with respect to time. The quantity

A(T),=(T);—(a|Ty|a) (10)

is the contribution to the observable induced by the elec-
tromagnetic radiation, adding to the permanent value
(a|Tyla).

The electric dipole moment is p=p, and therefore,
from (9) and (10), the expression for the induced electric
dipole moment in the perturbed state ¥, (the subindex a
is omitted to avoid cumbersome notation) is

A{p)=a-E+k-B+a-E+RB, (11)
where!®
alw)= ﬁ 2 ———Re({a |R[/){j|R|a)) (12)

j (sta) @

is the electric dipole polarizability (a symmetric polar ten-
sor of dimension /*) in the length formalism,

e? 2 2
2
2cm#i j (s2a) @ja — o?

Rlw)=— sIm({a |R|j){j|L|a))

(13)

is related to the optical activity,'® and will be called here-
after optical activity tensor in the length—angular-
momentum formalism (an axial tensor of dimension I3¢),
and

6(w)=—-— >

j (s:a) wja o’

——=—1Im({a |R[j){j|R]|a)),

(14)
k()= =& S 20, sRe({a |R[j)(j|L|a)).
2emti (2, wjza
(15)
The magnetic dipole moment operator is
< e
m'= 2mc g p,~+:A(r,~)
< e
—c’%r,x p,~+EB><r,~
=m [(r;-B)r; —r?B], (16)

whence we find, using (9) and (10), that the induced dipole
moment is

A(m’')=E-k+(X?+X%-B—E&R+X"B, 17

9

I

where
2

e 260
z =5

2
4c’m*h j (5£a) @fa —

XP(w)= sRe({a|L|j){j|L|a))

(18)

is the paramagnetic susceptibility in the angular momen-
tum formalism, X9 is the diamagnetic contribution

X9=— < 21—r;r1;) >, (19)
i=1
and where
2
e
Xp(w)=_4c2m2ﬁ
X ¥ ———=Im({a|L|j){j|L|a)). (20)
j (s£a) wja

In the absence of an external magnetic field the eigen-
states to the unperturbed Hamiltonian may be chosen to
be real (if |a) is degenerate): the antisymmetric tensors
(14) and (20) and tensor (15) are identically vanishing.
When a static magnetic field By is present, |a),|j) are
the time-independent perturbed states and, as well as o ia s
are functions of By. In this case the effect of (14) and (15)
is that of adding higher-order contributions to the induced
moments. Introducing the operator representing the elec-
tric field of the electrons on nucleus I in (9),

—R
El—ez 1

=Ef, 1)
i=1 |rt RIP

the electronic contribution to the average electric field in-
duced at the nucleus becomes

A(E})=—y"E+£ B E4+E"B, (22)
where
vie) _E —— 5 Re({a |E}|j){j|R|a)) (23
Jj (sa) a)ja

is the electric shielding of nucleus I (a dimensionless
asymmetric tensor) in the length formalism. The tensor

2 e 2

Ellw)= Im({a |E}|j){j|L|a))
2cmti j (sa) wjz'a -’

(24)

deserves to be called electromagnetic shielding (an axial
tensor of dimension ?). Its physical meaning is immedi-
ately gathered from (22): by taking the scalar dyadic
product with the time derivative of the magnetic field, one
obtains the electric field induced at the nucleus. In the
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absence of an external magnetic field, the tensors

2w;
I — e
§lw)= 2em# 2 5

j (s¢a) @ja —

Re((a|E1|j>(J|Lla))

(25)
Plo)=—=

—=—Im((|E}|/){j|R]a)) (26)
ﬁ ;&a)w/a w

are identically zero. Tensor (24) is related to a similar one
introduced by Fowler and Buckingham.'®
Using, in the notation of Ref. 11, the operator

Bj=———M}=B},, 27
cm
n (R
M= ——— (28)
=1 |rn—Ry|

the magnetic field operator is

B} =B} + 2 [(B-E{)r; —(E!-r;)B] . (29)

2
2 i=1

and the expression for the magnetic field induced by the
electrons at nucleus I is

A(B})=AlE—(0* +0¥)B+A"E—87B, (30)
where the dimensionless quantity
62 2C‘)ja

o?(0)= — —5— ;
2c‘m ﬁj(¢a) wj,, —w

2
XRe({a |M}|j){j|L|a))

(31

is the dynamic paramagnetic shielding tensor. Equation
(31) is a generalization of Ramsey’s definition!” for the
static property, and o is the diamagnetic shielding

2
e
o=— <a
2c’m

The diamagnetic terms (19) and (32) do not depend on
the angular frequency w. The axial tensor of dimension ¢,

2
~ 2
AMo=——"— 3
emt (2, w;z'a—

n .
S (r;"Ej1—r1;E})
i=1

a> (32)

sIm({a [M}[j){j|R|a))

(33)

may be called magnetoelectric shielding. The tensors

2 20,
5 2% pea|M}Ij)IR|a)),
j (s#a) Qjg — @

Iy —
Mo)= o

(34)
e? 2

6P )=
o%w)= 2¢im* 2
j (sa) Wjg —@

2
xIm({a |M}|j){j|L]a)) (35

are identically vanishing in the absence of an external

magnetic field. When an additional (static) magnetic field
is present, then it will make contributions to (16) and (29),
and (34) and (35) as was the case of (14) and (15), (20), and
(25) and (26), yield higher-order contributions to the ob-
servable.

The tensors (23)—(26) and (33)—(35), introduced here
possess interesting properties: we prove hereafter that
they are interdependent and related to (12)—(15), (18), and

(20).
The electric shielding satisfies the translational sum
rulel 2458
N
S z,y'(0)=n1, (36)

I=1

which is the Thomas-Reiche-Kuhn (TRK) relation writ-
ten in the mixed length-acceleration formalism,'® a condi-
tion for the conservation of the induced electronic current
density, the hypervirial theorem® for the position operator
(3), and a gauge-invariance constraint for the magnetic
susceptibility.!! Studying the conditions for translational
gauge invariance of the magnetic properties, we have in-
troduced the tensors'!

(FY,R)_;=—2 3 20;'Re({a|FY|j){j|R|a))
J (#a)
(37
(KY,R)_;=—" 3 205'Re((a|K)[j){j|R|a)),
j (@)
(38)
1 N\
(LEFY) 2= 3 205’ Im(a|L|j){j|F]a)
Jj (s+a)
involving the operators
N 1 r;—R
Fi= S F.= 3 F), Fl=—e2z,—/——"~, (40
I=1 i= |t —Ry|
N ul I_,2 R,
K,, 2 ZK K,"—e Z[ 3><I{1,
I=1 i=1 |ri—R;|
41)

which represent, respectively, the force and the torque of
the nuclei on the electrons, in the absence of external
fields. From (37)—(41) one finds (sum over repeated greek
indices)

2 eaﬂ'yRIB( ny»Ra)—1

=K}, ,Rs)_1=m 3, Z€p,R157"(0),5

1

N
FX)_,=2cm 3 Z,;E'(0)s, ,
I=1

M=

=mea,35(RB)=(L

(42)

which is identical to the gauge-invariance condition (71)
of Ref. 11. This equation proves that the rotational sum
rule>>%%¢) for the electric shielding (third side) is the
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same as the translational rule for the electromagnetic
shielding (sixth side), and, owing to the results of Ref. 11,
it states the conservation of the current density field, the
gauge invariance of magnetizability, and the fundamental
operator commutation relations. This constitutes an in-
teresting connection among electric and magnetic proper-
ties, and a general synthesis of various aspects. The rela-
tion between electric and electromagnetic shielding can be
generalized for any o

N N ~
S Zi€apyRigr (@) ys=2¢ 3, Z1E (0)py - (43)
I=1 I=1

The electric shieldings are also related to the polariz-
ability.? Let us introduce the off-diagonal hypervirial re-
lations

1
(a1R|])=—wjal(a|P|]>—_ mwjaz<a lFN|]>

== ‘2§Z(a|E"|')
- a I 1]/
m I=1

(44)

which amounts to choosing velocity and acceleration
Hamiltonians, related to (1) via infinitesimal canonical
transformations.’

Using (44) we rewrite the polarizability in the accelera-
tion gauge

N
alw)= 3 dlw), (45)
I=1

2

I

o=z, > 2
m#i J (s=a) wja(wja wZ)

XRe({a |E}|j){j|R]|a))

(46)

Note that (46) is not symmetric and one could introduce
the alternative defmition

3
iz“’(w)=—e; 2 2

2
i (2a) a),,,(mj,, w*)

XRe({a |R|j){j|E}|a))

(47)
From the identity
@ja 1 w?

—— 7= > 3 (48)

Wjg — @ Wjg CL)ja((l)ja —w°)
one finds

e -2 < I I

—o0 Y Z[v(0)—y(0)]=a) . (49)

I=1

Equation (49) is a resolution of the polarizability into
atomic terms.’ A partmon of the electric shielding into
atomic contributions!® is also possible, allowing for the
acceleration formalism
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N
r(w)= 2 (50)
2
17, e 2
Y ((JJ)='——ZJ
m#i Jj (s2a) wja(w}za - 2)
XRe({a |E}|j){j|E}|a))
(51)
Z1Yap=Z;Yba - (52)
Using (46) and (51) we find the resolution
2 N
a’(m):f’;w—z 3 Z, 170 —y"0)] . (53)
J=1

A partition of the imaginary polarizability (14) analo-
gous to (49) can be written in terms of imaginary electric
shieldings (26) using the same procedure:

2 N
a'm)&,:——f;w—Z S Z)[7(@)ap—7 (0)ag) ,  (53)
J=1

2

N
a<w)=§n—w—2 S Z[9 (0)—p 0] ; (54)
I=1

note, however, that

N 1 2m
I=1

—Im({a|R|a){a|R|a))]=
(55)

as the diagonal elements of Hermitian operators are real.
A rotational sum rule'® for the electromagnetic shield-
ing is also established introducing the tensor!'!

(Kﬁv,L)—z‘—‘—— >
_1 (s£a) w;a

Im({a | K7 [j){j|L|a))

_4met ) (56)
e

Using (39) and (56) one finds

N A
21 ZleaﬁrRlﬁgl(O)rﬁ“‘ 2 eaﬂrRIB( nyrLs) 2
I=

1
2cm

2mc

(KN ,Ls)_,= XP(0) g5

(57)

This is another way of writing the same partition of the
paramagnetic susceptibility into atomic Pascalian terms
previously reported by us,’

I e’
(Kna’LB)——?.: P

.
4m?c? 2mc

Z,eaﬁyR,gé'\I(O),,s .

(57"

The identity between the first and the last sides holds for
any frequency, i.e.,
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N A
S ZicapyRigk (@)y5= 25K @)es (58)
I=1

In a similar way, introducing the tensors

(K,.”,Fff>_3=—ﬁ— 3 —Re((a[KN!j)(1|FN|a)
j(;éa)wja

(59)

(KYKN =5 3 —=Rel(a|KY 1) KE|a)),
Jj(s£a) @ja

(60)

we find again the static paramagnetic susceptibility in the
torque formalism,!!

4mc

>, € Rig(Kps, Fry) _3=(K5,K ) _3= XP(0)sq
By

(57"

which amounts to rewriting the rotational sum rule for
the electromagnetic shielding in the acceleration-torque
formalism.

We now show the explicit relation between the atomic
contributions to (23) and (24). To this end let us introduce
the hypervirial relation

(a|L|j)=iop'a|KY|j), (61)
and the expression for the electromagnetic shielding

within the acceleration-torque formalism'!

A N A
)= 3 M), (62)

J=1

EH@)=—=—2 2

2 2
2emti (24 0jo@jy —@?)

XRe({a |E7|j){j|Knla)).

(63)

Allowing for (51), one finds the equation relating electric
and electromagnetic atomic shieldings

6575R1yy”(w)a3= -—2c§A‘”(co),,5 , (64)

N ~
S €aysR Y (0)op=—2cE (@)gs - (65)
J=1

An analogous relation exists between the polarizability
(12) and the optical activity (13),

€apy!(@)gsR 1y =2cK ()5 , (66)
N
S €apy’(@)gsR 1, =2cK(0)5, » (67)
I=1
where
Rlw)= = 2

= 2 2
2mefi ;25 wj(0j; —o?)

XRe({a |R|j){j|K}|a))
(68)

is an atomic optical activity within the length-torque
gauge. Note that, using the alternative definition (47), one
should rewrite

N
S €apy@ (@)spR 1y =2cK(0)sq - (67"
=1

Owing to (49) we find a direct connection between the op-
tical activity and the electric shielding

e2

2cm

N
Ct)-_2 2 Z]Gaﬁ?,RIY[’}/!(O))Bs—‘}’I(O)Es]=k\((0)5a .
I1=1

(67")

A partition!® of the optical activity in terms of the elec-
tromagnetic shielding is also easily proven via (43), or ob-
serving that

1 1 o’

=+t 55 (69)

2 2 2 2, 2 2
Wjg —@ wjg  0j(wj — o)

and that the acceleration—angular-momentum version of
the optical activity is

N
Rlw)= 2 *w), (70)

o3
2em 24

Rlo)=—-—2,3 ———2)

Jj (3:a) w}a(w]a 2

XIm({a |E}|j){j|L|a))

(71)

N A A
Rlw)= —im—w—l S Z[E ) —E0)] . (72)
I=1

A formally identical equation relates tensors (15) and
(25). We find the rototranslational sum rules

N
12-:1 Z, £ 0)= lc (a|P,|a)ep, , (73)

1
2 Z,eaﬁy IBg 0)75—- 2em €a5y<a ‘LY |a) (74)

In the case of real functions, Eq. (73) satisfies the
momentum theorem’® trivially, and is identically vanishing
(it is, in fact, a sum of zeros). In the presence of magnetic
fields, however, the velocity theorem® holds, and (73) may
be different from zero. Equations (66)—(72) are rather in-
teresting, as they define an atomic additivity scheme for
the optical activity of molecules. Since there is wide ex-
perimental evidence!® that molecular polarizabilities can
be written in terms of atomic contributions, transferable
from molecule to molecule, our results would seem to im-
ply that a similar partitioning is possible for the optical
activity in terms of (67") and (72). We observe, however,
that the resolution (70) into atomic terms (71) is alterna-
tive to a corresponding one in terms of (68), as (68) and
(71) define basically different quantities.
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Relations analogous to (65) and (43) are

€apy? M(@)spR sy =2c0 " EM(@)sa—EM(0)s,]
N

> €apy? M(@spRyy

J=1

=2co & w)gg—

(75)

E0)sel, ZWEp=—Z/7 5

N N
> €apyZi? (0)gsR1y=—2c0 2 3, Z;[E(0)sa—E(0)sq] -
I=1 I=1

(76)

A large series of rotational sum rules can be obtained
starting from tensors which involve the force operator.!!
For instance, from

=3 3

J (s%a) 'a

(MAL,FY)_ Im((a[M,l_;)(j|FN|a))

(77)

one finds
2 eaﬂ‘yRJB( ny ’MIB

=K, MJ5)_y=— 2m’ c

“5—0"(0)s, . (78

Another interesting relation is found using the (F,F)
formalism for the polarizability (12). We define “pair po-
larizabilities”

2
Z2,Z; 3 S5
ﬁ j (s£a) w,,,(w}a——a)z)

a”(w)=
m

XRe({a |E}|j){j|E}|a)),

(79

such that a(w)=3},_,a”(w). The a'! are interpreted

as “atomic” terms, whereas a’’ are “bond” polarizabili-
ties. Using (60) we introduce “pair susceptibilities”

e? 2

XP(w)=
mzﬁj(#a) wja(w}a —0)2)
XRe({a |KL|j)(i|K]|a))
5 (80)
XPlw)= — —= 2

2 2 2
mh j(za) Wja—@

xIm({a |KL|j){j|L|a)).

Allowing for the atomic contributions to the optical ac-
tivity in the (F,L) formalism (71), we find

65ya6M3R1YRJ“aH( [} )aB= 4c’w _2[)("”(60 )sa —xPH( 0)srl >

€syaR 1R (@) ga= —2c0 [ XP(0)sp—XP (0)51] , (81)
N

N
e&,,aewa;yRJ“a”(co )aB= —2c 2 E&yaRIy'?I(w )al
LJ=1 I=1

=4¢c20 [ XP(w )5 —XP(0)s2]>
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which relates three different molecular properties. Mag-
netic and magnetoelectric shieldings can also be parti-
tioned in terms of atomic contributions [see also (78)]

2
0" w)=— ¢ 2
20°m* ; (Za) wja(wjs —0)
XRe({a |M7|j){j|K}|a))
(82)
2
O’P”(Cd)z“ £ 2 2 2
2cim* J (#a) @ja —®°)
XIm({a | M7 |j){j|K;|a))
(83)
Maer=—32, 3 ————
@ h g éa) wja(w,,, —w?)
XRe({a |M7|j){j|E}|a)),
(84)
AHw)=— PORPCEPRY
© cm ﬁ Jjéal “’Ja(“’ﬂ o)

XIm({a |M}|j){j|E%|a))

(85)

and a series of sum rules can be proven,

EnusR A M(0)y5= —2c0 ™[ 0??(@),1—0?(0),,],  (86)

ErusR A (0)ys= —2c6(0),, , (86')
Jél €rusR Jyli Hw )ys

=—2co o (0)y—0P(0),], (87)
éemk,ﬂ (@)ys=—2c6P (), . (87"

III. COMPLEX REPRESENTATION
OF THE SHIELDING TENSORS

In some instances it is convenient to introduce a com-
plex representation. This is particularly useful in order to
account for absorption and stimulated emission.'* The
periodic fields (1) and (4) are the real part of

k-r JE
= i 22 = 8
E=Egexp |iw |t - ], 3 ioE , (88)
B=Byexp |iw t—-———kc.r =k XE, —_%t =iwB . (89)

To avoid cumbersome notation we adopt the conventions
of Ref. 15: the new complex quantities X defined hereaf-
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ter are equal to X+iwX defined in (11)—(18), (20),  and the complex fields induced at the nuclei become
(23)—(26), and (30)—(36). The complex induced moments

become A(E})=—y"E+£'B, (92)
A{p)=a-E+k'B, (90) A(B} )=A"E—(a” +0¥)B . (93)
A{m')=E-««*+(X?+X%-B, 91 The complex tensors are defined

|
2
alw)=%- > ———L—[wj,,Re((a IR|j)(|R|a))—ioIm({a|R|j){j|R|a))]=a', (94)
7 J (#a) “’Jz’a_‘(‘)2
e? 2 N\ . N\
k(w)= o jéﬂ) PR [0zRe({a|R|j){j|L]a))—ioIm({a|R|j){j|L|a))], 95)
2
Xo)=—t— 3 — 2 [wgRe((a|L|j){ L a))—ioIm((a L[} L|a)]=X¢", (96)
4c°m hj(;éa) (l)ja“‘(l)
- 2 ———lwjRe({a |E} | j){j|R|a))—ioIm({a |E}|j){j|R[a))], 97
j(;&a) C‘)}a (2
e 2 N/ . nyiN/
Elw)=— o é}) o —o? s[ojRe((a |E] [j){j|L|a))—iolm({a |E}|j)}{j|L|a))], (98)
2
o?l(w)=——% 22 s[wRe({a |[M}|j)(j|L|a))—iwIm({a |M}|;j){j|L|a)], (99)
2¢2m*i j(#a) @ja—
2
Mo)=——3 —2—[w,Re({a|M}|/){j|R|a))—iwIm({a |M}|j}{j|R[a))]. (100)
cmfi j(sta) Wjg —@

The actual moments are the real parts of (90) and (91) and the real fields are the real parts of (92) and (93).

IV. THE EFFECT OF ELECTRIC FIELD GRADIENT

In the case of small wavelengths the dipole approximation cannot be justified, as the electric field gradient F over the
molecular dimensions becomes appreciable. In fact, the electric quadrupole terms are of the same order as the magnetic
dipole, and should be included in the electronic Hamiltonians (1)—(6), adding the term

HF:_—;—eaBFaﬂ’ FaBZVaEB ’ (101)

O=—1e > (31 —r?1). (102)

i=1

Accordingly, from propagator theory,'? the term

oy .\ /.| 9HF
AMT) =1 S —2 |4 Re({a|To|j)j|HF |a))~Im <a|T0m<J a> (103)
#i . a)z- -—a)2 ot
j (s2a) Wja
|
must be added to (9). In the case of the induced electric 1
and magnetic dipole moments one finds'? Alw)g gy =~ # 2 ol —a? 7Re((a |pa|j)i|Ogla)),
j (sxa) Wja
N . (106)
Apa)=5Aep Foy+ 5 Aap Fay , (104) 1 2
A(w)a,g-y:——i 2 3
’ 1 1 A - j (#a) (l)ja —Q
A<ma>=?Da,BrFB'r+TDa,B7FBy s (105)

X Im( N XVALE) ),
where m({a [pqa|7){j|Opy|a) (107)
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1 2a)ja . .
D(w)a,ﬂ,,=;jéa)w}a—_;‘2‘Re((a [mg|j){J Ieﬁrla)) ,

(108)
~ 1 2
D(@)a,py=— #i jéa) 0} —o?
xIm({a|my|j){j|Ogyla)).
(109)

In the case of the electron contribution to the electric
and magnetic fields induced at nucleus I, one should add
the terms

ACEL ) =vh g, Fp + 7L g, Fpy (110)
' (111)

20i,
Holapy=7 3 —ERel{a|Efalj)j|Opla))

j (#a) @ja —@
(112)

has been previously introduced by Fowler and Bucking-
ham,® and the other tensors are defined

T 1 2
Moapy=—75 3 5
#i j(#a) w}a“wz

XIm({a | Ef, |j){j|Ogyla)),

(113)
Hodum= E@%
XRe({a | B, |j){j|Og/la)),
(114)

Al 1 2
TH@)g,py=—"7 2
ﬁj(;ea) w}a—wz

XIm({a | Bfy |j)€j|©pyla)) .

(115)

Rewriting the mixed dipole-quadrupole polarizability in
the acceleration formalism,

A(w)ap,y
2 N 2

=—==32z 3

2 2
m# I=1 j (sa) a)ja(a)j,, —*)

XRe({a |E[y|j){j|Opg,|a)),

(116)

one finds the resolution into atomic terms?
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2 N
Alo)= —E’;w_z S Z,[V(0)—v(0)] . (117)
I=1

The translational and rotational sum rules for the
mixed dipole-quadrupole shielding are®

N
3 Zv(0)gp,=(R)8g,— 5 (Rg)8ey— 5 (R, )84p ,
I=1
(118)
N 1
2 Zleaﬂ‘leﬂ'VI(O)yJS::(<635)eaﬂe+<eﬁe)eaﬁﬁ) .
I=1

(119)

We obtain corresponding relations for tensor (113):

N
121 Z/1(0)g,5=0,

(118

2cm
—eTD ("-’)a,ea .

N
2 ZleaB‘leﬂ"\'l(w)r,d: (119"
I=1

One can also define atomic contributions to (109) via
the equation

. 2 N
D(@)gse=— Zinc 072 S Zyegp, RiplV (@), e
I=1
=10, 5]
N
=L S e RipA @)y 5 - (120)
2c /2

In the absence of an external magnetic field the wave
functions may be chosen real and (107), (108), (113), and
(114) are identically zero. Eventually we observe that the
tensors examined in this section can be given a complex
representation introducing the complex gradient

iwk,

Fop=— Eqgexp |io |t ——— (121)

V. CALCULATIONS ON THE WATER MOLECULE

As a first numerical application of the theory presented
here, we report the results of an accurate calculation on
the water molecule. The general propagator equations of
linear-response theory!'? were solved allowing for the
RPA," according to a computational scheme previously
described by us.>!! The ground-state reference wave
function is a near-Hartree-Fock determinant. The molec-
ular orbitals are expanded over a set of 101 uncontracted
Gaussians, which yielded very accurate theoretical esti-
matlgs of nuclear electric shieldings and dipole polarizabil-
1ty.

A first idea of the high quality of the present calcula-
tion is grasped from the results of Table I, which reports
the sum rules (42) written in several formalisms. Equa-
tion (42) should be exactly fulfilled in the limit of a com-
plete basis set: our calculations show that (42) is fairly
well satisfied. The results deteriorate only when force and
torque operators are considered: this is expected on the
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basis of Dalgarno-Epstein conditions,”® as the Cartesian
Gaussians are not suitable to mimic the » ~* dependencies
of these operators.!! At any rate, we recall that (42) holds
exactly allowing for the proper formalisms. For instance,
as can be checked in Table I,

,=—0.15092, (122)

N
2=2c > Z£5(0),

I=1

(L,,Fn)_

(K, FN)_3=2c 2 Z,£x(0

z 216 B R[ﬁ; F(O) x
ybY Y.
I=1 =1

=-—0.14582, (123)

N

(KR, 2

Z,€,8,R157k(0),, =—0.18056 ,

(124)

where the electromagnetic shielding is written in the an-
gular momentum (L) and torque (K) gauges, and the
electric shielding is expressed in the force (F) and length
(R) gauges.

Similar conclusions can be drawn from the results in
Table II, where the sum rules'! for the gauge invariance
of the magnetic shielding are reported: the results are
good, with the exception of (ME‘,X,F,Q’,)_Z, which is of
wrong sign. A similar drawback was observed in the case
of the HF molecule:!! such a failure indicates deficiencies
of our wave function in the environment of the heavy
atom, related to the inadequacy of Gaussians in represent-
ing the torque operator.?®

The equation for the theoretical average magnetic sus-
ceptibility, as a function of the distance from the origin of
the gauge (the molecular center of mass), is (in a.u.)

AX(r),,=—0.21629z —0.12021x?
—0.745 74y?—0.597 7522 (125)
TABLE 1. Sum rules [(z)=(R,,L, )0— C—(Fpy, K3

=2¢ 3V_Z,EN0)y= 3V_, Z1€6,5,R1y"(0 ] (42) and quanti-
ties necessary to evaluate the magnetic susceptxblllty for any
gauge. RPA results in atomic units (a.u.); gauge origin is molec-
ular center of mass (c.m.); atomic coordinates are
(0,0,0.124 144 4) for O, (0, + 1.4315300,—0.985265 6) for H(1)
and (0, —1.4315300, —0.985265 6) for H(2).

(z) —0.19695
(Ly,Rye)o —0.18564
(Ly,Ry)o 0.18970
(Ly,Py)_, —0.18135
(Le,Py)_y 0.188 18
(Kﬁ, <)o —0.18056
(K, R,)_, 0.18903
(KN, P,) > —0.176 89
(KN,P,)_» 0.18791
(L, FN) 2 —0.15092
(LX,F,{}’ 2 0.156 54
(KN, FN)_3 —0.14582
(Kn, FN)_3 0.156 70
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TABLE II. Sum rules [(EL)=(R,,M})o=—(R,,M[),
(E})=(R;,M[)o=—(Rs,M}.)] and quantities necessary to
evaluate the static nuclear magnetic shielding for any gauge.
RPA results in a.u.; gauge origin is molecular center of mass.

(E3;) —0.37327
(M3,,R, )0 0.356 61
(M3,,R)o —0.35476
(M3,:,P,)_, 0.35970
(M3,,P,)_, —0.37729
(M3, Fy) s —0.008 63
(M3, F)_, 0.19234
(E¥ig) 150122 (Efay) —2.05539
(M31xR,) Do —1.48463  (M¥xR. ) —2.00878
(M%) Rz o 147584  (M%).,R. )0 2.01199
(M¥ExPy) —1.48615  (M¥oxP,)_y —2.003 11
(M, Pe) 1.45882  (MP, P, 1.99071
(M Fly) -2 —1.46592  (MYx,FN)_s —1.98255
(M1, Fx)—2 1.45051 (M%), FX)_, 1.95900

This result is the best we obtained so far,?! and indicates a
very high degree of gauge independence. Moccia’s?® “best
gauge” origin is obtained by extremizing (125): it lies on
the z axis, —0.18092 bohr from the center of mass. The
paramagnetic susceptibilities in Table III are expected to
be virtually coincident with the Hartree-Fock limit:2! we
think that the computed values obtained here are compar-
able with, or superior to, other theoretical predictions.?!
In any event the agreement with the experimental data is
fairly good, as can be observed in Table III.

Inspection of Tables IV and V leads to similar con-
clusions as regards the magnetic shielding of oxygen and
hydrogen. The results are characterized by a large degree
of gauge independence and are in excellent agreement
with the experimental values.??~2* We can argue that the
present theoretical predictions are to be classified among
the most accurate reported so far.?

A partition of the paramagnetic shielding at «=0 and
0.3 a.u. is presented in Table VI and VII. These values
can be used to check sum rules (78), (86), and (87).

A definite conclusion about the accuracy of the theoret-
ical electromagnetic and magnetoelectric shieldings re-
ported in Tables VIII—XI is not possible. However, the
different formalisms give, in general, very similar numeri-
cal response, which could imply accuracy of the calcula-
tion.

The optical activity tensor in parts per thousand (ppt) is
reported in Table XII. Of course, optical activity, which
is related to the trace of this tensor, is uniquely observed
in molecules possessing only proper rotations as symmetry
elements. Accordingly, it is identically zero in water.
The only nonvanishing components are Kyy,,K,x. No com-
parison with corresponding experimental values is possi-
ble. In any event, we observe that the results obtained
within different formalism are very close to each other,
indicating good reliability of the calculation. We verify
on this table that the atomic terms (68) and (71) are, in
fact, different. We also found that the sum rules (43),
(57), (67”), and (72) are obeyed to a very good extent,
which provides a further criterion for relative accuracy of
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TABLE III. RPA static magnetic susceptibility in ppm a.u. The entries within parentheses specify
the gauge origin: c.m. stands for the molecular center of mass, BG for the best gauge origin (see text).
X2 (cm) Xk (cm.) Xkg (cm.) X% (cm.) Xy (cm) X2, (BG) Xx¢ (BG) X.. (BG)
xx 26473 26.019 25.608 —183.360 —156.887 30.284 —187.125 —156.841
26.79+0.52*
26.1°
» 7.485 7.465 7.462 —161.983 —154.498 11.263  —165.748 —154.485
8.74+0.02
8.9°
2z 14.166 14.003 13.872 —171.435 —157.269 14.166 —171.435 —157.269
15.17+0.38*
15.7°
Avg. 16.042 15.829 15.647 —172.259 —156.217 18.571 —174.769 —156.198
16.90*
16.9°
*Experimental values from Refs. 22 and 23.
*Experimental values from Ref. 24.
TABLE IV. Magnetic shielding at '’O in ppm; entries within parentheses specify the gauge origin.
o (c.m.) of (cm.) o (c.m.) a? (0) a® (0) o (0
xx 415.870 —111.806 304.064 417.104 —112.995 304.109
» 413.970 —48.613 365.357 415.204 —49.860 365.344
2z 415.740 —103.779 311.961 415.740 —103.779 311.961
Avg. 415.193 —88.066 327.127 416.016 —88.878 327.138
Expt.* 334+15

*Value taken from Ref. 25.

TABLE V. Magnetic shielding at 'H in ppm; entries within parentheses specify the gauge origin.

o? (c.m.) o? (c.m.) o (cm.) a? [H(1)] o? [H(1)] o [H(1)]

xx 12.660 9.359 22.019 130.384 —105.977 24.407
9.2% —107.04*

» 36.365 1.877 38.242 75.747 —36.394 39.353
1.5% —36.57*

zz 22.711 6.670 29.381 101.053 —69.207 31.846
74° —-71.79*

yz —17.994 7.650 —10.344 39.226 —47.955 —8.729

zy —14.694 5.685 —9.009 39.226 —46.538 —7.312

Avg. 23912 5.968 29.880 102.395 —70.526 31.869

30.2¢ 102.4* —71.80° 30.2*

*Experimental values from Refs. 21 and 25.

TABLE VI. Partition of paramagnetic shielding tensor at @ =0, in ppm; gauge origin is c.m.

Atomic
Contributions
I J Formalism oL of! o o8l ol
(o) (Mo,L) —111.806 —48.613 0.0 0.0 —103.779
O O —4.734 —6.133 0.0 0.0 0.0
(0] H(1) —53.305 —21.815 —35.235 —31.695 —51.194
(0] H(2) —53.305 —21.815 35.235 31.695 —51.194
(0] (Mo,K) —111.344 —49.762 0.0 0.0 —102.388
H(1) (My,L) 9.359 1.877 5.685 7.650 6.670
H(1) (o] —4.068 —4.036 —5.098 0.0 0.0
H(1) H(1) 15.057 5.660 7.815 8.224 11.354
H(1) H(2) —1.528 0.362 3.116 —0.526 —4.527
H(1) (My,K) 9.461 1.987 5.832 7.698 6.827
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TABLE VII. Partition of paramagnetic shielding tensor at @ =0.3 a.u., in ppm; gauge origin is c.m.

Atomic
Contributions
I J Formalism %k ob! ot obl ol
(o) (Mo,L) —169.064 —421.457 0.0 0.0 —225.955
o o —17.764 —17.625 0.0 0.0 0.0
(o) H(1) —80.324 —212.612 —76.628 —308.912 —111.336
(0] H(2) —80.324 —212.612 76.628 308.912 —111.336
o (Mo,K) —168.411 —432.849 0.0 0.0 —222.672
H(1) (My,L) 11.257 8.436 25.817 11.496 8.407
H(1) (0] —4.166 —4.271 —5.340 0.0 0.0
H(D H(D 17.012 10.459 18.873 15.197 27.421
H(D H(2) —1.495 2.554 12.992 —3.710 —18.876
H(D (My,K) 11.352 8.436 26.524 11.487 8.545
TABLE VIII. Electromagnetic shielding tensor at @ =0, in ppt a.u.; gauge origin is c.m.
Atomic
Contributions
I J Formalism 3 4 3 . gL EL
o (F,L) 0.169 —0.219 0.0 0.0
(0] o 0.450 —0.469 0.0 0.0
(o) H(1) —0.139 0.126 —0.203 0.292
o H(2) —0.139 0.126 0.203 —0.292
o (F,K) 0.171 —0.217 0.0 0.0
H(D) (F,L) —0.953 1.161 —1.340 1.616
H(1) (0] 0.141 —0.043 0.0 —0.058
H(D H(1) —1.003 0.766 —1.457 1.540
H(D) H(2) —0.089 0.430 0.129 0.101
H(D (F,K) —0.951 1.153 —1.328 1.583
TABLE IX. Electromagnetic shielding tensor at @=0.3, in ppt a.u.; gauge origin is c.m.
Atomic
Contributions
I J Formalism gL 3 EL EL
o (F,L) 0.169 —0.268 0.0 0.0
o o 0.485 —0.502 0.0 0.0
(0] H(1) —0.157 0.119 —0.223 0.326
(0] H(2) —0.157 0.119 0.223 —0.326
o (F,K) 0.170 —0.265 0.0 0.0
H(1) (F,L) —2.273 1.319 —1.727 1.935
H(1) o 0.159 —0.047 0.0 —0.050
H() H(1) —1.822 0.758 —2.647 1.858
H(D H(2) —0.644 0.601 0.936 0.088

H(1) (F,K) —2.307 1.311 —1.711 1.896
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TABLE X. Magnetoelectric shielding tensor at =0, in ppt a.u.
Atomic
Contributions
I J Formalism AL AL L AL
o (Mo,R) —28.560 —83.352 0.0 0.0
(o) (Mo, P) —28.642 —83.049 0.0 0.0
(o) (0] —55.277 73.287 0.0 0.0
o H(1) 8.819 —61.861 31.676 —56.065
o H(Q2) 8.819 —61.861 —31.676 56.065
o (Mo, F) —37.640 —50.434 0.0 0.0
H(1) (My,R) —5.581 7.040 —10.622 12.457
H(1) (My,P) —5.584 7.041 —10.627 12.420
H(1) (0] —2.310 3.491 —4.362 1.999
H() H(1) 0.824 3.403 —3.442 5.238
H(1) H(2) —3.799 —0.400 —2.397 3.419
H(1) (Mo, F) —5.285 6.494 —10.201 10.656
TABLE XI. Magnetoelectric shielding tensor at w=0.3, in ppt a.u.
Atomic
Contributions
I J Formalism AL AL AL AL
o (Mo,R) —50.119 —1412.279 0.0 0.0
o (Mo,P) —50.276 —1428.767 0.0 0.0
o (0] —74.315 36.597 0.0 0.0
(o) H(1) 5.299 —589.714 53.829 —127.938
(o) H(2) 5.299 —589.714 —53.829 127.938
(o) (Mo, F) —63.717 —1142.831 0.0 0.0
H(1) (My,R) —6.577 32.025 —17.317 84.837
H(1) (My,P) —6.581 32.368 —17.333 85.755
H(1) (0] —2.388 5.783 —5.293 5.942
H(1) H(1) 3.260 14.833 —6.402 34.177
H(1) H(2) —17.018 6.774 —4.759 30.525
H(1) (My,F) —6.147 27.390 —16.454 70.643
TABLE XII. Optical activity tensor at @ =0 and 0.3, in ppt a.u.; gauge origin is c.m.
Atomic
Contributions Formalism K(0)y, K(0)x K(0.3),, K(0.3))%
(R,L) 4.466 —0.295 35.483 0.386
(P,L) 4.470 —0.313 35.904 0.363
(0] (R,KO) —2.531 2.522 —3.544 3.039
H(D[H(2)] (R,KH) 3.559 —1.447 20.042 —1.386
Total (R,K) 4.588 —0.373 36.541 0.267
o (P,K°) —2.524 2.525 —3.553 3.044
H(D[HQ)] (P,KH) 3.560 —1.458 20.266 —1.400
Total (P,K) 4.595 —0.391 36.979 0.244
o (F,K°) —2.528 2.534 —3.495 3.057
H(D[H(2)] (F,K%) 3.155 —1.290 16.863 —1.161
Total (F,K) 3.782 —0.046 30.232 0.736
(0] (FO,L) —1.176 3.061 0.020 4.358
H([H(2)] (FH,L) 2.427 —1.513 14.664 —1.750
Total (F,L) 3.679 0.035 29.348 0.857
(o) (FO,K) —1.163 2.993 0.106 4.263
H(1)[H(2)] (FH,K) 2.472 —1.520 15.063 —1.764
Total (F,K) 3.782 —0.046 30.232 0.736
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TABLE XIII. Partition of paramagnetic susceptibility at =0, in ppm a.u.; gauge origin is c.m.

Atomic
Contributions
I J Formalism X2, x5, X5, x5 X%
(L,L) 26.473 7.485 0.0 0.0 14.166
o 0.793 0.614 0.0 0.0 0.0
H(1) 12.613 3.426 4.819 4.977 7.001
H(2) 12.613 3.426 —4.819 —4.977 7.001
Total (K,L) 26.019 7.465 0.0 0.0 14.003
o o 1.698 1.632 0.0 0.0 0.0
o H(1) —0.456 —0.505 —0.734 0.0 0.0
o H(2) —0.456 —0.505 0.734 0.0 0.0
H() H(1) 10.795 3.606 5.239 5.239 7.612
H(1) H(2) 2.073 0.320 —0.465 0.465 —0.676
(0] 0.785 0.621 0.0 0.0 0.0
H(1) 12.411 3.420 4.774 4.970 6.936
H(2) 12.411 3.420 —4.774 —4.970 6.936
Total (K,K) 25.608 7.462 0.0 0.0 13.872
TABLE XIV. Partition of paramagnetic susceptibility at ®=0.3, in ppm a.u.; gauge origin is c.m.
Atomic
Contributions
I J Formalism Xex X5 X5 X% X2
(L,L) 31.172 16.727 0.0 0.0 18.244
o 0.971 0.613 0.0 0.0 0.0
H(D 14.846 8.170 6.208 11.870 9.020
H(2) 14.846 8.170 —6.208 —11.870 9.020
Total (K,L) 30.663 16.953 0.0 0.0 18.040
O (o) 1.818 1.758 0.0 0.0 0.0
(0] H(1) —0.430 —0.571 —0.829 0.0 0.0
o H(2) —0.430 —0.571 0.829 0.0 0.0
H(1) H(1) 12.429 6.549 9.515 9.515 13.824
H(1) H(2) 2.620 2.316 —3.365 3.365 —4.889
o 0.959 0.617 0.0 0.0 0.0
H(1) 14.620 8.294 6.150 12.050 8.935
H(?2) 14.620 8.294 —6.150 —12.050 8.935
Total (K,K) 30.198 17.204 0.0 0.0 17.871
TABLE XV. Partition of the electric polarizability at @ =0, in a.u.
Atomic
Contributions
I J Formalism xx ay, a,, az a,
o 5.587 5.567 0.0 0.0 4.988
H(1) 0.990 1.772 —1.051 —0.943 1.660
H(2) 0.990 1.772 1.051 0.943 1.660
Total (F,R) 7.567 9.111 0.0 0.0 8.309
o 5.573 5.574 0.0 0.0 5.006
H(1) 0.990 1.773 —1.049 —0.941 1.662
H(2) 0.990 1.773 1.049 0.941 1.662
Total (F,P) 7.554 9.120 0.0 0.0 8.330
(o] o 5.245 5.334 0.0 0.0 4.207
o H(1) 0.169 0.130 —0.144 0.147 0.382
o H(2) 0.169 0.130 0.144 —0.147 0.382
H(1) H() 0.594 1.501 —0.960 —0.960 1.122
H(1) H(2) 0.115 0.099 —0.161 0.161 0.091
o 5.582 5.593 0.0 0.0 4972
H(1) 0.878 1.730 —0.974 —0.944 1.596
H(2) 0.878 1.730 0.974 0.944 1.596

Total (F,F) 7.337 9.053 0.0 0.0 8.163
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TABLE XVI. Partition of the electric polarizability at ®=0.3, in a.u.

Atomic
Contributions
I J Formalism Cxx ay, a,, a, ay
Total (R,R) 21.246 11.776 0.0 0.0 12.042
Total (P,R) 21.414 11.788 0.0 0.0 12.074
Total (P,P) 21.591 11.801 0.0 0.0 12.108
(o) 7.823 6.709 0.0 0.0 6.074
H(1) 5.575 2.490 —2.182 —1.449 2.818
H(2) 5.575 2.490 2.182 1.449 2.818
Total (F,R) 18.974 11.690 0.0 0.0 11.709
(0] 7.843 6.719 0.0 0.0 6.101
H() 5.637 2.492 —2.180 —1.447 2.821
H(2) 5.637 2.492 2.180 1.447 2.821
Total (F,P) 19.118 11.702 0.0 0.0 11.743
o 0] 6.826 6.520 0.0 0.0 5.088
(o] H(1) 0.445 0.115 —0.204 0.145 0.481
0] H(2) 0.445 0.115 0.204 —0.145 0.481
H(1) H(1) 2.530 2.455 —1.707 —-1.707 1.852
H(D) H(2) 1.716 —0.136 —0.459 0.459 0.344
(o} 7.715 6.749 0.0 0.0 6.050
H(D) 4.691 2.433 —2.021 —1.452 2.678
H(Q2) 4.691 2.433 2.021 1.452 2.678
Total (F,F) 17.097 11.616 0.0 0.0 11.406
TABLE XVII. Dipole nuclear electric shielding in ( F,F) formalism at @=0.
Atomic
Contributions
1 J Vix Vi Vh Yy Y%
o o 0.994 1.034 0 0 0.967
o H(D) 0.039 0.012 0.030 0.016 0.035
(0] H(2) 0.039 0.012 —0.030 —0.016 0.035
o 1.072 1.058 0 0 1.037
H(1) (o) 0.310 0.094 0.129 0.243 0.280
H(1) H(1) 0.279 0.562 —0.240 —0.240 0.460
H(1) H(?2) 0.025 0.042 0.053 —0.053 0.017
H(1) 0.614 0.698 —0.059 —0.050 0.757
TABLE XVIII. Dipole nuclear electric shielding in ( F,F) formalism at ©=0.3 a.u.
Atomic
Contributions
1 J Vix iy 75 Ve 7k
o o 1.071 1.108 0 0 1.024
o H(1) 0.044 0.013 0.032 0.014 0.040
o H(2) 0.044 0.013 —0.032 —0.014 0.040
(o) 1.158 1.134 0 0 1.105
H(D) o 0.350 0.104 0.110 0.256 0.323
H(D) H(D) 0.507 0.783 —0.394 —0.394 0.627
H(1) H(2) 0.179 0.030 0.095 —0.095 0.048

H(1) 1.036 0.918 —0.189 —0.232 0.998
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optical activity and shielding tensors reported here. A
similar judgement is achieved by inspection of the atomic
contributions to paramagnetic susceptibility (Tables XIII
and XIV), to polarizability (Tables XV and XVI), and to
electric shielding (Tables XVII and XVIII). Sum rules
(36), (49), and (81) are fairly well satisfied, which is anoth-
er way of showing the excellent overall characteristics of
our wave function.

Using the atomic polarizability in Table XIII, we have
computed the average static polarizability of hydrogen
peroxide, a(0)=13.7 a.u,, to be compared with the experi-
mental value 15.43.27 As the electron correlation contri-
butions are about 10% of the whole quantity,’! we can
reasonably argue that our estimate for hydrogen peroxide
is close to the limit value obtainable via an uncorrelated
RPA calculation. Since the theoretical polarizability of
water evaluated here is comparable in accuracy with the
best ones available so far, and virtually coincident with
the RPA limit,'° our results may imply transferability of
the atomic polarizabilities in Table XIIIL.

VI. CONCLUSIONS

We have introduced a series of new molecular tensors
which could be used to rationalize the behavior of a mole-
cule perturbed by periodic electromagnetic fields in terms
of effective average fields induced at the nuclei. These
tensors possess important properties: they satisfy transla-
tional and rotational sum rules, which are proven to be
very general quantum-mechanical relations, namely TRK

sum rules, gauge-invariance conditions, commutation rela-
tions, hypervirial theorems, and constraints expressing the
conservation of the current density field. All of these are
different but deeply interrelated aspects of one and the
same physical background. The shielding tensors are re-
lated to each other, and are connected with the electric po-
larizability, the optical activity, and the paramagnetic sus-
ceptibility via simple equations. The present findings al-
low one to write down a partition of molecular tensors in
terms of atomic contributions, according to an additivity
scheme.

One could reasonably infer that the present results show
some fundamental relations among second-order proper-
ties in terms of a general and unitary perspective. A nu-
merical test on the water molecule, based on a high-
quality RPA calculation, gives accurate sum rules and a
first series of theoretical predictions for the new quanti-
ties.
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