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Electric and magnetic nuclear shielding tensors: A study of the water molecule
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%e introduce a series of new linear-response tensors which enable one to estimate the actual elec-

tric and magnetic fields at the nuclei of a molecule immersed in an external, spatially uniform,
periodical electromagnetic field. The analysis is extended to the case of an electric field gradient.
These tensors may be called electromagnetic nuclear skieldings. They possess interesting properties
and fulfill a series of general sum rules and equations, showing the deep relations among the elec-
tromagnetic properties of molecules. An accurate numerical test has been performed on the water
molecule, with use of the random-phase approximation to decouple the polarization propagator
equations.

I. INTRODUCTION h = —p=eR, (2)

In previous papers we have introduced the idea of stat-
ic' and dynamic electric shielding at the nuclei of a mole-
cule immersed in a spatially uniform external electric
field. We have also shown the general relations exist-
ing between the electric shielding and other second-order
molecular properties, namely electric polarizability, mag-
netic susceptibility, force constants, and infrared intensi-
ty. ' The present paper is aimed at generalizing the con-
cept of nuclear shielding in the presence of electromagnet-
ic radiation: to this end the idea of dynamic electromag-
netic shielding tensors is introduced.

Using infinitesimal canonical transformations of the
time-dependent Hamiltonian, and the related off-diagonal
hypervirial relations, " a series of quantum-mechanical
sum rules can be proven, showing that the electric and
magnetic properties of molecules are deeply interconnect-
ed.

The new tensors are examined in Sec. II. Section III
shows that the electromagnetic shieldings can be given a
complex representation, which may be useful to study ab-
sorption and emission processes. The effects of an electric
field gradient are analyzed in Sec. IV. The results of an
extended basis calculations on the water molecule are dis-
cussed in Sec. V.

II. THEORY

Let +J:—
~
j), j=0, 1,2, . . . , be the eigenfunctions of

the clamped-nuclei, time-independent Hamiltonian Ho of
a molecule having n electrons, with coordinates r;, canon-
ical momenta p;, i =1,2, . . . , n, charge —e, and X nu-
clei, with coordinates Rq, charge ZIe, I =1,2, . . . , X. In
the presence of electromagnetic radiation, the first-order
time-dependent Harniltonians, within the length and an-
gular momentum gauges, are written

H =h E(r,co), E=Eocos n) t—E E. k-r
C

R= gr;,
i=1

H =h B(re), B=kXE, (4)

h'= —m= ' L,
2@le

L= g t, I;=r;Xp;,

retaining the notation of a previous paper. " E,B are the
electric and magnetic vectors of the perturbing radiation,
a monochromatic linearly polarized plane wave traveling
in the direction of the unit vector k. Within the dipole
approximation the fields are spatially uniform over the
molecular dimensions, and can be put equal to the value
they have at the origin of the coordinate system:

E(r,co)=E(O,co ),

B(r,a))=B(O,cg) .

TO+ Tl +

From propagator theory, ' or, equivalently, from time-
dependent perturbation theory, ' ' the general expression
for the diagonal matrix elements of such an observable in
the perturbed state 4, is then, correct through first order,

We recall that the dipole approximation can be justified
for wavelengths much larger than the molecular size. In
some cases, however, this limitation is physically mean-
ingless and must be relaxed, including also multipole
terms in (1).

We will be interested in the average values, correct
through first order in the perturbing radiation, of opera-
tors T which may themselves involve the perturbation,
thus, in obvious notation,
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&».=&a
I

To la&+&a I Ti la&+ —X, , (~J'Re(&a I
To

I j&&jlI la&} E+~J.Re(&a
I Tol j&&jlmla& 81 2

j(~a) NJa —N

—Im(&a
I To I j&&jig la&} E—Im(&a

I
To I j &&~ lmla&} Bl

(9)

~ ~

using the Gaussian unit system. In (9) E,B are partial
derivatives with respect to time. The quantity

h&T), =&T),—&a
I

T() la) (10}

6&Is) =a E+~ 8+cz E+k 8,
where'

is the contribution to the observable induced by the elec-
tromagnetic radiation, adding to the permanent value
&a

I T() Ia).
The electric dipole moment is p=y, o and therefore,

from (9) and (10), the expression for the induced electric
dipole moment in the perturbed state (It, (the subindex a
is omitted to avoid cumbersome notation) is

2 5

x = — a X(r;1—r;r;) a),e 2

4mc
(19)

and where

A
X~(co)=-

4cm A'

eX~(to)=
z z g z Re(&a ILlj)&jlLla))

C ff j (~a) NJa —N

(18)

is the paramagnetic susceptibility in the angular momen-
tum formalism, X is the diamagnetic contribution

2

(to}= g ', Re(&a IRI j&&j IRla))
1 (~ ) tojg —N

(12)
X g Im(&a ILI j)&j ILla)) . (20)

2

J (Aa) Nja —N

is the electric dipole polarizability (a symmetric polar ten-
sor of dimension 13}in the length formalism,

, Im(&a IRI j)&j I
Lla))

2ctnR J(~ ) Q)j
k(to) =—

(13)

is related to the optical activity, ' and will be called here-
after optical activity tensor in the length —angular-
momentum formalism (an axial tensor of dimension I t),
and

In the absence of an external magnetic field the eigen-
states to the unperturbed Hamiltonian may be chosen to
be real (if

I
a ) is degenerate): the antisymmetric tensors

(14) and (20) and tensor (15) are identically vanishing.
When a static magnetic field Bo is present,

I
a ), I j) are

the time-independent perturbed states and, as well as NJ„
are functions of Bo. In this case the effect of (14}and (15)
is that of adding higher-order contributions to the induced
moments. Introducing the operator representing the elec-
tric field of the electrons on nucleus I in (9),

j (~a) NJa —N

r; —R
Et =e g =Eto

lr; —Rtl
(21)

(14) the electronic contribution to the average electric field in-
duced at the nucleus becomes

ex(a))= g "
i Re(&a

I
R

I j)&j I
L

I

a )) .
2Cmfl (~ ) Q) —Q7

b & Et ) = yE+g—8 PE+—f 8,
where

(22)

The magnetic dipole moment operator is

g r; X p;+ —A(r;)
27tlC

« ')=E +(X+X').8—E "+X'8, (17)

g r;X p;+ BXr;
2mc ] ) 2c

2 N

=m+
z g [(r;.8)r; —r; 8],

4l?lC i =1

whence we find, using (9) and (10), that the induced dipole
moment is

y (to)= —g Re(&a
I
Et

I J ) &j I
R

I
a) ) (23)

j (~a) NJa —N

is the electric shielding of nucleus I (a dimensionless
asymmetric tensor} in the length formalism. The tensor

4 (~)= X, , ™(&a
I
Et lj &&j IL I

a &}
2 J (~a) NJ'a

(24)

deserves to be called electromagnetic shielding (an axial
tensor of dimension t) Its physica. l meaning is immedi-
ately gathered from (22): by taking the scalar dyadic
product with the time derivative of the magnetic field, one
obtains the electric field induced at the nucleus. In the
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absence of an external magnetic field, the tensors

P (c)r)= ——g &
Im(&

l
Er"

l j)&g l R la)) (26)
j (Aa) NJa —N

are identically zero. Tensor (24) is related to a similar one
introduced by Fowler and Buckingham. '

Using, in the notation of Ref. 11, the operator

8
BI= — Ml =Bio

cm
(27)

M
I;(Rr )

I

the magnetic field operator is

n

Br Br+ —— g [(B E'r)r; —(Er r;)B] .
2mC i =1

(29)

and the expression for the magnetic field induced by the
electrons at nucleus I is

6&Br" )=A,r E (cJrr+a~—) 8+%, E—cr~ B, (30)

where the dimensionless quantity

2

a'( )=-
2c m ff j (~a) NJa —co

g'r(co) = — g z Re( & a
l

Er"
l j & &j l

L
l
a ) ),

2 mA j(~a) MJa —N'

(25)

magnetic field. When an additional (static) magnetic field
is present, then it will make contributions to (16) and (29),
and (34) and (35) as was the case of (14) and (1S), (20), and
(2S) and (26), yield higher-order contributions to the ob-
servable.

The tensors (23)—(26) and (33)—(35), introduced here
possess interesting properties: we prove hereafter that
they are interdependent and related to (12)—(15), (18), and
(20).

The electric shielding satisfies the translational sum
~le1,2,4, 5, 8

N

g Zryr(0)=n1, (36)

which is the Thomas-Reiche-Kuhn (TRK) relation writ-
ten in the mixed length-acceleration formalism, ' a condi-
tion for the conservation of the induced electronic current
density, the hypervirial theorem for the position operator
(3), and a gauge-invariance constraint for the magnetic
susceptibility. " Studying the conditions for translational
gauge invariance of the magnetic properties, we have in-
troduced the tensors"

(K„,R) i
————g 2cor, 'Re( &a

l
K„ l j) &j l

R
l

a ) ),
j (&a)

(F„",R) i
————g 2cor, 'Re(&a lF„ l j)&jlRla)),

j (Qa)

(37)

xRe(&a lMi lJ)&j lLla)) (L,F„) 2
———g 2cor Im(&a lLl j)&j lF„ la)), (39)

j (~a)
(31)

involving the operators
is the dynamic paramagnetic shielding tensor. Equation
(31) is a generalization of Ramsey's definition' for the
static property, and o" is the diamagnetic shielding

N n
Fr)r y FI g Frc FI e2Z

2 Pl

a '=, a g (r; E', ) —r, E)) a)2c m
(32)

X n

lr; —Rr l3

A, (co)=— Im(&a
I
Mr I j & &j I

R
I
a &»

cmA . (+,) ~.,—~

(33)

The diamagnetic terms (19) and (32) do not depend on
the angular frequency c)r. The axial tensor of dimension r,

(41)

which represent, respectively, the force and the torque of
the nuclei on the electrons, in the absence of external
fields. From (37)—(41) one finds (sum over repeated greek
indices)

may be called magnetoelectric shielding. The tensors

2

g F~prRrp(F„r, Rs)
I=1

A. (co)= Re(&a
l
Mr

l j)&j l
R

l
a ) ),

em@

(34)

=(KN Rs) &=m g Zre pyRr—pyr(0)ys
1=1

2

&"( )=
2C Pl ft J (~a) Ceja —03

=me~ps&Rp)=(L, F s) 2
——2cm g Zrf (D)s

I=1

(42)

)& Im(& a
l

Mr"
l g & &J l

I.
l
a & ) (35)

are identically vanishing in the absence of an external

which is identical to the gauge-invariance condition (71)
of Ref. 11. This equation proves that the rotational sum
rule ' ' ' "' for the electric shielding (third side) is the
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same as the translational rule for the electromagnetic
shielding (sixth side), and, owing to the results of Ref. 11,
it states the conservation of the current density field, the
gauge invariance of magnetizability, and the fundamental
operator commutation relations. This constitutes an in-
teresting connection among electric and magnetic proper-
ties, and a general synthesis of various aspects. The rela-
tion between electric and electromagnetic shielding can be
generalized for any co

N N

Q Zje~p„RJpy (co)rs=2c g ZJg(co')s . (43)
I=1 I =1

The electric shieldings are also related to the polariz-
ability. Let us introduce the off-diagonal hypervirial re-
lations

N

y (CO)= g y ((O),

2

y (co)= ZJ
J (~ ( COj (('O& —CO )

XRe(&(i
I
EJ Ij &&j I

BJ I(i &}

ZI VaP ZJ YPa
IJ JI

Using (46}and (51) we find the resolution

e2 N
a'(m)= oj ' Q ZJ[y '(a)) y'(0—)] .

m J 1

(50)

(51)

(53)

=—(oj, ' g ZJ&a IBJ I j&,
m I 1

(44)
a (co)p ———

A partition of the imaginary polarizability (14) analo-
gous to (49) can be written in terms of imaginary electric
shieldings (26) using the same procedure:

e2 N

g ZJ[y (co) p y(0) —p], (53')
Pl J 1

which amounts to choosing velocity and acceleration
Hamiltonians, related to (1} via infinitesimal canonical
trans formations.

Using (44) we rewrite the polarizability in the accelera-
tion gauge

note, however, that

(54)

N

a(CO)= g a ((O),

ea (co)= ZJ
mal J (+~( (Oj~(Q)j~~ —(O )

(45) g ZJy'(0)=-
I=1

[Im(&a
I RR I a &)

—Im( & a
I

R
I
a & & a

I
R

I
(2 & )]=0,

(55)

XRe(& 0
I BJ

I j & &j I
R

I

a & ) .

(46)

as the diagonal elements of Hermitian operators are real.
j(i. rotational sum rule' for the electromagnetic shield-

ing is also established introducing the tensor"

Note that (46) is not symmetric and one could introduce
the alternative defmition

e 2
& (OJ)=

Rj(+g)CI)JQ(COJQ(O)

XRe(&u IRI j&&j1BJIu&)

From the identity

( K„",I.) 2 ————y, Im( & a
I

K"„
I j & &j I

I.
I
(i & )

j(~a) Nja

4m c
X~(0) .

2 (56)

Using (39) and (56) one finds

g ZJe prRJg (0)rs ge prR——Jp(F„r,Ls)
I 1

(K„,Ls) 2 X~(0) s
——.2mc

2cP72

COJa l2= +
Ceja —CO ja

one finds

67

2 2
Ct)jg (COjg (O )

(48)

This is another way of writing the same partition of the
paramagnetic susceptibility into atomic Pascalian terms
previously reported by us,

oJ g ZJ[y (a))—y (0)]=a(oj) .
fPl

Equation (49) is a resolution of the polarizability into
atomic terms. A partition of the electric shielding into
atomic contributions' is also possible, allowing for the
acceleration formalism

2 2
XJ' (0)~s—— (K„,Ls) 2 Zje~prRJg (——0)rs .

4m c

(57')

The identity between the first and the last sides holds for
any frequency, i.e.,
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2ltlCg Zre prRr g (co)rs ——i X~(co) s .
I=1 e

In a similar way, introducing the tensors

(58)
is an atomic optical activity within the length-torque
gauge. Note that, using the alternative definition (47), one
should rewrite

(K,F ) =—g, Re((a
l K„ l j&(j l F„

l

a &),
~ J (~a) ga

(59)

(K„",K„") i ———g, Re((a
l
K„"

l j&(j l K„ l
a &),

~ j(~a) COja

(60)

we find again the static paramagnetic susceptibility in the
torque formalism, "

4m cg ~apr~rp(&as~+ar) i=(K„s,Kaa), =
z

X~(0)s
I=1 e

(57")

which amounts to rewriting the rotational sum rule for
the electromagnetic shielding in the aeeeleration-torque
formalism.

%e now show the explicit relation between the atomic
contributions to (23}and (24). To this end let us introduce
the hypervirial relation

& a [ I. l j & =ico,, '(a
l K„ l j&, (61)

g Eapra (CO)SpRrr =2CK(CO)S (67')

Owing to (49) we find a direct connection between the op-
tical activity and the electric shielding

e2 N

g Zr&apr~rrl y (co}ps y—'(0)psl =@co)s
2cm

1 1 63

2 2 2 2 2 2
COra

—CO COja COra(COja —CO )
(69)

and that the acceleration —angular-momentum version of
the optical activity is

k(co)= g rc (co), (70)
I=1

3

2 fl j (~a) COj~a COr
—CO

(67")

A partition' of the optical activity in terms of the elec-
tromagnetic shielding is also easily proven via (43), or ob-
serving that

(62)

err(~)
(+,) co, (

and the expression for the electromagnetic shielding
within the acceleration-torque formalism"

g (co)= g gr (co),
J=1 Hence

x lm( & a
I Er l j & &j l

I.
l
a & ) .

(71)

(72)

XRe(&a IEr"
I j&&jlK' la&) .

(63)

(65)

An analogous relation exists between the polarizability
(12) and the optical activity (13),

rap„a (co)psRrr 2crc (co)s-—
g e p„a (co)psRrr 2c~(co)s-—
I=1

(66)

(67)

2

k (co)=
2Plcfl ~ (~ ) co ~ ( co ~ —co }

xRe((a
l
R

l j&(j l
K'„ la &)

(68)

Allowing for (51), one finds the equation relating electric
and electromagnetic atomic shieldings

eprsRrry (co)ap= 2cg (—co)as, (64)
N

g eprsRJry (co) p
—2cg (co) s. ——

J=1

A formally identical equation relates tensors (15) and
(25). We find the rototranslational sum rules

N

g Zrg'(0)= (a lPr la&e pr,2mc
(73)

g Zrs prRrg (0)„s= e sr(a l Lr la& .
I=1 2Cm

In the case of real functions, Eq. (73) satisfies the
momentum theorem trivially, and is identically vanishing
(it is, in fact, a sum of zeros). In the presence of magnetic
fields, however, the velocity theorem holds, and (73) may
be different from zero. Equations (66)—(72) are rather in-
teresting, as they define an atoinic additivity scheme for
the optical activity of molecules. Since there is wide ex-
perimental evidence' that molecular polarizabilities can
be written in terms of atomic contributions, transferable
from molecule to molecule, our results would seem to im-
ply that a similar partitioning is possible for the optical
activity in terms of (67") and (72). We observe, however,
that the resolution (70) into atomic terms (71) is alterna-
tive to a corresponding one in terms of (68), as (68) and
(71) define basically different quantities.
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Relations analogous to (65) and (43) are

e pyy (co)spRJy 2——ceo 2[$2J(co)s g—'~(0)s ],
g ' pyr "(co)sp Jy
J=l

(75}

which relates three different mole:ular properties. Mag-
netic and magnetoelectric shieldings can also be parti-
tioned in terms of atomic contributions [see also (78)]

IJ 2

2c m 4 j (&p) c0jp(ct)jp co )

=2c~ '[0'(~)s —4'(0) ] Zrr "p= Z—ii p'

g e p„zry'(a))psR2y= —2c~ ' g ZI[g'(co)s ('(0—)s ] .

{76)

A large series of rotational sum rules can be obtained
starting from tensors which involve the force operator. "
For instance, from

H"(co)=—

XRe(&a IMI J&&J IKJ Ia&),

2 2
2 2 . 2 22c m R

2 (~g) Mjg —N

(82)

)& Im( & a
I
MI"

I j & &j I
K„

I
a & ),

( MI, F„) 2
———g, Im( & a

I MI
Ij & &j I F„ I

a & ),
j (+u) ~ja

(77)

one finds

Q eNPyR gP( F„y&Mrs }
J=l

2m e={X„~,Mrs) 2
———

2
H (0)s . (78)

e

3

(co)=
2 ZJ

crri ()I
~ (~g) cojg(coj'g —co )

&«e(&a
I

Mr"
I j & &j I

EJ I
a &),

3
glj(co)= — ', Z, gj (~a) coja(~ja

(84)

Another interesting relation is found using the (F,F)
formalism for the polarizability (12). We define "pair po-
larizabili ties"

a'~(co)= ', Z, Z~ g
i (~~) ci)j~~(j~g —a) )

xlm(&a
I Mr I j & &j I

E~
I
a &»

(85)

and a series of sum rules can be proven,

xRe{&a IP21j&&jlEJ la&),

(79)

such that a(co) =gl+z, al~(co). The a are interpreted
as atomic" terms, whereas a are "bond" polarizabili-
ties. Using (60) we introduce "pair susceptibilities"

e 2
X~ (co)=-

2 g 2
4c in A J (/g) cojg(cojg co )

2

tx~sRJ~A, (co)ys= —2co' (co)yx,
N

ek/. Jp CO y5
J=1

(86')

= —Zcco [cr (co)y2 —cr~ (0)y),], (87)
N

(co)ys= —2ccr (co)y2
J=1

(87')

ex„sRJ&A, (co)ys 2c——co [cr—(co)y2 cr~ (0)y2]—, (86)

XRe(&a
I K„ I j& &j I

K„ I
a &),

(80)
e 2
2 2 + 2 24C m fl J. (~~) NJ, —N

&c Im( & a
I

KI
I j & &j I

L
I
a & ) .

(81)

Allowing for the atomic contributions to the optical ac-
tivity in the (F,I.) formalism (71), we find

esy~ex„pRIyRJ„a (co}~p=4c co [X~ (co}sx XI' J(0}sx], —

esy~+ly)c (~)ax= 2cc0 [X (co)sx —X (0)sx] ~

N N

Esy~~pRIyR Jpa (c0 )Np — 2c y Esy(gZI y)c ( co )&g x
I,J=1 I=1

[X~(c0)sx—X~(0)sx]

III. COMPLEX REPRESENTATION
OF THE SHIELDING TENSORS

k.r
E=Eoexp ice t—

C

BE =l coE,
Bt

(88)

k.rB=soexp ia t—
C

BB=kXE, =icoB .
Bt

(89)

To avoid cumbersome notation we adopt the conventions
of Ref. 15: the new complex quantities X defined hereaf-

In some instances it is convenient to introduce a com-
plex representation. This is particularly useful in order to
account for absorption and stimulated emission. ' The
periodic fields (1) and (4) are the real part of
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ter are equal to X+icoX defined in (11)—(IS), (20),
(23)—(26), and (30)—(36). The complex induced moments
bccoII1e

and the complex fields induced at the nuclei become

b ( El ) = —y E+g' .B, (92)

b, (p ) =a.E+ir.B,
a&m') =E.~'+(X&+X') B (91)

g(B&j') gI E (~PI+ dl) B

The comp1ex tensors are defined

2

J (Aa) NJa —CO

2

~(co)= g z [coz,Re((a
I Rl j)(j I L la)) iru—Im((a

I Rl j)(j I L la))],2cm

2

x~(&'&&) =
z z g z z [a&J,Re((a IL I j&&j IL I

a &) —ia&lm(&a IL I j&&j IL I
a &)]=x&

4c m fi J (~a) ceja co

z [a&jaRe(&a
I
EI

I j&&j IR
I

a &) —i~1m(&a
I EI

I j&&j I
R

I
a &)]~ j (~a) Ct)Ja —67

(94)

(95)

(96)

f (&»)=—
z z [~J «(&a IEI I j&&j IL I

a &) 'a&lm(&a
I Er I j&&j IL I a))] (9S)

ai' (co)=— , [J'Re((a Ml
I j)&j IL I

a))— ill&m(& alM Ilj&&j IL I a &)]
2c m ~ j(~a) ja

(99)

A, (cu)=
2

, [~J.«(&a IMI I j&&j IR la &) —i~lm(&a IMI I j&&j IR I
a &)] .

Cmfi J(+a) Q)Ja Q)
(100)

The actual moments are the real parts of (90) and (91) and the real fields are the real parts of (92) and (93).

IV. THE EFFECT OF ELECTRIC FIELD GRADIENT

In the case of small wavelengths the dipole approximation cannot be justified, as the electric field gradient F over the
molecular dimensions becomes appreciable. In fact, the electric quadrupole terms are of the same order as the magnetic
dipole, and should be included in the electronic Hamiltonians (1)—(6), adding the term

FH = —78~pF~p, F~p= V'~Ep, (101)

8= ——,'e $ (3r;r; r; 1) . — (102)

Accordingly, from propagator theory, ' the term

,&=T—&g z 2 m,,«(&o IT'o
~
j&&& ~H la&& —tm &a

I
TD

~
j& j a)

1 2 ~ ~ F BH"

( ) CO Bt
(103)

1

6(&M ) = —,A pyFpr+ TA prFpr, (104)

1

b, (m~) = , D~ prFpr+ , D prF—pr, —(105)

where

must be added to (9). In the case of the induced electric
and magnetic dipole moments one finds' A(co) pr= —g z Re((a 1&&z Ig)(J 18pr I

a) ),
J (~a) COJa

—QP

1 2
A (&») pr ————

j (~a) COja
—6)

Xlm(&a lt I j&&j 18' la&»
(107)
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D(a)) py
———g, " Re((a lm lj &(j l6p„la&),

~ J (~g) Cog
—N

2 N

A(~) = — ~ ' g Zi [d(~}—d(0) l
Pl

(117)

2D(~),p = —
~ X

I (~a) ~ja —~

X Im((a
l

rn
l j & (j l 8py l

a & ) .

The translational and rotational sum rules for the
mixed dipole-quadrupole shielding are

g z,d(o). ~=(R.&a~ ,'—&-Rp&s., ,'—&—R„&s.p

(118)

(109)

In the case of the electron contribution to the electric
and magnetic fields induced at nucleus I, one should add
the terms

N 1g Zie.~Rig(O)„„= ((—cps&e.„+(e~&~.p, ) .
I=1 e

(119)

3 ~~,prFpr+ i va, pyFpr ~

b(BIa &= 3r~PyFPy+ p ya PyFPy,

(110)
(118'}

We obtain corresponding relations for tensor (113):
N

g Ziv (0)a p„——0,
I=1

where 2CPFl
ZIScPyRIP (~)y, as D(~)a, aS .

I=1 e
(119')

, ",Re(&a IEI. I j&&jlep, la&)
j (pa) COj~a —CO

(112)

has been previously introduced by Fowler and Bucking-
ham, and the other tensors are defined

One can also define atomic contributions to (109) via
the equation

e2 N

D ( r0 )a S = — Ci) g Zi 6NPy RIP[V ( CO ) ySa
2NlC I 1

2
v (~},pr= &X—

J (~g) Q)J~ —CO

Xim(&a
I EIa I j & &j I epy I

a &»

N

g map„RIPA (CO)y S, .
I=1

—v'(0)y, s ]

(120)

(113)
In the absence of an external magnetic field the wave

functions may be chosen real and (107), (108), (113), and
(114) are identically zero. Eventually we observe that the
tensors examined in this section can be given a complex
representation introducing the complex gradient

&««&a IBI"
I j&&jlep, la&»

(114}

l Cgk~ kr
ED@exp iso t-

c c
(121)

r (a)) py
————

J [~g) NJg —6)

x Im( (a
l
BI"

l j& (j l epr l
a & ) .

(115}

Rewriting the mixed dipole-quadrupole polarizability in
the acceleration formalism,

A(co) pr
2 2

j (~a) ~ja(~j~a

XRe((a lEI" lj &(j l ep„la &),

one finds the resolution into atomic terms

V. CALCULATIONS ON THE %'ATER MOLECULE

As a first numerical application of the theory presented
here, we report the results of an accurate calculation on
the water molecule. The general propagator equations of
linear-response theory' were solved allowing for the
RPA, ' according to a computational scheme previously
described by us. '" The ground-state reference wave
function is a near-Hartree-Fock determinant. The molec-
ular orbitals are expanded over a set of 101 uncontracted
Gaussians, which yielded very accurate theoretical esti-
mates of nuclear electric shieldings and dipole polarizabil-
ity.

A first idea of the high quality of the present calcula-
tion is grasped from the results of Table I, which reports
the sum rules (42) written in several formalisms. Equa-
tion (42} should be exactly fulfilled in the limit of a com-
plete basis set: our calculations show that (42) is fairly
well satisfied. The results deteriorate only when force and
torque operators are considered: this is expected on the
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basis of Dalgarno-Epstein conditions, as the Cartesian
Gaussians are not suitable to mimic the r dependencies
of these operators. " At any rate, we recall that (42) holds

exactly allowing for the proper formalisms. For instance,
as can be checked in Table I,

(L„F~),=2c g Z, g', (0)„,= —0. 15092,
I=1

(K„~,F»») i ——2c g Zlgx(0)»» = g Zr&»p»RI@'r(0)r»
I =1 I =1

(122)

= —0.145 82, (123)

X

(K» R ) z Q Zre»prRrpyR(0)r» 0 18056
I=1

(124)

—0.745 74y —0.597 75z (125)

TABLE I. Sum rules [(z)=(R„L»)p—— (F»»,K~)—
=2c gz, Zlg'(0)»= g~", Zle~srRIIiy (0)„„](42) and quanti-

ties necessary to evaluate the magnetic susceptibility for any
gauge. RPA results in atomic units (a.u. ); gauge origin is molec-
ular center of mass (c.m. )„atomic coordinates are
(0,0,0.124 1444) for 0, (0, + 1.431 5300,—0.985 265 6) for H(1)
and (0, —1.431 5300, —0.985 265 6) for H(2).

(z)
(Ly Rx)o
(L„,Ry )o

(I-y, ~„)

Flv )
(gw FN )

FN)

—0.19695
—0.185 64

0.18970
—0.181 35

0.188 18
—0.180 56

0.18903
—0.176 89

0.187 91
—0.15092

0.156 54
—0.145 82

0.15670

where the electromagnetic shielding is written in the an-

gular momentum (L) and torque (K) gauges, and the
electric shielding is expressed in the force (F) and length

(R) gauges.
Similar conclusions can be drawn from the results in

Table II, where the sum rules" for the gauge invariance
of the magnetic shielding are reported: the results are
good, with the exception of (Mo„,F») z, which is of
wrong sign. A similar drawback was observed in the case
of the HF molecule:" such a failure indicates deficiencies
of our wave function in the environment of the heavy

atom, related to the inadequacy of Gaussians in represent-

ing the torque operator.
The equation for the theoretical average magnetic sus-

ceptibility, as a function of the distance from the origin of
the gauge (the molecular center of mass), is (in a.u. )

bL(r ),„=—0.216 29z —0. 120 21x

TABLE II. Sum rules [(El ) =(R» MI»)p= —(R» MI»)p,

(Efy ) =(R», MI"„)p—— (—R„,Mg, )p] and quantities necessary to
evaluate the static nuclear magnetic shielding for any gauge.
RPA results in a.u. ; gauge origin is molecular center of Inass.

«.".)
(Mo„,Ry )o

(Moy Rx)o
(Mo„,Py )

(Mo Fs)
(Moy, F )

«H(1). &

(MH{])x»Ry)o
(MH(1)y R )o

(MH{ i)x»~y )—
&

(MH(i)y ~.)-i
T

(M H{ [ )x» Fey )-2
(MH(i)y F~)-2

—0.373 27
0.356 61

—0.354 76
0.359 70

—0.377 29
—0.008 63

0.19234
1.501 22

—1.48463
1.475 84

—1.486 15
1.458 82

—1.465 92
1.450 51

«".„„)
(MH([)x Rg )o

(MH{i). R. )o

(MH{ [)x»~.)- i

(MH{1)s ~ )—1

(MH{ &)x»F~ )

(MB{1) F )—2

—2.055 39
—2.008 78

2.011 99
—2.003 11

1.99071
—1.982 55

1.959 00

This result is the best we obtained so far, ' and indicates a
very high degree of gauge independence. Moccia's "best
gauge" origin is obtained by extremizing (125): it lies on
the z axis, —0.18092 bohr from the center of mass. The
paramagnetic susceptibilities in Table III are expected to
be virtually coincident with the Hartree-Fock limit: ' we
think that the computed values obtained here are compar-
able with, or superior to, other theoretical predictions. '

In any event the agreement with the experimental data is
fairly good, as can be observed in Table III.

Inspection of Tables IV and V leads to similar con-
clusions as regards the inagnetic shielding of oxygen and
hydrogen. The results are characterized by a large degree
of gauge independence and are in excellent agreement
with the experimental values. We can argue that the
present theoretical predictions are to be classified among
the most accurate reported so far. '

A partition of the paramagnetic shielding at co=0 and
0.3 a.u. is presented in Table VI and VII. These values
can be used to check sum rules (78), (86), and (87).

A definite conclusion about the accuracy of the theoret-
ical electromagnetic and magnetoelectric shieldings re-
ported in Tables VIII—XI is not possible. However, the
different formalisms give, in general, very similar numeri-
cal response, which could imply accuracy of the calcula-
tion.

The optical activity tensor in parts per thousand (ppt) is
reported in Table XII. Of course, optical activity, which
is related to the trace of this tensor, is uniquely observed
in molecules possessing only proper rotations as symmetry
elemeetts. Accordingly, it is identically zero in water.
The only nonvanishing components are ~,„,x~„. No com-
parison with corresponding experimental values is possi-
ble. In any event, we observe that the results obtained
within different formalism are very close to each other,
indicating good reliability of the calculation. We verify
on this table that the atomic terms (68) and (71) are, in
fact, different. We also found that the sum rules (43),
(57), (67"), and (72) are obeyed to a very good extent,
which provides a further criterion for relative accuracy of
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TABLE III. RPA static magnetic susceptibility in ppm a.u. The entries within parentheses specify
the gauge origin: c.m stands for the molecular center of mass, BG for the best gauge origin (see text).

X/L, (c.m. ) Xg» (c.m. ) X»» (c,m. ) X (c.m. ) X~ (c.m. ) Xgq (BG) X (&G) XL.I. (BG)

xx 26.473
26.79+0.52'
26.1b

yy 7.485
8.74+0.02'
8.9

zz 14.166
15.17+0.38'
15 7b

Avg. 16.042
16.9O'

7.465 7.462 —161.983 —154.498 11.263 —165.748 —154.485

14.003 13.872 —171.435 —157.269 14.166 —171.435 —157.269

15.829 15.647 —172.259 —156.217 18.571 —174.769 —156.198

26.019 25.608 —183.360 —156.887 30.284 —187.125 —156.841

'Experimental values from Refs. 22 and 23.
Experimental values from Ref. 24.

TABLE IV. Magnetic shielding at "0in ppm; entries within parentheses specify the gauge origin.

Avg.
Expt.'

o (c.m. )

415.870
413.970
415.740
415.193

H (c.m. )

—111.806
—48.613

—103.779
—88.066

cr (c.m. )

304.064
365.357
311.961
327.127
334%15

cr (0)

417.104
415.204
415.740
416.016

o (0)

—112.995
—49.860

—103.779
—88.878

304.109
365.344
311.961
327.138

'Value taken from Ref. 25.

TABLE V. Magnetic shielding at H in ppm; entries within parentheses specify the gauge origin.

yy

ys
Zy

Avg.

o (c.m. )

12.660

36,365

22.711

—17.994
—14.694

23.912

H {c.m. )

9.359
9.2'
1.S77
1.5'
6.670
74'
7.650
5.685
5.968

o (c.m. )

22.019

38.242

29.381

—10.344
—9.009
29.880
30.2'

cr [H(1}]

130.384

75.747

101.053

39.226
39.226

102.395
102.4a

H [H(1}]

—10S.977
—107.04'
—36.394
—36.57'
—69.207
—71.79'
—47.955
—46.538
—70.526
—71.80'

o [H(1}]

24.407

39.353

31.846

—8.729
—7,312
31.869
30.2

'Experimental values from Refs. 21 and 25.

Atomic
Contributions

TABLE VI. Partition of paramagnetic shielding tensor at m=0, in ppm; gauge origin is c.m.

0

0

H(1)
H(1)
H(1)
H(1)
H(1)

H(1)
H(2)

0
H{1)
H(2)

Formalism

{Mo,L)

(Mo, K)
(M~,L)

(M~,K}

—111.806
—4.734

—53.305
—53.305

—111.344
9.359

—4.068
15.057

—1.528
9.461

—48.613
—6.133

—21.815
—21.815
—49.762

1.877
—4.036

5.660
0.362
1.987

0.0
0.0

—35.235
35.235
0.0
5.685

—5.098
7.81S
3.116
5.832

0.0
0.0

—31.695
31.695
0.0
7.650
0.0
8.224

—0.526
7.698

—103.779
0.0

—51 ~ 194
—51.194

—102.388
6.670
0.0

11.354
—4.527

6.827
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TABLE VII. Partition of paramagnetic shielding tensor at co=0.3 a.u. , in ppm; gauge origin is c.m.

0
0

0
0
H(1)
H(1)
H(1)
H(1)
H(1)

0
H(1)
H(2)

H(1)
H(2)

Atomic
Contributions

I J Formalism

(MO, L)

(Mo, x)
(Mg, L)

(Mp, E)

—169.064
—7.764

—80.324
—80.324

—168.411
11.257

—4.166
17.012

—1.495
11.352

—421.457
—7.625

—212.612
—212.612
—432.849

8.436
—4.271
10.459
2.554
8.436

0.0
0.0

—76.628
76.628
0.0

25.817
—5.340
18.873
12.992
26.524

0.0
0.0

—308.912
308.912

0.0
11.496
0.0

15.197
—3.710
11.487

—225.955
0.0

—111.336
—111.336
—222.672

8.407
0.0

27.421
—18.876

8.545

Atomic
Contributions

TABLE UIII. Electromagnetic shielding tensor at co=0, in ppt a.u. ; gauge origin is c.m.

Formalism

0

H(1)
H(1)
H(1)
H(1)
H(1)

0
H(1)
H(2)

0
H(1)
H(2)

(F,L)

{F,E}
{F,L)

(F,E)

0.169
0.450

—0.139
—0.139

0.171
—0.953

0.141
—1.003
—0.089
—0.951

—0.219
—0.469

0.126
0.126

—0.217
1.161

—0.043
0.766
0.430
1.153

0.0
0.0

—0.203
0.203
0.0

—1.340
0.0

—1.457
0.129

—1.328

0.0
0.0
0.292

—0.292
0.0
1.616

—0.058
1.540
0.101
1.583

Atomic
Contributions

TABLE IX. Electromagnetic shielding tensor at co=0.3, in ppt a.u. ; gauge origin is c.m.

Formalism

0
0
0
0
0
H(1}
H(1}
H(1)
H(1)
H{1}

H(1)
H{2)

0
H{1)
H(2}

{F,E}
(F,L)

(F,E}

0.169
0.48S

—0.157
—0.157

0.170
—2.273

0.159
—1.822
—0.644
—2.307

—0.268
—0.502

0.119
0.119

—0.265
1.319

—0.047
0.758
0.601
1.311

0.0
0.0

—0.223
0.223
0.0

—1.727
0.0

—2.647
0.936

—1.711

0.0
0.0
0.326

—0.326
0.0
1.935

—0.050
1.858
0.088
1.896
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Atomic
Contributions

TABLE X. Magnetoelectric shielding tensor at co=0, in ppt a.u.

Formalism

0
0
0

0
H(1)
H(1)
H(1)
H(1)
H(1)
H{1)

H(1)
H(2)

H(1)
H(2)

(Mo, R)
(Mo, P)

Mo, F
(MH, R)
(MH, P)

(Mp, F)

—28.560
—28.642
—55.277

8.819
8.819

—37.640
—5.581
—5.584
—2.310

0.824
—3.799
—5.285

—83.352
—83.049

73.287
—61.861
—61.861
—50.434

7.040
7.041
3.491
3.403

—0.400
6.494

0.0
0.0
0.0

31.676
—31.676

0.0
—10.622
—10.627
—4.362
—3.442
—2.397

—10.201

0.0
0.0
0.0

—56.065
56.065
0.0

12.457
12.420
1.999
5.238
3.419

10.656

Atomic
Contributions

TABLE XI. Magnetoelectric shielding tensor at co =0.3, in ppt a.u.

Formalism

0

0

0
0
H(1)
H{1)
H(1)
H(1)
H(1)
H(1)

0
H(1)
H(2)

H(1)
H(2)

{Mp,R)
(Mp, P)

(Mo,F)
(M„,R)
(MH, P)

{MH,F)

—50.119
—50.276
—74.315

5.299
5.299

—63.717
—6.577
—6.581
—2.388

3.260
—7.018
—6.147

—1412.279
—1428.767

36.597
—589.714
—589.714

—1142.831
32.025
32.368
5.783

14.833
6.774

27.390

0.0
0.0
0.0

53.829
—53.829

0.0
—17.317
—17.333
—5.293
—6.402
—4.759

—16.454

0.0
0.0
0.0

—127.938
127.938

0.0
84.837
85.755
5.942

34.177
30.525
70.643

TABLE XII. Optical activity tensor at ~=0 and 0.3, in ppt a.u. ; gauge origin is c.m.

Atomic
Contributions

0
H(1)[H{2)]
Total
0
H{1)[H(2)]
Total
0
H{1)[H(2)]
Total
0
H{1)[H(2)]
Total
0
H(1)[H(2)]
Total

Formalism

{R,L)
{P,L)
{R',E')
(RE )

{R,E)
(P,'E.

)

{P,E")
{P,E)
(F Ko)
{F,E")
{F,K}
{F:,L}
{FH L}
(+,L}
{F,K)
{FH K}
{F,K}

x(0)„y

4.466
4.470

—2.531
3.559
4.588

—2.524
3.560
4.595

—2.528
3.155
3.782

—1.176
2.427
3.679

—1.163
2.472
3.782

—0.295
—0.313

2.522
—1.447
—0.373

2.525
—1.458
—0.391

2.534
—1.290
—0.046

3.061
—1.513

0.035
2.993

—1.520
—0.046

igc0. 3)„y

35.483
35.904

—3.544
20.042
36.541

—3.553
20.266
36.979

—3.495
16.863
30.232
0.020

14.664
29.348
0.106

15.063
30.232

i3c 0.3)y„

0.386
0.363
3.039

—1.386
0.267
3.044

—1.400
0.244
3.057

—1.161
0.736
4.358

—1.750
0.857
4.263

—1.764
0.736
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TABLE XIII. Partition of paramagnetic susceptibility at ~=0, in ppm a.u. ; gauge origin is c.m.

Atomic
Contributions

Formalism

0
H(1)
H(2)
Total
0
0
0
H(1)
H(1)
0
H{1)
H(2)
Total

0
H{1)
H(2)
H(1)
H(2)

( K,I.)

26.473
0.793

12.613
12,613
26.019

1.698
—0.456
—0.456
10.795
2.073
0.785

12.411
12.411
25.608

7.48S
0.614
3.426
3.426
7.465
1.632

—0.505
—0.505

3.606
0.320
0.621
3.420
3 420
7.462

0.0
0.0
4.819

—4.819
0.0
0.0

—0.734
0.734
5.239

—0.465
0.0
4.774

—4.774
0.0

0.0
0.0
4.977

—4.977
0.0
0.0
0.0
0.0
5.239
0.465
0.0
4.970

—4.970
0.0

14.166
0.0
7.001
7.001

14.003
0.0
0.0
0.0
7.612

—0.676
0.0
6.936
6.936

13.872

TABLE XIV. Partition of paramagnetic susceptibility at co =0.3, in ppm a.u. ; gauge origin is c.m.

Atomic
Contributions

Formalism

0
H{1)
H(2)
Total
0
Q
0
H(1)
H(1)
Q
H(1)
H(2)
Total

0
H(1)
H(2)
H(1)
H(2)

{K,I )

{K,K)

31.172
0.971

14.846
14.846
30.663

1.818
—0.430
—0.430
12.429
2.620
0.959

14.620
14.620
30.198

16.727
0.613
8.170
8.170

16.953
1.758

—0.571
—0.571

6.549
2.316
0.617
8.294
8.294

17.204

0.0
0.0
6.208

—6.208
0.0
0.0

—0,829
0.829
9.515

—3.365
0.0
6, 150

—6.150
0.0

0.0
0.0

11.870
—11.870

0.0
0.0
0.0
0.0
9.515
3.365
0.0

12.050
—12.050

0.0

18.244
0.0
9.020
9.020

18.040
0.0
0.0
0.0

13.824
—4.889

0.0
8.935
8.935

17.871

Atomic
Contributions

TABLE XU. Partition of the electric polarizability at u =0, in a.u.

Formalism

0
H(1)
H(2)
Total
Q
H(1)
H(2)
Total

0
0
H{1)
H(1)

H{1)
H{2)
Total

H(1)
H(2)
H(1}
H(2)

5.587

0.990
0.990
7.567
S.S73
0.990
0.990
7.5S4
5.245
0.169
0.169
0.594
0.115
5.582
0.878
0.878
7.337

5.567
1.772
1.772
9.111
5.574
1.773
1.773
9.120
5.334
0.130
0.130
1.501
0.099
5.593
1.730
1.730
9.053

0.0
—1.051

1.051
0.0
0.0

—1.049
1.049
0.0
0.0

—0.144
0.144

—0.960
—0.161

0.0
—0.974

0.974
0.0

0.0
—0.943

0.943
0.0
0.0

—0.941
0.941
0.0
0.0
0.147

—0.147
—0.960

0.161
0.0

—0.944
0.944
0.0

4.988
1.660
1.660
8.309
5.006
1.662
1.662
8.330
4.207
0.382
0.382
1.122
0.091
4.972
1.596
1.596
8.163
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Atomic
Contributions

TABLE XVI. Partition of the electric polarizability at m =O.3, in a.u.

Formalism

Total
Total
Total
0
H(1)
H(2)
Total
0
H(1)
H(2)
Total
0
0
Q
H(1)
H(1)
0
H(1)
H{2}
Total

0
H(1)
H(2)
H(1)
H(2)

(R,R)
(P,R)
(P,P)

(F,P)

{F,F)

21.246
21.414
21.591
7.823
5.575
5.575

18.974
7.843
5.637
5.637

19.118
6.826
0.445
0.445
2.530
1.716
7.715
4.691
4.691

17.097

11.776
11.788
11.801
6.709
2 490
2.490

11.690
6.719
2.492
2.492

11.702
6.520
0.115
0.115
2.45S

—0.136
6.749
2.433
2.433

11.616

0.0
0.0
0.0
0.0

—2.182
2.182
0.0
0.0

—2.180
2.180
0.0
0.0

—0.204
0.204

—1.707
—0.459

0.0
—2.021

2.021
0.0

0.0
0.0
0.0
0.0

—1.449
1.449
0.0
0.0

—1.447
).447
0.0
0.0
0.145

—0.145
—1.707

0.459
0.0

—1.452
1.452
0.0

12.042
12.074
12.108
6.074
2.818
2.818

11.709
6.101
2.821
2.821

11.743
5.088
0.481
0.481
1.852
0.344
6.050
2.678
2.678

11.406

Atomic
Contributions

TABLE XVII. Dipole nuclear electric shielding in {F,F) formalism at u =0.

0
0
0
H(1)
H(1)
H(1)
H(1)

0
H(1)
H(2)

0
H(1)
H(2)

0.994
0.039
0.039
1.072
0.310
0.279
0.025
0.614

1.034
0.012
0.012
1.058
0.094
0.562
0.042
0.698

0
0.030

—0.030
0
0.129

—0.240
0.053

—0.059

0
0.016

—0.016
0
0.243

—0.240
—0.053
—O.OSO

0.967
0.035
0.035
1.037
0.280
0.460
0.017
0.757

Atomic
Contributions

TABLE XVIII. Dipole nuclear electric shielding in ( F,F) formalism at co =0.3 a.u.

H(1)
H(1)
H{1)
H(1}

H(1)
H{2}

H{1)
H{2)

1.071
0.044
0.044
1.158
0.350
0.507
0.179
1.036

1.108
0.013
0.013
1.134
0.104
0.783
0.030
0.918

0
0.032

—0.032
0
0.110

—0.394
0.095

—0.189

0
0.014

—0.014
0
0.256

—0.394
—0.095
—0.232

1.024
0.040
0.040
1.105
0.323
0.627
0.048
0.998
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optical activity and shielding tensors reported here. A
siinilar judgement is achieved by inspection of the atomic
contributions to paramagnetic susceptibility (Tables XIII
and XIV), to polarizability (Tables XV and XVI), and to
electric shielding (Tables XVII and XVIII). Sum rules

(36), (49), and (81) are fairly well satisfied, which is anoth-
er way of showing the excellent overall characteristics of
our wave function.

Using the atomic polarizability in Table XIII, we have
computed the average static polarizability of hydrogen
peroxide, a(0) = 13.7 a.u. , to be compared with the experi-
mental value 15A3.2 As the electron correlation contri-
butions are about 10% of the whole quantity, z' we can
reasonably argue that our estimate for hydrogen peroxide
is close to the limit value obtainable via an uncorrelated
RPA calculation. Since the theoretical polarizability of
water evaluated here is comparable in accuracy with the
best ones available so far, and virtually coincident with
the RPA limit, ' our results may imply transferability of
the atomic polarizabilities in Table XIII.

VI. CONCLUSIONS

We have introduced a series of new molecular tensors
which could be used to rationalize the behavior of a mole-
cule perturbed by periodic electromagnetic fields in terms
of effective average fields induced at the nuclei. These
tensors possess important properties: they satisfy transla-
tional and rotational sum rules, which are proven to be
very general quantum-mechanical relations, namely TRK

sum rules, gauge-invariance conditions, commutation rela-
tions, hypervirial theorems, and constraints expressing the
conservation of the current density field. All of these are
different but deeply interrelated aspects of one and the
same physical background. The shielding tensors are re-
lated to each other, and are connected with the electric po-
larizability, the optical activity, and the paramagnetic sus-
ceptibility via simple equations. The present findings al-
low one to write down a partition of molecular tensors in
terms of atomic contributions, according to an additivity
scheme.

One could reasonably infer that the present results show
some fundamental relations among second-order proper-
ties in terms of a general and unitary perspective. A nu-
merical test on the water molecule, based on a high-
quality RPA calculation, gives accurate sum rules and a
first series of theoretical predictions for the new quanti-
ties.
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