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In this paper a unified analytical treatment of overlap, two-center nuclear attraction, and
Coulomb integrals of 8 functions [E. Filter and E. O. Steinborn, Phys. Rev. A 18, 1 (1978)] via the
Fourier-transform method is presented. B functions, which are a special class of exponentially de-

creasing functions (for large arguments), have a relatively complicated analytical structure. Howev-

er, the Fourier transform of a B function is of exceptional simplicity. Consequently, it is relatively

easy to express the Fourier integral representations of the two-center integrals mentioned above as
finite sums or infinite series of Fourier integral representations for B functions and irregular solid

harmonics which may be considered to be limiting cases of special B functions. The only advanced
mathematical concepts which we need are the connection between B functions, classically divergent

Fourier integrals, and derivatives of the three-dimensional 5 functions. The other mathematical
tools—partial-fraction decompositions and Taylor expansions of rational functions —are fairly ele-

mentary. Our approach leads not only to a considerable simplification of the derivation of the pre-
viously known analytical representations for the two-center integrals but also to a large number of
hitherto unknown representations.

I. INTRODUCTION

It is well known that exact eigenstates of atomic and
molecular Hamiltonians satisfy the cusp condition' and
decrease exponentially at large distances. Consequently,
it is not surprising that exponentially decreasing functions
(for large arguments), in particular Slater-type functions,
could be used successfully as basis functions in atomic
calculations. However, an equally successful application
of these functions in molecular calculations has so far
been prevented by the fact that despite enormous efforts
no completely satisfactory method for the evaluation of
the notorious multicenter integrals of Slater-type or other
exponentially decreasing functions has been found yet. A
survey of the older literature on multicenter integrals was
given in review papers by Huzinaga, Harris and Michels,
and Browne. More recent references can be found in
Ref. 6 and in a review paper by Steinborn.

Slater-type functions have the simplest analytical struc-
ture of all exponentially decreasing functions. Other com-
monly occurring functions of that class, for instance, hy-
drogen eigenfunctions, can normally be expressed quite
easily as hnear combinations of Slater-type functions.
This implies that multicenter integrals of other exponen-
tially decreasing functions can be expressed in terms of
the basic multicenter integrals over Sister-type functions.
Probably, this was the reason why only multicenter in-
teg rais of Slater-type functions have been examined
thoroughly in the literature whereas the integrals of other
exponentially decreasing functions have largely been
neglected. It did not seem to make much sense to investi-
gate the multicenter integrals of the more complicated
functions as long as the multicenter integrals of the sim-
plest representative of that class could not be computed in

a reasonable way. In view of the extreme complexity of
multicenter integrals of exponentially decreasing functions
a restriction to Slater-type functions looks very natural
and also very economical. Unfortunately, this line of
reasoning is probably superficial and based upon false
premises. Currently, the most promising approach for the
evaluation of multicenter integrals appears to be the so-
called Fourier-transform method where multicenter in-
tegrals are transformed into inverse Fourier integrals. In
this approach it is not the analytical simplicity of a basis
function that matters but the analytical simplicity of its
Fourier transform.

In numerous papers it was demonstrated that the
Fourier transform of a Slater-ty e function is a fairly
complicated mathematical object. " Therefore, in this
paper we prefer to use a different class of exponentially
decreasing functions, the so-called 8 functions. '2 These
functions have a relatively complicated mathematical
structure. However, the Fourier transform of such a 8
function is of exceptional simplicity. ' Consequently,
these functions may be considered to be some fundamen-
tal entities in momentum space just as Sister-type func-
tions are in coordinate space. This fact was also em-
phasized by Niukkanen' who investigated mathematical
properties of Fourier transforms of exponentially decreas-
ing functions.

Because of the simplicity of the Fourier transform of a
B function it is an obvious idea to evaluate multicenter in-
tegrals of 8 functions via the Fourier-transform method.
In Sec. III we shall discuss the relevant properties of 8
functions. Particular emphasis will be given to the rela-
tionship between B functions, irregular solid harmonics,
and derivatives of the delta function. ' We shall need
some distribution theory for the derivation of analytical
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expressions for overlap integrals

S(fg;R) I=f (r)g(r R)—d r,
two-center nuclear attraction integrals

&(f;R)=f f(r)d'r, (1.2)

and Coulomb integrals

C(f g;R)= f ff'(rl) g(r2)d r, d rz,
rl —i'2 —R
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=(1—x } ' Pi(x) . (2.2)

X&l! '(cos8)e' & . (2.1)
I

H«e, &l' '(cos8) is an associated Legendre polynomial

dl+m x2 1
l

Pm(x) (1 x2)m/2
dx l +m 211 l

(1.3)
For the regular and irregular solid harmonics we write

via the Fourier-transform method. In the remaining sec-
tions we shall develop all mathematical tools which we
need for the derivation of closed-form expressions for the
integrals (1.1)—(1.3) if f and g are 8 functions. With the
help of these tools a large number of analytical representa-
tions for these integrals will be derived which are mostly
new.

The Fourier-transform method can also be used for the
evaluation of more complicated multicenter integrals as,
for instance, the notorious four-center exchange integral.
Then, it is no longer possible to obtain manageable
closed-form expressions, and numerical quadratures can
no longer be avoided. ' ' However, even in this case
some of the analytical methods which are described here
can be employed quite profitably. '

It is not a new idea to do a unified treatment of overlap,
two-center nuclear attraction, and Coulomb integrals.
This was already done in papers by Silverstone, 9 Harris
and Michels, and Todd, Kay, and Silverstone where in-

tegrals of Slater-type functions were treated. However, we
think that the problems associated with these integrals are
now much better understood and that considerable pro-
gress could be achieved. In our opinion, this is mainly a
consequence of the investigation and exploitation of prop-
erties of 8 functions.

Finally, we would like to emphasize that this paper is
devoted to the derivation of analytical expressions for
overlap, two-center nuclear attraction, and Coulomb in-

tegrals of 8 functions. The numerical properties of the
formulas presented here, their merits as well as their
shortcomings, will be discussed extensively in the follow-
ing paper. '

II. DEFINITIONS AND BASIC PROPERTIES

For the commonly occurring special functions of
mathematical physics we shall use the notations and con-
ventions of Magnus, Oberhettinger, and Soni unless ex-
plicitly stated (hereafter, this reference will be denoted as
MOS in the text).

The spherical harmonics Yl (8,$) are defined with use
of the phase convention of Condon and Shortley, i.e.,

9'i (r) =r'YP(8 P)

~m(r) r l —1—Ym(8 y)

(2.3}

(2.4)

( —x —iy) +"(x ly)"z™— 2k

X
2 + (m +k)!k!(1—m —2k}!

(2.5)

Hence, in Eq. (2.5) the Cartesian components of
r = (x,y, z) can be replaced by the Cartesian components of
V=(B/Bx, B/By, B/Bz) to yield the differential operator
9'i (V) which is also a spherical tensor of rank l. This
9'mi(V) which we call spherical tensor gradient was treat-
ed in papers by Santos, Rowe, Bayman, Fieck, Stu-
art, and more recently by Niukkanen ' ' and our-
selves 11,15, 18,32

For the integral of the product of three spherical har-
monics over the surface of the unit sphere in R, the so-
called Gaunt coefficient, we write

(13 m3 112 m2 I li, m& }

=f [Yl, '(Q)]'Yl, '(Q}Yl '(Q)dQ . ( .6)

These Gaunt coefficients linearize the product of two
spherical harmonics,

[Yl, '(Q)]'Yl, '(Q)

max

g "'(lz, m311i, mi
I

I, mz —m, }Yl ' '(Q) .
min

(2.7)
The symbol g' ' indicates that the summation proceeds
in steps of 2. The summation limits in Eq. (2.7}, which
follow from the selection rules satisfied by the Gaunt
coefficients, are

It is important to note that the regular solid harmonic is a
homogeneous polynomial of degree 1 in the Cartesian
components x, y, and z of r:

5 i (r) = (1+m)!(1—m)!
2I +1

4m

I,„=/1+ I2, (2.8a)
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In the following text we shall frequently use the following
combinations of the angular momentum quantum num-

bers I &, l2, and I which occur in Eq. (2.7):

tegrals for the two-center nuclear attraction integral (1.2)
and the Coulomb integral (1.3). If we combine Eq. (2.18}
with either

&(f,g;R)= Je '"~f'(p)g(p)d'p (2.19)hl =(ii+li —I)/2,

6 l i ——(l —I i +13}/2,

hip ——(1+1 i
—12)/2 .

(2.9a)

(2 9b) oris

(2.9c) r1 g r1 r2 R r2

=(2m)'~ Je '"'i'f '(p)g(p)h(p)d'p (2.20)Due to the summation limits (2.8) these quantities are ei-
ther positive integers or zero.

If K„(z) stands for the modified Bessel function of the
second kind (MOS, p. 66}, the reduced Bessel function

k„(z) is defined by3

we obtain

k„(z}=(2/n )'~ z "K„(z) . (2.10)

As a nonscalar generalization of the reduced Bessel func-
tions with half-integral orders v=n ——,', n E Z, the so-

called 8 function was introduced

B„i(a,r)=[2"+'(n +I)}] 'k„ i~2(ar)$'P(ar) . (2.11)

For the overlap, two-center nuclear attraction, and
Coulomb integrals of B functions we write

~g$ j$pg$ (a P R)=f [~g(, i$ (a r)] Bgg, j2(P r R)d

—tR p
A (f;R)=(2m)'~3 f f(p)d'p, (2.21)

p
2

~)Rap«f g"'R}=4~f, f '(p)g(p)d'p . (2.22)

The main advantage of the representation of the two-
center integrals (1.1)—(1.3) as inverse Fourier integrais ac-
cording to Eqs. (2.19), (2.21), and (2.22) is that a separa-
tion of integration variables can be achieved quite easily if
f and g are irreducible spherical tensors. To show this we
only have to insert the well-known Rayleigh expansion of
a plane wave in terms of spherical Bessel functions and
spherical harmonics,

A„,(a,R(= J B„,(ar)d'r, ,

C„",'
,'i,'( aP, R)= f f [8„,'i, (a,ri)]'

(2.12)

(2.13)

e-'"'"=4m. g g (+i)j'I(xy)[YI (x/x)]'Y& (y/y),
1=0m = —1

(2.23)

XB„,'~ (p, r2)d r i d r2 . (2.14}

1/2

(2 )
—3/2 f —iP rd3

p
(2.18)

This relationship which holds in the sense of distributions
can be used to derive representations as inverse Fourier in-

We shall also consider the overlap integral of an irregular
sohd harmonic and a 8 function for which we write

Z"' ' '(a, p, R)= f [Ni, '(ar)]'B„,'i, (p, r R)d'r —.

(2.15)

In this paper we shall use the symmetric version of the
Fourier transformation, i.e., a given function f(r) and its
Fourier transform f(p) are connected by the relationships

f(p)=(2~) ~ Je 'r'f(r)d r, (2.16)

f(r) =(27r) ~ f e"~f(p)d p . (2.17)

Classically, Fourier transformation is only defined for
functions that are absolutely integrable, i.e., which belong
to the space I.'( I ). However, if one uses the theory of
generalized functions Fourier transformation can be ex-
tended to the space of tempered distributions. This fact
is very important for our purposes since it makes it possi-
ble to define the Fourier transform of the Coulomb poten-
tial,"

III. PROPERTIES OF 8 FUNCTIONS

In this section we shall discuss only those properties of
8 functions which will be required for the derivation of
closed-form expressions for the two-center integrals
(2.12)—(2.15). More complete treatments of the
mathematical properties of B functions were given else-

1 17 15741742

If the order v of a reduced Bessel function k„(z), which
was defmed in Eq. (2.10), is negative we may use

k „(z)=z "k„(z), (3 1)

which follows from a symmetry relationship satisfied by
the modified Bessel function of the second kind (MOS, p.
67),

into the integrals in Eqs. (2.19), (2.21), and (2.22).
Another advantage of this Fourier-transform method is

that it makes it possible to decide whether a given multi-
center integral exists or not, and if it does, in what sense.
Following Triebel we shall say that a multicenter in-
tegral exists whenever the corresponding Fourier integral
makes sense. This is a very general and flexible definition
because it encompasses not only Fourier integrals which
converge absolutely, but also integrals which do not con-
verge in the sense of classical analysis and which have to
be regularized, and even integrals which represent
derivatives of the three-dimensional delta function. We
shall return to these questions in the later sections of this
paper and discuss them more extensively.
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K „(z)=It „(z) . (3.2)

If the order v is half-integral and positive, v=n + —, and
n EN„a reduced Bessel function may be represented as an
exponential multiplied by a terminating hypergeometric
sexes,

k„+1&2(z)=2"(—,
' )„e '1EI( n—; 2—n;2z), n &0, (3.3)

where (a)„—:I (a+n)/I (a), for n E N with (a)p ——1, is a
Pochhammer symbol.

If we combine the definition of a 8 function, Eq.
(2.11), with Eq. (3.3) we see that a 8 function is a relative-
ly complicated mathematical object and that it can be ex-
pressed as a linear combination of Slater-type functions
which are defined by

X„1(a,r) =(ar)" 'e 'FP(8, $), n G N . (3.4)

8„I(a,r)=( a) '(4~)—' '3II (V)8„+Ip(a, r) . (3.6)

This remarkable property of 8 functions could be used
quite profitably in connection with some multicenter in-
tegrals. In these cases, only closed-form expressions for
multicenter integrals over scalar 8 functions had to be de-
rived which can be obtained more easily than the corre-
sponding integrals over nonscalar functions. Then, a suit-
able application of spherical tensor gradients according to
Eq. (3.6) yielded the desired expressions.

We can learn a lot about the properties of 8 functions
if we study the representation of a 8 function as an in-
verse Fourier integral according to Eqs. (2.17) and (3.5),

( 2+ 2)n+I+ I
(3.7)

However, it could be shown that the Fourier transform of
a 8 function is of exceptional simplicity:

8„I(a,p)=(2n) f e 'I'8„I(a,r)d r
2n +I —1

=(2/ir)'
2 2 I, 9'I ( —ip) . (3.5)

( 2+p2)n+I+1

The Fourier transforms of other exponentially decreasing
functions such as Slater-type functions or hydrogen eigen-
functions are significantly more complicated. In papers
by Niukkanen, i4 Weniger md Steinbom, 114 and
Weniger it was shown that the Fourier transforms of all
commonly occurring exponentially decreasing functions
can be expressed as linear combination of Fourier
transforms of 8 functions.

8 functions have another property which seems to be
unique among exponentially decreasing functions: It is
extremely easy to generate anisotropic 8 functions by dif-
ferentiating scalar 8 functions. One only has to apply the
spherical tensor gradient 8'I (V) to a scalar 8 function in
order to obtain a nonscalar 8 function, i.e., a spherical
tensor of rank 1:

For n & I the Fourier integral converges absolutely. One
can show that in this case 8 functions are absolutely in-
tegrable and square integrable, i.e., they belong to
I. '(R 3}nL,2( R').

For —1&n &0 it follows from Eq. (3.1) that 8 func-
tions may be singular at the origin. Hence, these func-
tions are in general neither elements of l. '( R 3) nor of
L (R ). Also, the Fourier integral in Eq. (3.7) need no
longer exist in the sense of classical analysis. However,
even in the most extreme case of the so-called modified
Helmholtz harmonic 8 I I the classically divergent in-
tegral can be regularized by applying a suitable cutoff
function.

For n & —lit follows from Eq. (2.11) that a 8 function
is zero everywhere except at the origin, where it is unde-
fined. This is due to the occurrence of ( n +1)!
=I (n +1+1) in the denominator in Eq. (2.11). Howev-
er, the integral representation (3.7) remains meaningful
even for n & —l. Of course, in this case the integral no
longer represents a function but a derivative of the three-
dimensional delta function,

8 „ I I(a, r) =(4n/a + )[(21—1)!!]
X(1—a V )" '5l (r), n &1 (3.8)

where the spherical delta function 51 is defined by

51 (r) =(—1)'[(21—I)!!]-', (V)5(r) . (3.9)

Modified Helmholtz harmonics and irregular solid har-
monics are closely related. If we combine Eqs. (2.11},
(3.1), and (3.3) we find

Ni (r)=[(21—1)!!] ' lim [e'+'8 I l(e, r)] . (3.10)

We can exploit this relationship to define the Fourier
transform of an irregular solid harmonic which is not an
element of L'( R ). Consequently, Fourier transforma-
tion as well as inverse Fourier transformation are in this
case not defined in the sense of classical analysis. Howev-
er, if we combine Eqs. (3.5) and (3.10) we find

(p)(2~)—3/2f e iPr~m(r)dr

(2/~)'" 1

21 —1 11
(3.11)

21 —1!!p2

Because of 1/r = (4ir)'~ Np(r) we see that Eq. (3.11) con-
tains Eq. (2.18) as a special case. If we combine Eqs. (3.7}
and (3.10) we obtain a representation of the irregular solid
harmonic as an inverse Fourier integral:

9'I ( —ip)
Ni (r)= {2m[(21—1)!!]I ' fe"

2
d p . (3.12)

Finally, we are in a position to give explicit integral repre-
sentations for the integrals (2.12)—(2.15) which will be
treated in this paper. If we combine Eqs. (2.19) and (3.5)
and if we couple the spherical harmonics according to Eq.
(2.7) we obtain, for the overlap integral (2.12),

2n
I +II

—] +n2+ I2 —1.II —l2S„ I ~ (a,P, R) = —a111 m

p~

max

(12 rn 2 I 11 ln 1 I
1 rn 2 rn 1 )f e

min

I, +l2 —I mP —~1
11 +I P

(
2 2)81+11+1(p2 2)82+l2+1

d p
cz +p +p

(3.13)
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In the ease of the nuclear attraction integral (2.13) we combine Eqs. (2.21) and (3.7):

9', (i )

In the case of the Coulomb integral (2.14) we combine Eqs. (2.7), (2.22), and (3.5):

Cn2I2mz( p R} g
2"1+Ii lp2n2+I2 —1.li z

n111m 1

1+2 y 2 1( )

1 =lmin

In the ease of the integral (2.15) we combine Eqs. (2.7), (2.19), (3.5), and (3.11):
n~+12 —1

li m 1

(3.14)

(3.15}

lmax
I i + l2 —I m&

—m
1

g ''(E,2m2)l ,lmi[l, m2 —mi) Je ' '~
„ I, dP.

1 =lmin p2(p2+p2) 2 2
(3.16)

IV. TRANSFORMATIONS OF THE DENOMINATORS

v=O

In this section we shall show how the denominators which occur in the integral representations (3.13}—(3.16) can be
expressed in terms of simpler functions such as p or (a +p )

" ' using partial-fraction decomposition or Taylor
expansion.

We start with the following partial-fraction decomposition: '

2 n, -l, -i 2 2 -n, -l, -i ( —1)"""""'"' (ni+n2+ii+4 —v}' (a' —p')" "'
(a2+p2) 1 1 (P2+p2) 2 2

(n 2+ 12 )! „o (n 1 + I 1
—v)! (a2+p 2 }v+1

( 1)"1+ 1+ "2+ 2 (ni+n2+Ii+i2 v)i (p2 a2)"

(ni+ li )! (n2+ i2 V)! (P2+p2)v+ 1

From Eq. (4.1) we immediately obtain, as a special case,

n+l
p 2(a2+p2) n I 1 a 2n 2I 4 a2/p2 + [a2/(a2+p2)]v+ 1

v=O
(4.2)

We can combine Eqs. (4.1) and (4.2) to obtain a partial fraction decomposition for the denominator which occurs in the
integral representation (3.15) for the Coulomb integral:

1

2( 2+ 2) 1+ 1+ (p2+ 2) 2+ 2+

1

2 2n&+21&+2 n2+12+2 +
pa

—2n2 —212 —4 n2+ l2
p

(
2 p2)ni +Ii+1

—2ni —21l —4a n 1 +11

(p2 2)"2+ 2+

"+' 2+12-.
p

P'+P' „=O

a
a+p

"1+'1 "(n2+12+1)„
p=O p.

(n 1 + 1 1 + 1)q p2

p. p —a2 2

Q 2

a —p2 2

(4.3)

In Eqs. (4.1)—(4.3) the constituents of the denominators are completely separated. Hence, if we use these partial fraction
decompositions in the integral representations (3.13)—(3.16) we obtain, because of Eqs. (3.7) and (3.12), expressions which
only involve 8 functions and irregular solid harmonics. However, in the case of the Coulomb integral (2.14) this need
not be the most economical approach. Instead, it may be more convenient to use one of the following incomplete partial
fraction decompositions:

1 (
1)n2+12+ ni+ 1 (n 1+n2+ii +f2 v)1 (a2 p2) 1 2 1 2

p ~a +p ) (p +p ) 2 v=02. 2 2 "1+ 1+' 2 2 "2+ 2+' (n +l2)! (n 1+11—v)! 2( 2+ 2)v+1

( —1)
ni+11+1 n2+I2

( + +i +i }1 2 2 V —ni —n2 —Ii —I& —1Pl) tl2 ) 2
—V .+

(n 1 +11}! „, (n2+ 12 v)!— (p2+p 2)v+12 (4.4)
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2nI +211+2
Q

1

2(p2+p2) 2 2

1 1

2+212+2 2 2 2) 1+ 1+
. p a+p

n
1 +I

1

(a'+p') ' ' (p'+p')"+'

2v

0 ( 2+p2)v+ 1(p2+p2) 2 2

n„+1) 2v

(4.5)

(4.6)

Because of Eqs. (3.7) and (3.12) we shall obtain closed-
forin expressions for the two-center integrals (2.12)—(2.15)
which contain only a finite number of 8 functions and ir-
regular solid harmonics if we insert the partial fraction
decompositions into the Fourier integrals (3.13)—(3.16).
Therefore, we may expe:t that these representations will
allow a very efficient evaluation of the two-center in-
tegrals (2.12)—(2.15). Unfortunately, we shall see later
that none of these very compact expressions will be nu-

merically stable for the whole range of distances, scaling
parameters, and quantum numbers. Hence, we see that
partial fraction decompositions alone are not sufficient for
a reliable evaluation of the two-center integrals, and that
they have to be supplemented by alternative transforma-
tions of the denominators in Eqs. (3.13)—(3.16) which do
not lead to numerical instabilities.

This aim can be accomplished with the help of Taylor
expansions. Our starting point is

(a2+ 2) —n —1 —1 (p2+ 2) —n —I —1

& iFO(ii + l +1;(p' —a')/(p'+p')) .

(4.7)

The generalized hypergeometric series 1F0 in Eq. (4.7)
converges absolutely and uniformly for all p E Iprovided
that a &(0,2'~ p). If we use Eq. (4.7) in the integral rep-

resentation (3.7) we obtain the multiplication theorem of
8 functions which can also be derived via a Taylor expan-
sion:

8~ (a r) ( /P)2n+1 —1 & Pn +1+1
vl p2

X8„+„1(P,r) . (4.8)

In Eq. (4.7) we set n =1=0 and perform the limit a~0.
This yields

p
—2 g p2v/( p2 +p 2

)
v+ 1

V=O

(4.9)

If we combine this expansion, which converges absolutely
and uniformly for all pER and pC[e, oo) with e&0,
with Eqs. (3.7) and (3.12) we obtain the expansion of an
irregular solid harmonic in terms of 8 functions which
can also be derived directly from Eq. (4.8):

(p/a)'+' "
Hi (a,r)= g 8„11(P,r) .

(21 —1)!!,0
(4.10)

With the help of the Taylor expansion (4.7) the denomina-
tor in Eq. (3.13) can be brought into an integrable form:

(a2+p2) 1 1 (p2+p2)22(p2+p2)1 2 1 2F( ii + l +1(p2a2) /(p2+p2))

=(a +p )
' ' ' ',F (n0+21 +2I;( ' a—P )/(a'+p')) .

(4.1 1)

(4.12)

The generalized hypergeometric series 1F0 in Eq. (4.11) converges absolutely and uniformly for all p E R provided that
a E (0,2'/ p), whereas the infinite series in Eq. (4.12) requires pE(0, 2'~2a). Since there is an overlapping region where
both expansions are defmed, Eqs. (4.11) and (4.12) may be considered to be analytic continuations.

Next, we consider the case p=0 and n2 ——l2 ——0 in Eq. (6.8). This yields

—2( 2+ 2) —n —1 —1
( 2+ 2) — —1 —2y [ 2/( 2+ 2)) (4.13)

This expansion converges absolutely and uniformly for all a E R and p E [e, oo ), e & 0.
Finally, we multiply Eq. (4.9) by either Eq. (4.11) or (4.12). After some algebra we find

—I —1 —3 a2

.=0 P'+P"
(n, +l, +1), p2

0 K. 2

cG 2

=(a +p )
2

—n, —n, —1!—1,—3

V=O 0' +P x=0

(n2+l2+1)„ai p2

Cf
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K=v+ 1

(n2+12+ 1)„o2 p2

v! EX

(4.16)

However, these alternative representations do not seem to
offer any computational advantage. Therefore, we shall
not consider them explicitly.

In the next section we shall show that the use of either
Eq. (4.11) or (4.12) in Eq. (3.13) leads to infinite-series ex-

pansions for the overlap integral with different scaling pa-
rameters in terms of overlap integrals with equal scaling
parameters. The numerical properties of these expansions
which were originally derived using the multiplication
theorem of 8 functions, Eq. (4.8), were already studied

l

(~2+p2) l l (p2+p2) "2 2

[(I22+p2)/2+p2] l 2 l 2

The infinite series in Eq. (4.14) converges for a G (0,2'~ p}
and the infinite series in Eq. (4.15) converges for
P~(0 2 ~.).

For the inner sums in Eqs. (4.14) and (4.15) various al-
ternative representations can be derived, for instance,

(n 2+ 12+ 1)„ I22 p2

a —0 K.l CX
2

p)2(ni+l2+1)

quite extensively. ' lt turned out that these expansions
converge fairly well if the two scaling parameters do not
differ too much. However, their convergence may become
prohibitively slow.

Hence, in view of these convergence problems and be-

cause of the inherent numerical instability of all expres-
sions which are based upon partial fraction decomposi-
tions it would be desirable to have alternative representa-
tions which converge more rapidly than the hitherto
known expansions and yet do not contain canceling singu-
larities which cannot be avoided if partial fraction decom-
positions are used.

In the later sections of this paper as well as in the fol-
lowing paper ' it will become clear that we can achieve
our aim with the help of the following generating function
for terminating hypergeometric functions 2Fl.54

00 (c)„
(1—sp '(1 —s+sz} '= g 2Fi( n, a;c—;z), s" .

(4.17)

If we set z=2, a =nl+li + 1, c =nl+n2+ll+l2+ 2,
and s =[(a —p )/(a +p +2p )] we obtain

(ni+n2+lI +12+2)„
X g 2FI( —v, ni+ll+1;ni+n2+li+l2+2;2)

V=O ~!
a —p2 2

I22+ p2+ 2p 2

'V

(4.18)

In Eq. (4.18) there occur terminating hypergeometric
series of the general type 2EI( —v, m+1;m+n+2;2)
with m, n G 1%. If we use (MOS, p. 47)

2FI(a, b;c;z)=(1 z) '2FI(a—,c b;c;z/(z ——1)), (4.19)

we find that these functions satisfy the symmetry relation-
ship

2Fi( —v, m +1;m+n+2;2}
=( —1}"2Ei( v, n +1;m —+n +2;2) . (4.20)

These functions can be computed recursively. We only
have to use (MOS, p. 46)

(c —a }2Ei (a —1,b;c;z)

I

Repeated application of this recurrence formula yields

( —,
'

)„
2FI ( —2v, m +1;2m +2;2)=

(m+ —', )„

2Fi( —2v —l,m+1;2m+2;2)=0, vE1V .

(4.24)

(4.25)

=[(~'+p')/2+p']

If we use Eqs. (4.24) and (4.25) in Eq. (4.18) we obtain,
after some algebraic manipulation, if n I +I I n2+ 12——
holds,

[(&2+p2)(p2+p2)] l l

+ [2a —c —(a b)z] 2Fi (a,b—;c;z)

+a (z —1)2Fi(a + l,b;c;z) =0 (4.21)

(ni+ll+1)„
~l

a —p2 2

~2+p2+ 2p
2

(4.26)

to obtain

(m +n +v+2) 2Fi( —v —l,m +1;m +n +2;2)
=(n —m) 2Fi( —v, m +1;m +n +2;2)

+v 2Fl( —v+ l, m +1;m +n +2;2) . (4.22}

In Eq. (4.18) we set P=O and n2 ——12 —0. This yields

—2( 2+ 2) —n —I —I

(&2/2+p2) —n —I —2

For m =n this three-term recurrence formula simplifies
to a two-term recursion,

2Ei( —v —2,m + 1;2m +2;2)
v+1

2Ei( —v, m +1;2m +2;2) . (4.23)
2m +v+3

X g 2Fl ( v, n + l + 1;n—+1 +2;2)
V=O

(n+l +2)„
X

CX

a +2p

If we combine Eq. (4.9) with Eq. (4.18) we find

(4.27)
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—2( 2+p2) "1 1 (p2+p2) 2 2

[( 2+ 2)/2+p2] 1 2 1 2

00 (a2 p2)/2

„p (a +P )/2+p'

T

(n, +n2+li+12+2)„a2 p2g 2FI( K—,n I +li + 1;n 1 +n2+I, +12+2;2)
x=O a2+ p2

(4.28)
Just as in Eqs. (4.14) or (4. 15) other representations for the inner sum in Eq. (4.28) can be derived. However, since these
new representations do not seem to offer any computational advantage we shall not consider them explicitly.

V. OVERLAP INTEGRALS

In this section overlap integrals of 8 functions will be treated. First a new derivation for the convolution theorem of
two 8 functions with equal scaling parameters will be presented which is much simpler than the original derivation by
Filter and Steinborn. If we set a =p in Eq. (3.13) and use the relationship

p2al ( 1)ala2hl g ( 1)t [(a2+p2)/ 2]t (5.1)
t=O

which is merely a special case of the binomial theorem, we obtain

max
2n1+2»2+2I1+2!2 2t —I+—1

s, i, m, (a,a,R)=( —1) '
& P ' '( —1) (12 m2 I li mi

I
I m2 mi ) P ( —1)'

t 2
2m

min

f
2 1(

x .-"'
2 »1+»2+It +I2 t+2-(a+p ) (5.2}

Here, we made use of the fact that due to the summation limits (2.8) 11+12—1=261 is always an even positive integer
or zero.

If we compare Eq. (5.2) with the Founer integral representation of 8 functions, Eq. (3 7), we 1mm~lately find the
well-known result

Sn, i, ~, (a,a, R)=( —1) '
& g ' '(12,m2 Ill, mi ll, m2 —mi) g( —1)'

I =I t=0min

(5.3)

Hence, a systematic exploitation of the properties of 8 functions under Fourier transformation leads to an extremely
simple derivation of Eq. (5.3). The original derivation given by Filter and Steinborn5 was much more complicated since
it involved some nontrivial manipulations of special functions.

A similar approach is also possible in the case of different scaling parameters. If we combine Eqs. (3.13), (4.1), and
(5.1), we find

l2 2 2»1+I1 —ip2»&+I& —I= —1 —a
7T

max

x g "'(—I)'&I2&m2
I I 1&m 1 I

I m2 ml &

xnin

X g( —1)'
t=O

(
1)"'+ '+' "'+" (n 1+n2+11+12—q)!

(n2+12)! p (n 1+11—q)!

I
I + l2 —I —2t 2 1( '

)Rp I P
2 »1+n&+11+12—q+1 (a2+ 2}q t+1—

( 1}"'+'+' "'+" (ni+n2+11+12 —q)!
+

(n 1 +11)! p (n2+ 12 —q)!

II + l2 —l —2t

(
2 2)n1+n2+I1+l2 —q+1

p —A

fX
2™l(

(p2+ 2)q —t + 1
(5.4)
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In principle, we can proceed as we did in our derivation of Eq. (5.3). However, we are confronted with the additional

complication that those Fourier integrals in Eq. (5.4} with q & t do not represent ordinary functions but derivatives of the

three-dimensional delta function according to Eq. (3.8}. Hence, we obtain

X g ' '(/2, m2 i/1, m1i I, m2 —m1)
min

X g( —1)'
t=0

l,n2il2i 1 l, +12+1a
X

(n +l )1
(

2 p2)n1+n2+11+I2+1

q=0 (n1+ l1 —q)! a

n1+I1+1 pl1+ I2+ 1

+
(n +/ )1 p2 2)n1+n2+11+12+1

q

(n2+ l2 —q)! p2
(5.5)

If Eq. (5.5) is to be used only for a numerical evaluation of the overlap integral then the distributive 8 functions with

q &t can sd'ely b neglect~ since for 8)0 they do not contribute to the numerical value of the overlap 1ntegral.
In Eq. (5.5) we now neglect the distributive 8 functions by changing the lower limit pf the twp q summatjpns ftpm

q=0 to q =I and introduce the new summation variable s =q —t. After a lengthy but in principle straightforward cal-
culation we obtain the so-called Jacobi polynomial representation of the overlap integral with different scaling parame-
ters,

lmax

~n,'I,'~,'(~ p R}=(—1) '4~ g "'(/2 m21/1 m11/, m2 ml)
min

( —1) ' '( /P)'
p3[ 1 ( /p)2] 2 2

n i+le
(s —n —A,l n +h, / ) ~ ~ rn —m

s=0
s —I, I

( —1) ' '(Plier) '

+
3[1 (p/ )2]"1+ 1+

s=0 CX

(5.6)

(5.8)

Here, P„' ~'(x) is a Jacobi potential (MOS, pp. 209—217), and the abbreviations b, /1 and b, /2 were defined in Eq. (2.9).
Since no distributive 8 functions occur in the Jacobi polynomial representation (5.6) we have to conclude that this rep-

resentation is only correct for numerical evaluations of overlap integrals. If Eq. (5.6) is to be used in integrals the distri-
butive 8 functions of Eq. (5.5) have to be added explicitly.

Instead of the partial fraction decomposition (4.1) we can also use the Taylor expansions (4.11) or (4.12) in Eq. (3.13).
Then we obtain series expansions in terms of overlap integrals with equal scaling parameters:

v

(5.7}
v=O

2n +I -1 " (n2+/2+1} (22 p' n + I ~
yl nl ll Nll
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The infinite series in Eq. (5.7) converges for
~
{p —a )/p

~
&1, and the infinite series in Eq. (5.8) converges for

~

(a —P )/a
~

& 1. The numerical properties of the two infinite-series expansions (5.7) and (5.8) and the Jacobi polyno-
mial representation (5.6} were already studied quite extensively. '

Finally, we want to use the Taylor expansion (4.18) in the integral representation (3.13). After some algebra we find

2n I +11—1 n2+ 12 1

z(a P R)—
2 p2) ]n, +nz+(i, +iz)/2 —1

CO (n )+n2+l )+12+2)„az p2
X g 2F)( v—,n) +11+1;n) +nz+1(+12+2;2)

v=O az+ P2

2 2 2 ([(a2+p2)/2] 1/2 [(a2+p2)/2]1/2 R ) (5.9)

If n, +I, =n2+12 holds then we use the Taylor expansion (4.26) in Eq. (3.13},and we obtain the simplified expansion

2n&+11 —1 2n2+12 1

~2)/2]n)+nz+(I(+iz)/2 —1

I g 2 2 2 ([(a2+p2)/2)l/2 [(a2+p2)/2]l/2 R)
yt a2+P2 (5.10)

The new infinite-series expansion for overlap integrals,
Eq. (5.9), 1(eks significantly more complicated than the
previous known series expansions (5.7) and (5.8).
Nevertheless, we may expect that the infinite series in Eq.
(5.9) will converge faster than the series in Eqs. (5.7} and
(5.8). In Ref. 41, where the numerical properties of Eqs.
(5.7) and (5.8) were investigated, it was demonstrated that
the rates of convergence of these expansions depend most
strongly upon the magnitudes of either (P2 —a2)/P2 or
(a —P )/a . If these quantities are close to zero, conver-
gence will be good, and if they approach one, convergence
will become very bad. Now, we observe that
(a —P )/(a +P ) which determines the rate of conver-
gence in E . (5.9) is always smaller than (P —a )/P or
(a —P )/a which determine the rates of convergence in
Eqs. (5.7) and (5.8). Our optimism is also supported by
the fact that the terminating hypergeometric series 2F) in
Eq. (5.9) is bounded. This can be shown with the help of
the integral representation (MOS, p. 54)

2F((a,b;c;z)

r'-'(1 —r)'-'-'(1 —zr)-'dt1

I (b)I'(c b)—

VI. NUCLEAR Ai lRACTION
AND RELATED INTEGRALS

Ami(a, R)=
2 g B„+„+1i(a, R) .

v=o
(6.2)

Equations (6.1) and (6.2) were already derived by Filter
and Steinborn. As a third alternative we may use Eq.
(4.27) in the Fourier integral (3.14) which leads to

In this section we shall derive closed-form expressions
for the two-center nuclear attraction integral (2.13) and
for the overlap integral (2.15).

If we insert the partial fraction decomposition (4.2) into
the Fourier integral (3.14) and use the integral representa-
tions {3.7) and (3.12) we obtain

n+I
&„,/(a, R)=, (2I —I)!)9'i (aR) —y By i, i(a, R)

CX v=O

(6.1)

If we use the Taylor expansion (4.13) instead of the partial
fraction decomposition (4.2) we obtain an infinite-series
expansion:

from which we may deduce
(5.11) g m {aR) zr 2n+(1+1)/2

~
2F)( v, n, +I,—+1;n, +n2+1(+l2+2;2)

~

4,

' n1+ n2+ I1+I2+ I)!
(5.12)

(n(+&1) ( )+n1z) 2)

In the following paper ' we shall present a very detailed
study of the different infinite-series expansions which
were treated in this section. The main result will be that
in all relevant cases the new infinite-series representation
(5.9) will be computationally much more attractive than
the previously known representations {5.7) and (5.8).

X g 2+(( v, n +1+1;n—+1+2;2)
v=0

(n+I +2)„
X B ++)i(2 ' aR).

(6.3)

There is an alternative approach for the derivation of Eqs.
(6.1)—(6.3). We can exploit the fact that the Coulomb po-
tential 1/r may be considered to be the limiting case of
the Yukawa potential e "/r which is essentially the
function Boo(e,r) Hence, we can. write
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A„t(a,R) =(4n. )'~ lim [eS000(e,a,R)] .
e~O

(6.4)

If we perform this limit in the Jacobi polynomial repre-
sentation (5.6) we obtain Eq. (6.1), and if we do that in the
infinite-series representations (5.7) and (5.9) we obtain
Eqs. (6.2) and (6.3). Here, it must be emphasized that it is

by no means guaranteed that the resulting expansions (6.2)
and (6.3) converge. For every e&0 the infinite-series rep-
resentations (5.7} and (5.9) for S000 (e,a,R) will converge
since their circles of convergence are given by the relation-
ships

~
(a —e )/a

~
~1 and

~

(a —e )/(a +e )
~

& I,
respectively. However, if the limit @~0 is performed we
are no longer in the interior of the circles of convergence,
and it is in general not immediately obvious for which
points on its circle of convergence a given series converges
or diverges. A very detailed investigation of the infinite
series in Eqs. (6.2) and (6.3) and of other series expansions
will be given in the following paper. '

In the following part of this section we want to derive
closed-form expressions for the integral (2.15). For that
purpose we could proceed as we did in the case of the nu-

clear attraction integral (2.13) and insert either the partial
fraction decomposition (4.2) or the Taylor expansions
(4.13) and (4.27) into the Fourier integral (3.16}. Another
option would be the use of Eq. (3.10}which implies

=[(21—1)!!] 'lim [(e/a) ' S 't't ' (e,P, R)] .
a~0

(6.5)
However, we prefer to present a third method which is
based upon the fact that the application of the spherical
tensor gradient 9't (V) to the Coulomb potential I/r gen-
erates the irregular solid harmonic:

~t (r) = I( —1)'/[(21 —1)!!]I +t (V)—. (6.6)
r

This relationship which was in principle already known to
Hobson can be proved quite easily using known proper-
ties of the spherical tensor gradient. If we use Eq. (6.6) in
the integral (2.15) and exploit the fact that a differential
operator is invariant under translation, we obtain for the
integral (2.15), with V=V&,

Zt '' '(a, P,R)=( —1) ' '(a ' [(21~ —1)!!]]

x [t, '(V)]'A„,'t, (P,R) . (6.7)

Hence, in order to obtain closed-form expressions for the
integral (2.15) we only have to differentiate Eqs.
(6.1)—(6.3). The remaining differentiations can be done
quite easily. We only need

1m~~ lkl b, l
[+t '(V)]*8„'t (a,R)=( —a) ' g ' '(lz, m2

~
li, mi

~
l, m2 —mi) g ( —1)'

t 8„,+t, t t, t(a, R—)—
min

t=0
(6.8)

(6.9)

and"

[9't, '(V)]'Nt, '(aR)=( —a) 'I[(2li+212 —1)!!]/[(2jz—I)!!]I(lz,mz li, mi
~
!i+12,m2 —mi)9't, +t, '(a, R) .

If we combine Eqs. (6.1) and (6.7) and use Eqs. (6.9) and (6.10) we find

(6.10)

Zt,
'

', '(a, P R)= I(P/a) ' /[(2li —1)!!]I ( —1) '
&

(12,m2
~

l&, m&!I, +12,m2 —mi)[(21&+212 —I)!!]Mt,+t, '(PR)

n2+l2

S t, i t, (P,P, R) (6.11)

If we insert Eq. (5.3) for the overlap integrals in Eq. (6.11) we find that in general many of the occurring 8 functions are
derivatives of the three-dimensional delta function according to Eq. (3.8). For instance, if we set in Eq. (5.3)
ni ———li —1 and nz= —12 we obtain

lmax h, l
S t' ', t'~ (PP,R)=( —1) ' g ' '(12,m2

~
li, mi

~
1 m2 —mi) g ( —1)' 8 t, t'(P, R) .

min c=O
(6.12)

Here, only the functions with t=0 contribute to the numerical value of the integral. The other functions with t&0 are
derivatives of the delta functions according to Eq. (3.8) and have to be included only if such an overlap integral is to be
used in other integrals.

If we apply the spherical tensor gradient to Eqs. (6.2) and (6.3) we obtain, with the help of Eq. (6.9),
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(6.13)

=2 ' ' ' (P/~) ' [(2li —1)!!]

(n2+li+2)~ n i m
)& g qFi( —v, ni+l2+1;n2+12+2;2), S„' i', i,'m, (2 ' »2 ' P, R) .

v=o yt
(6.14}

If we apply the spherical tensor gradient to the Fourier integral (3.14) and use successively Eqs. (2.7) and (5.1), we find,
after some algebra,

max QI
[9'~, '(&)]'~„,'i, (»R)=( —P) ' g ' '(12,m2 Ili mi ll, mz —m, ) g ( —1)'

&
~„,'+i 'i —,,i(P, R) .

=Imin t=o

This relationship is formally almost identical with Eq. (6.8}. If we insert it into Eq. (6.7) we obtain

Zi,
'

', '(a, »R) =( —1) 'P 'a '
[(2l& —1)!!]

max b,l
g '" (l2, m2! li, m ) ~

l mi —m ) ) g ( —1)' A„,~l, 'i, i(»R) .
min f=o

(6.15)

(6.16)

Inserting Eq. (6.1) for the nuclear attraction integrals into Eq. (6.16) and discarding all distributive B functions leads
after some algebra to another representation for the integral (2.15):

Zi,
'

', '(a,»R)=( —1) ' (P/a) ' [(2li —1)!!]

X (21i+2l2 —I)!!(li,mi
~
li, mi

~
Ii+12,m2 —mi)9'i +i, '(»R)

2 2 max (1—b,l),g '"&4 mz lli mi ll mz —mi&, B.,'+i, 'i i.i(»R)-
t =0 I=I,„ gf

(6.17)

Finally, we want to show how the integrals (2.13) and (2.15) can be computed recursively. From Eq. (6.2) we may deduce

Anmi(a, R}=A„+ii(a,R}+ B„+ii(a, R) .
Q 2

In the same way we obtain from Eq. (6.13)

(6.18)

(6.19)

VII. COULOMB INTEGRALS

In this section we want to treat Coulomb integrals of B functions. First, we want to consider the simpler case of equal
scaling parameters. If we set a =P in Eq. (3.15) and compare the resulting expression with Eq. (3.16}we find

(7.1)

Hence, insertion of Eqs. (6.11), (6.13), (6.14), (6.17), and (6.18) into Eq. (7.1) gives us the following representations for the
Coulomb integral mth equal scaling parameters:

nil2m2 ti (4ir)
C„,i, , (a,a,R)=(—1)

5 (lp, m2
~
li, mi

~
ii+12,m2 —mi)[(21i+21$ —1)!!]Hi,+i, '(aR)

n
& +n2+1& +I2+ 1

a o=O

n —I& I2 m2S i, i i, (a,o!,R} (7.2)

CX ~ O
(7.3)
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l+ 2+(li+l2)/2 g 2Fi( —v, n&+n2+I~+12+~;ni+n2+1, +12+3;2)a v=O

(n i +n 2+ Ii + I2+ 3)„n&+I I& m&
X (7.4)

T

=(—1)
2 g (12,m2

~
li, mi

~
I,m2 —m, ) g ( —1)' g„+„+i i I. . .(a,R)

min 1=0

i, (4n. )2 mp —
)FAN )=(—1) ' (2li+212 —1)!!(12,m2

~
l„mi

~
ii+12,m2 —m, )Xi,+i, '(a, R)

"~+"2+ ~+ 2+ m~ (1—51),g '2'(12, m2
~
li, mi

~
l, m2 mi—)

1 =
min

(7.5)

x ., +.,+I, +i, ii+-i, i«R) (7.6)

Only the infinite-series expansion (7.3) and, in a somewhat disguised form, also Eq. (7.6) are already known. If we
compare Eqs. (5.3) and (7.5) we find that there is a remarkable analogy between overlap integrals with equal scaling pa-
rameters and Coulomb integrals with equal scaling parameters. Replacement of the 8 functions in Eq. (5.3) by nuclear
attraction integrals yields Eq. (7.5).

Finally, we want to treat the most complicated integral of this paper, the Coulomb integral with different scaling pa-
rameters. First, we shall derive representations in which this integral is expressed in terms of simpler integrals such as
Coulomb integrals with equal scaling parameters, overlap integrals of 8 functions, and overlap integrals involving irregu-
lar solid harmonics.

Inserting either Eq. (4.5) or (4.6) into the Fourier integral (3.15) yields

(7.7)
CX v=0

(P/a) ' '[(21 —1)s]Z ' ' ' ' '(P a R) —g S ' ' '(a P R)
Q v~O

(7.8)

In these two relationships we can set a =p and obtain two additional representations for the Coulomb integral with equal
scaling parameters.

Inserting the partial fraction decomposition (4.4) into the integral representation (3.15) leads to
n2+l2+1 2n2+12 —1

C ' ' '(a P R) =4m [(2l i
—1)!!]

a (n, +1,)!

"'+ ' (n i +n 2+(i +12—v)!

(n i + l i
—v)!

A

a —p2 2

'
n l +n2+ 1( +12 —v+ 1

( —1) ' ' (a/P)+
p (ni+li)!

"2+'2 (n, +n2+Ii+12 —v)!

(n2+ 12 —v)!

X
p —a

-
n, +n, +1, +1,—v+]

zi, ,
' ' '(p, p, R)

In the same way various infinite-series representations can be derived. For instance, from Eq. (4.13) we can derive

p
—2(a2++2) "1 1 (P2+~2) "2 2 (a2++2) "l 1 g P2v/(p2+p2) 2+ &

v=O

(p2+ 2) "2 i2 i y 2v/{ 2+ 2)"&+Ii+ "+2

(7.10)

{7.11)
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If we use these expansions in Eq. (3.15) we obtain

a2 „0
(7.12)

(7.13)

If we use the Taylor expansions (4.11) and (4.12) in Eq. (3.15) we obtain expansions in terms of Coulomb integrals with

equal scaling parameters:

v=O

(7.14)

v

2„,+1, 1 (n2+l2+ 1)„a2 j]32= (P/a)
v=0 y! Q

(7.15)

The infinite series in Eqs. (7.14) and (7.15) converge for a E(0,2'/ P) and PE (0,2'/ a), respectively. Alternatively, we

can also use the Taylor expansion (4.18) in Eq. (3.15) which yields

2n
&

+1
&

—1 2n2+l2 —1

[( 2 P2)/2]" ]+"2+ 1+ 2

(nl+n2+l, +i2+2)„xg 2+] ( v, n 1 +11
—+1;n 1+n2+l1 +12+2;2)

v=O

Q2 a2 n l m2 2 2 ([(a2+P2)/2]]/2 [(a2+P2)/2]l/2 R)
2+ 2 "&+vl~ m

If n 1 + I] n2+ l2——holds then we can use Eq. (4.26) and obtain

2n&+l t
—1 n2+l& —1

C„'1' '(a,P,R)=
[( ' P )/2]~'+~, +]]]~],]/2-i

(nl+l]+1), a2 2 n ] mP C 2 2 2
( [(a2+P2)/2]]/2 [(a2+P2)/2]]/2 R)tl ] +2V ]] III ]

(7.16)

(7.17)

We obtain expansions in terms of overlap integrals with equal scaling parameters by inserting either Eq. (4.14) or (4.15)
into the integral representation (3.15):

(n 1 + l 1 + 1) p2

v=0 K=O x!
(7.18)

K

4]r 2g&+]& —] n2+1]2 m2 (n2+12+ 1)„a2 p2
(7.19)

The infinite series in Eqs. (7.18) and (7.19) converge for a F (0,2'/ P) and PE.(0,2'/ a), respectively.
Finally, we insert Eq. (4.28) into the integral representation (3.15) and obtain

2n]+]]—1 2n&+]2 —1

C. ']'m '«P R)=4~
2)/2n ]]+n 2+(I ]+&]) /2

2([(a2+P2)/2]]/2 [(a2+P2)/2]1/2 R)
v=O

p2 "(n, +n, +l, +l, +2)„
2F]( —K, n 1 + I] + 1;n ] +n2 + i] + l2+ 2;2) .

a2+ P2 v!
(7.20)

After these infmite-series expansions we shall derive other representations which contain only a finite number of
terms. For that purpose we insert Eq. (6.18) into Eq. (7.9). After some algebra we then obtain
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C„,'i,'m,'(a, P, R) =( —1) '(4m. )

3 l 3 m —m

(21i+21q —1)!!(Ii,mz
~
l„m& ~1~+1&,m2 m—i )a p Hl, +i, (R)

lmax

2n
&
+ l l ~"2+ l2 —1a p [(n, +n +I, +!2)!]

(P' —a') ' ' ' ' [(n +I )'][(n +I )']

g ' '(li, mz
~
li, mi

~
I,mi —mi)

min

Ii+12 —1
—n1 —

1
n )+ll

X a'
=0 nl n2 1 2

a —p2 2

Q2

(1—b I)( m, —m,
X g, 8„', t't(a, R)

~=0

n&+ l2
l)+E2 —1 ( n i ——

Iz )„
( n, n—i —li ——12)„

p —a2 2

p2

v (1 b, l)
X g, 8„', tI(P, R)

~=0
(7.21}

Now we proceed as we did in our derivation of Eq. (5.6), i.e., we introduce a new summation variable o =v —t and dis-
card all 8 functions which are derivatives of the delta function according to Eq. (3.8}. After returanging the order of
summations we find that the resulting inner sums can be written as terminating hypergeometric series &Fi. Since repre-
sentations in terms of hypergeometric series are in general not unique we choose a representation where the summation
variable cr occurs in only one of the three parameters of the 2Fi.

C„,'I,'m,'(a, P, R)=(—1) '(4n )

X (2Ii+21i —1)!!(Ii,m2
~
li, ml

~
II+12 m2 ml )a ' p ' ~l, +I '«)

lmax
'i' (Iz, mz

~
li, mi

~
I,mi —m

& )
l= min

(a/p) '

p5[1 ( /p)z]" z+'z+'

&+ & (n2+ ~11+2)n~+l~ —0'

x g (n &+I ~
cr)!—

X qFi(o —n& l&, n +2I +21—; +n251&+2;p /(p —a ))8~'it '(a, R)

(p/a) '

5[1 (P/ )2]~1+ I+

~2+ 2 (n, +bled+2)„+(
(ni+li cr)!—

X qFi(cr —nz —lz, n&+Ii+1;ni+612+2;a /(a —p ))8~'t t '(p, R)

(7.22)
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The terminating hypergeometric series zF i in Eq. (7.22) can be computed recursively. If we use Eq. (4.21) we find

(m+n —o'+1)2Fi(o n—,k+1;m+2;x /(x —y ))

X2n+m —2o —(n+k —o) z z iFi(o n—+ I,k+1;m+2;x /(x —y )}
X —f

+(n —o+1) z i 2Fi(o —n+2, k+1;m+2;x /(x —y )) .2 2 2 (7.23)
X

It is mell known that every terminating hypergeometric series 2F~ can be expressed as a Jacobi polynomial P„' '~' and
vice versa (MOS, pp. 39 and 212). Consequently, we can derive a representation for the Coulomb integral with different
scaling parameters which is formally almost identical with the Jacobi polynomial representation of the overlap integral,
Eq. (5.6}:

C„,'i,'~,'(a, p, R)=(—1}'(4m) (21i+2!i—1)!!(lp,mp
~
li, m i ~

Ii+lp, mi —m ) }a ' p ' Hi, +i, '(R)

max

+ g ' ' (lq, mi
~
li, mi

~
l, mz —mi )

Imin

n)+I)+1 (a/p) '

P5[1 ( /P)2]"2+ 2+

n+i, i, '
i(n —

n&
—al& —i,n&+hl&+ I) p +a m& —

m&
X ( —1 va-R

v=0 p —a
ll —2

n, +li+ t (p/a)
a5[1 (P/a)2]" 1+ I

n2+ I2

cr =0 A

(7.24)

In Eqs. (7.22) and (7.24) no distributive 8 functions occur.
Consequently, Eq. (7.22) and (7.24) are only correct for
numerical evaluations and cannot be used in integrals.

Only Eq. (7.7) and, in a somewhat disguised form, also
Eq. (7.18) are already known. 6'

VIII. DISCUSSION

In this section we want to compare our results with the
work done by other authors. One of the most important
approaches for the evaluation of two-center integrals is
based upon the use of confocal elliptical coordinates
which possess the symmetry of a two-center problem.
Consequently, these coordinates were used quite frequent-
ly, in particular in the older literature on multicenter in-
tegrals, as it can be seen in the review papers by Huzina-
ga, Harris and Michels, and Browne. More recent ap-
plications of these coordinates can be found in papers by
Eschrig, Yasui and Saika, Randic, and Guseinov.
However, if we try to compare our results with expres-
sions which were derived using elliptical coordinates we
are confronted with the problem that the use of either el-
liptical or spherical coordinates leads in general to dif-
ferent mathematical structures. Usually, coinpletely dif-

(a'+p') (p'+p')" (8 1)

Here, ji(Rp) is a spherical Bessel function and k, 1, m,
and n are either positive integers or zero.

Integrals which are closely related to the ones in Eq.
(8.1) have been studied quite frequently in the literature.

ferent special and auxiliary functions occur. Therefore, it
is very hard to compare the efficiency and feasibility of
formulas which are expressed in terms of different sets of
coordinates. In our opinion, the only meaningful criterion
for such a comparison would be the performance of pro-
grams. Since this cannot be done here we shall only con-
sider papers in which spherical coordinates are used. In
these cases the same mathematical structures as in this pa-
per are bound to appear and comparisons can be made on
the level of analytical expressions alone.

If we perform the angular integrations in the Fourier
integrals in Eqs. (3.13)—(3.16) using the well-known Ray-
leigh expansion of a plane wave in terms of spherical
Bessel functions and spherical harmonics, we find that the
resulting radial integrals are special cases of the following
class of integrals:
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For instance, Geller and Griffith 6 tabulated analytical ex-

pressions for the auxiliary functions

t'j, (Rt)
A (2m;p, q) = dt

0 (~2+ t&)p(p2+t2}e
(8.2)

t ji~+((Rt)
8(2m+I;p, q)=

& z
dt .

(ct'+t }p(p +t )'
(8.3)

Their expressions for these integrals are closely related to
the Jacobi polynomial representations for overlap and
Coulomb integrals, Eqs. (5.6) and (7.24), since they also
contain inverse powers of (tz —p ). In addition, the tabu-
lated expressions contain functions which are closely re-
lated to reduced Bessel functions. However, Geller and
Griffith did not give any infinite-series representation
which would be able to avoid canceling singularities for
a~P and R-+0.

Harris and Michels developed a multidimensional re-
cursive scheme by means of which they could compute all
integrals of the type of Eq. (8.1) which are required for
overlap and Coulomb integrals of Slater-type functions.
In the case of nearly equal scaling parameters Harris and
Michels modified their recursive algorithm in such a way
that it is equivalent to a suitably truncated infinite-series
expansion.

Harris also developed a recursive scheme for the
evaluation of Coulomb integrals. In this scheme Coulomb
integrals are expressed in terms of the simpler nuclear at-
traction and overlap integrals. Harris was also able to
give closed-farm expressions for Coulomb integrals.
However, all these representations contain canceling
singularities for R —+0 and become numerically unstable
in that case.

Shakeshaft, who was apparently unaware of the ear-
lier work by Harris and Michels, also developed a recur-
sive scheme for the evaluation of the integral (8.1) but did
not devise any precautions for the troublesome case of
nearly equal scaling parameters.

Silverstone also published several papers on over-
lap and Coulomb integrals of Slater-type functions. How-
ever, the formulas given in these papers usually contain
complicated differential operators. Consequently, it
would be extremely difficult to compare our results with
the expressions given by Silverstone and co-workers.

More recently, Jones ' published several papers on
overlap and Coulomb integrals of Slater-type functions.
His starting point was Lowdin's alpha-function expan-
sion of a Slater-type function and the well-known Laplace
expansion of the Coulomb potential. The resulting ex-
pressions are then simplified with the help of some com-
puter algebra and all nonvanishing quantities are stored.

Jones distinguished between integrals with equal and dif-
ferent scaling parameters. In the case of different scaling
parameters Jones obtained expressions involving only a fi-
nite number of terms which are equivalent to the Jacobi
polynomial representations (5.6) and (7.24}, and also trun-
cated Taylor expansions which are to be used for nearly
equal scaling parameters. However, all formulas given by
Jones for Coulomb integrals contain canceling singulari-
ties for R-+0. The advantage of this computer-algebra-
oriented approach is that for each individual integral the
most compact representation can be derived. The disad-
vantage of this approach is that no closed-form expres-
sions can be derived and that under unfavorable cir-
cumstances fairly long lists of nonvanishing coefficients
have to be stored.

In the references mentioned above where overlap and
Coulomb integrals of exponential functions were treated,
rather complicated mathematical operations involving
special functions had to be done and yet in many cases it
was not possible to derive closed-form expressions. In the
present paper we used 8 functions instead of Slater-type
functions, which leads to considerable mathematical sim-
plifications. The only advanced mathematical concept
which we needed is the connection between 8 functions,
classically divergent Fourier integrals, and derivatives of
the three-dimensional delta functions. Consequently, we
could define the Fourier integral representation for the ir-
regular solid harmonic as a limiting case of the classically
divergent Fourier integral representation for the modified
Helmholtz harmonic 8 t t. The other mathematical tools
which we needed —partial fraction decompositions and
Taylor expansions of rational functions —are fairly ele-

mentary.
All we had to do was to transform the denominators of

the Fourier integrals (2.12)—(2.15) in such a way that we
obtain sums and series of Fourier integral representations
for irregular solid harmonics and 8 functions. Due to the
simplicity of our approach we were not only able to sim-

plify the derivation of already known formulas but could
also obtain a large number of hitherto unknown represen-
tations. It is an interesting side aspect of our approach
that we were able to derive numerous analytical expres-
sions for the two-center integrals (2.12)—(2.15) without
having to evaluate explicitly a single integral. We also
hope that this paper demonstrates that 8 functions as-
sume indeed an exceptional position among exponentially
decreasing functions.

In this paper no attempt was made to analyze the nu-
merical properties of the various representations for the
two-center integrals (2.12)—(2.15). These aspects which
are very important for practical applications will be dis-
cussed in the following paper. '
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