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A LCAO-MO {linear combination of atomic orbitals —molecular orbitals) relativistic Dirac-Fock-
Slater program is presented, which allows one to calculate accurate total energies for diatomic mole-

cules. Numerical atomic Dirac-Fock-Slater wave functions are used as basis functions. All integra-

tions as well as the solution of the Poisson equation are done fully numerical, with a relative accura-

cy of 10 '—10 . The details of the method as well as first results are presented here.

I. INTRODUCTION

The fast development of computers during the last 30
years made it possible to calculate more and more com-
plex atomic and molecular systems with increasingly
better methods and accuracy. All types of atomic
Hartree-Fock, ' and random-phase approximation (RPA)
programs have been developed as nonrelativistic codes,
whereas analogue Dirac-Fock (DF) and relativistic
random-phase approximation (RRPA) programs are in
use as relativistic codes. All these atomic codes [with the
exception of that by Kim, Ref. 5(c)) use the direct integra-
tion of the Schrodinger or Dirac equation with finite
difference methods.

The current available quantum-chemical codes for mol-
ecules use basis-set expansion methods with (in principle)
Slater- or Gauss-type basis functions. A large variety of
such quantum-chemical codes are established and lead to
very accurate results, but all these codes for molecules
have in coxnmon that they are nonrelativistic. A nearly
complete list of references, which covers the whole field
of quantum-chemical calculations, is given in the book by
Schaefer. This book also includes the principal refer-
ences for pseudopotential calculations, as well as the be-

ginning of seminumerical, two-dimensional calculations

by McCullough' and their extension to diatomic mul-
ticonfiguration self-consistent-field (MCSCF) wave func-
tions. " More recent extensions to fully numerical two-
dimensional Hartree-Fock-Slater (HFS) calculations are
given by Becke' as well as Laaksonen et al. '

Several groups persevere in trying to establish analogue
relativistic quantum-chemical calculations. Reference 14
summarizes this whole field up to 1982. The paper by
Kutzelnigg' reviews the problems which arise in the rela-
tivistic formulation. Actual relativistic DF calculations
are presented in Ref. 16. First attempts to solve the rela-
tivistic two-dimensional problem numerically are given in
Ref. 17 and 18. Up until now, it has been practically im-
possible to calculate small molecules containing very
heavy atoms on a Dirac-Fock level, with the exception of
heavy hydrides such as PbHz, which were calculated with
a one-center expansion method. ' For this reason approx-
imative methods such as the relativistic pseudopotential

approaches, a perturbation treatment of relativistic ef-
fects on top of HFS calculations, ' relativistic scattered-
wave calculations, or relativistic Dirac-Fock-Slater
(DFS) calculations, are essential to provide useful infor-
mation in a region of elements where more accurate calcu-
lations are not feasible.

We present here a relativistic DFS program for diatom-
ic molecules, which uses numerical atomic DFS wave
functions as basis functions. The development of this
program originates from the work of Rosen and Ellis
who first developed a relativistic self-consistent-charge
(SCC) code, which itself followed the ideas of the nonrela-
tivistic SCC method with numerical basis functions. i
The drawback with these calculations was the inherent
noise existing in the discrete variational method, which
was used to calculate the matrix elements. Because of the
relative accuracy of these calculations in the order of per-
cent, it was possible to discuss only level schemes for mol-
ecules at chemical distances, and one-electron correla-
tion diagrams in heavy-ion scattering for distances down
to the united atom limit.

The new approach is threefold: First, we solve the
two-dimensional Poisson equation numerically with a rel-
ative accuracy of 10 —10 . (An alternative approach
would be a multicenter expansion as used by Delley and
Ellis in nonrelativistic calculations. ) Second, the numer-
ically calculated matrix elements are improved in accura-
cy by 3 to 4 orders of magnitude. Third, the next im-
provement is the possibility of including atomic wave
functions as basis functions, which are generated in the
monopole part of the molecular potential. This last im-
provement is essential for the calculation of quasi-
molecules at small internuclear distances. In addition,
various further basis sets at various sites can be intro-
duced.

This program is thus accurate enough to obtain physi-
cally useful, self-consistent-field (SCF) results for the
potential-energy curve, energy eigenvalues, and wave
functions for diatomic molecules and quasimolecules at
internuclear distances between zero and chemical dis-
tances.

This paper is organized as follows. In Sec. II the rela-
tivistic DFS method is discussed, and in Sec. III the nu-
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merical Gauss-Laguerre integration method as well as the
two-dimensional solution of the Poisson equation are dis-
cussed. In Secs. IV and V the choice of our basis func-
tions, respectively, the preorthogonalization is presented.
Section VI contains the first results of the DFS calcula-
tions for the case of N2 as a chemically bound system, and
Ne-Ne as a case where elastic scattering data are available
for comparison. The advantages and disadvantages of the
method as well as future developments will be presented
in Sec. VIII.

II. THE RELATIVISTIC DFS METHOD

The general method of a relativistic DFS calculation in
molecules has been described in various papers.
Therefore, we only wish to summarize the method briefly.
The relativistic many-electron configuration-space Dirac-
Hamiltonian of a molecular system is usually written as

N N

Hcs gh+——g V;

h ~f„(r,s) =e„P„(r,s)

with & the effective one-particle DFS operator

p DFs t+ Vnuc+ Vc+ Ve

(5)

with the electron density

p(r)=e~ g f+(r,s)f„(r,s) .

where the kinetic operator t, and the electron-nucleus

operator V" have the same form as above [Eqs. (2) and
(3)].

The direct potential part is given by
I

V (r)= Jdr'
lr —r'l

and the exchange potential part by
1/3

3V'"(r) = —3X p(r)
8m

where h; is the single-particle Hamiltonian

h) ——cajpj+PJmc + V~

with the Dirac matrices

0 oj
oj 0

(2)

Zg
V ~nuc

x lrj —&eel
' (3)

and VJ is the electron-electron Coulomb interaction ener-

X is the number of the electrons. Not included in the
Hamiltonian (1) is, of course, the Breit interaction, be-
cause uncertainties of the Slater approximation are al-
ready larger than the effect of the Breit term would be
and it would also complicate the whole calculation much
more. Not included as well are projection operators first
proposed by Brown and Ravenhall. Although it is not
yet understood in detail, we think that spurious positron
contributions should be small in our calculations.

The DFS method uses two approximations: At first the
wave function is taken to be a single Slater determinant,
and then the electron-exchange term is approximated by
the X method (in all our calculations we use X =0.7).

The DFS equation then reads

Jj 0

0 —I)

where n and I are the three standard 2 X 2 Pauli matrices,

and the 2X 2 unit matrix, respectively. The operator VJ"'
represents the electron-nucleus interaction energy

and the symmetry orbitals are expanded into atomic basis
functions yi,

Xi =ad~i, pg .
k

If we insert this in Eq. (5), the DFS equations reduce to
the matrix eigenvalue problem

Lic r= eSc

with the Fock matrix

(12)

h =(hi„) with hip ——(Xi l

}'i
l X„),

the overlap matrix

S=(Si„) with Si„=(Xi l X„),
the coefficient matrix

c with c„i——(cr)i„,
and the eigenvalue matrix

The solution of the N-coupled differential equations (5)
has to be found by SCF iteration. To actually solve these
equations for the two-dimensional case several methods
are possible. The first is the direct numerical integration
of the differential equation. This method is not available
in updated form except for very first trials' ' for the sys-
tern Hz+.

The second method is to use a multipole expansion of
the wave functions in the angular variables; this leads to
an even larger set of coupled equations, that are however,
one dimensional. This method was used first in the rela-
tivistic case for a pure two-center point-Coulomb paten-
tial by Betz. '

The third method is the expansion of the molecular
wave functions into basis functions, usually called MO-
LCAO (molecular orbitals —linear combination of atomic
orbitals). The wave functions g„are expanded in symme-
try orbitals X~

g„(r)=gc„iX~,
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III. NUMERICAL INTEGRATION AND SOLUTION
OF THE POISSON EQUATION

The overlap- and Fock-matrix elements (g;
~

o
~ IJ ) in

Eq. (12) with o =I,h are calculated numerically in real-
space coordinates. As the integrands of the two-center
problem are cylindrically symmetric, it is possible to
separate the angular integration around the internuclear
axis. The remaining two-dimensional integration is done
in elliptic-hyperbolic coordinates

r) +r2
cosh'g =

8 0(q( 00

r& —r2cos8=, 0&8&m.
(14)

with R the internuclear distance and r; the distance from
the nuclei. The new "radial" coordinate cosh' is then
focused by the transformation

cosh'=w(A —Be )+1, 0(w(oo
to achieve that for a given Gauss-Laguerre integration
grid for w the inner iI values lie densely enough to in-
tegrate the inner-shell contributions, and the outermost
points are put into the region where the outer-shell wave
functions decrease exponentially. The "radial" Gauss-
I aguerre integration scheme over m uses about 35 points,
which is optimal for the integration of exponentially de-
creasing functions from zero to infinity. The "angular"
integration over cos8 is done with a Gauss-Legendre
method with about 40 points. %'ithin this grid we get the
overlap- and Fock-matrix elements with a relative error of
10 to 10

The direct part V of the electron-electron potential

s=(s„i) and s„q=5„is„.

The charge density can then be written

p( p) =e g Xi. X~ g c;fq(c(~=8 gpi~qi~,
Ap i gI' Ap,

with p&&(r) the local-density matrix and qiz the charge
matrix. Again we can distinguish between two possibili-
ties. The first possibility is the expansion of the atomic
orbitals into some kind of Slater- or Gauss-type function,
which is used with great success in nearly all nonrelativis-
tic as well as relativistic molecular calculations. The ad-
vantage of this method is that all matrix elements used in
the calculation can be calculated analytically with very
high accuracy, so that the nonorthogonality of the basis
does not cause any problems. The disadvantage is that
the basis functions are relatively ill-adapted to the physi-
cal problem, so that a large number has to be used. The
second possibility, which we are using here, is the choice
of numerical atomic DFS wave functions as the basis.
The disadvantage of this choice is that all matrix elements
have to be calculated numerically, but the advantage is
that the relatively small basis set is sufficient, and the
contributions of the negative continuum will probably be
small. In addition, the kinetic energy matrix elements can
be calculated in this special numerical basis by a simple
integration (thus avoiding numerical differentiation).

[Eq. (7)] is calculated from the electron density p by nu-
merical solution of Poisson s equation in elliptic-

hyperbolic coordinates

with

a2 8+cothq + +cot8
(jiIz Bri i)8i B8

4ira (sinh ri+sin 8)

and a=A/2. To avoid the singularities for iI~0 and
8~0, we use the variables cosh' and cos8. For the
discretization of (20) we transformed the variables [analo-
gue to Eq. (15)] to

cosh' = —Exe "+1,
1 1cos8= G

y/H

The parameters E,I', G,H are adjusted in such a way that
the density p(r) and the potential Vc(r) are smoothly
varying functions over the whole range of the (x,y) plane.
In this grid we solve the discreticized Poisson equation us-

ing a third-order finite difference method of
Schwarztrauber and Sweet, which reduces the problem
to solving a band-structured matrix equation.

A large improvement in accuracy is obtained by apply-
ing this method iteratively: The numerical solution of
Poisson's equation for a given p leads to the potential

V =D 'p. Using a higher-order differentiation D, we

calculate back p'=D™V,which differs slightly from p
due to the more accurate numerical treatment. The
difference density 5p=p —p' gives a correction to the po-
tential by numerical solution of the new Poisson equation

5V =D '5p. With the new potential V„=V +5V,
this procedure can be repeated until 5V becomes insigni-
ficant. Empirically, with a sixth-order differentiation, the
convergence point is reached already after two corrective
iterations, and the resulting potential has an overall rela-
tive accuracy better than 10 —10 for an (x,y) grid of
100X 100 points for a diatomic system.

IV. CHOICE OF THE BASIS FUNCTIONS

The choice of the basis functions used in the calcula-
tions is not straightforward. The first approximation to
this problem is the choice of the minimal basis set, con-
sisting of fully or partially occupied atomic levels of the
separated atoms.

A number of optimized Slater and Gauss-orbitals,
respectively, which are dependent on the system and the
type of binding of the system, are usually added in the
nonrelativistic quantum-chemical calculations. Optim-
ized sets of basis functions are not yet available in the rel-
ativistic case. To learn more about the choice of basis
functions we selected the simplest system H2+. Table I
shows the convergence of the ground-state eigenvalues at
the internuclear distance R =1.0 a.u. as function of the
number of additional basis functions given on the left. In
the last "row" we added a basis function called "mono-
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TABLE I. Energy eigenvalues in a.u. of the H2+ ground state at R =1 a.u. as function of various

sets of basis functions. The superscript mon means that these wave functions have been calculated in an

atomic DFS calculation with the monopole part of the molecule as nuclear potential.

Basis states

2-center basis
2(HI, )

2(H„„2,)

No. of centers
atomic monopole

Eigenvalue
—c~,~ (a.u. )

1.288 38
1.315 63

3-center basis

2(His, 2,,z )+He~s

2(H)z 3Q)+He3+ 3p 3Q

1.321 81
1.349 21

4-center basis

2(H), +He), )

2(H~, +He2, )

2{H),+He), ~)

1.421 04
1.426 77
1.438 93

6-center basis
2(H]z +Hefz Q fp +Li+ 2p 3p ) 1.45045

11-center basis

2(H), +He), ~ 2p+ Li+ 2p 3p

+Be3p+83' )+Her

10

1.451 13

Exact value from the analytic
nonrelativistic solution 1.451 79

pole function, " as it is the solution of the DFS problem of
an atom with the monopole part of the potential of the
two nuclei. This last row also shows that the exact energy
eigenvalue can be reproduced already within less than
0.5%%uo. Table II gives the energy eigenvalues and total en-

ergies of the same system H2+, with the basis from the
last row of Table I as function of the internuclear dis-
tance. Table II shows an agreement always within the or-
der of 10, although we certainly did not fully optimize
the basis set. The choice of the basis functions for the
calculations presented in Sec. VII was done in an analogue

way. Of course, there is still a lot of work to be put into
this question in the near future.

V. PREORTHONORMALIZATION

As one sees from the basis sets used here, the basis
functions are not orthogonal. It is well known that such
nonorthogonal basis sets usually produce a large error
enhancement. As our numerical accuracy is only in the
order of 10, we have to preothonormalize the basis be-
fore solving the eigenvalue problem. Orthonormalization

TABLE II. Energy eigenvalues and total energies of the H2+ ground state for the 11 center basis for
various internuclear distances.

1.0
1.5
2.0
2.5
3.0
4.0
6.0
8.0

—&lug

(a.u. )

1.451 13
1.248 63
1.102 35
0.993 68
0.91079
0.795 88
0.678 48
0.627 52

—al g (a.u. )

exact

1.451 79
1.248 99
1.102 63
0.993 82
0.91090
0.79609
0.678 64
0.627 57

& 0.46
(0.29
& 0.26
& 0.15
& 0.12
(0.26
(0.24
& 0.1

—E~ (eV)

12.276
15.836
16.391
16.155
15.714
14.854
13.928
13.675

—E& (eV)
exact

12.294
15.846
16.399
16.159
15.717
14.860
13.932
13.676
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procedures have been reviewed by Lowdin. In adapting
these orthonormalization procedures to our problem, one
readily notices that within our limited accuracy of
10 —10 one has to generalize the definition of linear-
dependent states to numerical (or practical} linear-
dependent states: We call a set of basis states numerically
linear dependent if the measure of linear dependence (see,
e.g., Courant-Hilbert } is smaller than the numerical ac-
curacy of the overlap matrix.

In the preorthonormalization procedures used by the
authors, we always removed all numerically linear-
dependent basis states. This guarantees that all Fock-
matrix elements in the orthonormalized basis are at least
not totally in error. But one has to keep in mind that ma-
trix elements involving states just above the threshold of
linear dependence may have relatively large errors (well
above our original accuracy of about 10 }. So we have
to make sure that only "accurate" states contribute sub-
stantially to the total energy, otherwise we spoil its accu-
racy. This requirement is usually fulfilled, however, not
guaranteed, especially not for optimized atomic orbitals
(AO's} where significant losses of accuracy have been ob-
served.

As this preorthonormalization is very important, we
used all three principal methods described by Lowdinsi in
his review article. The first method is the canonical
orthonormalization where all symmetry orbitals are
orthogonalized at once by diagonalization of the overlap
matrix. As the canonical orthonormalization treats all
symmetry orbitals on an equal footing, it is best suited if
one has no additional information on the relative impor-
tance and accuracy of these basis states for the molecular
orbitals.

On the other hand, we want to calculate the total ener-

gy of the system with best accuracy. As inner-shell orbi-
tals contribute most to the total energy, and as these orbi-
tals are less affected by the finite nuclear separation, one
can argue that these symmetry states should be kept un-
changed in the orthonormahzation procedure.

The second method used is the Gram-Schmidt ortho-
normalization, where the symmetry orbitals are orthogo-
nalized in a predefined sequence by a step-by-step pro-
cedure. We noted the symmetry orbitals according to
their expectation values s& with some single-particle Ham-

iltonian h ' ' (e.g., the potential constructed from atomic
orbitals using Mulliken occupation numbers)

",=&X, if"'iX, ) . (19}

Starting with the lowest c~, the corresponding symme-
try orbital ~Xi) is taken to be the first orthogonalized
symmetry orbital

~
ui ). Then

~
u2) is constructed by

orthogonalizing
~
Xi) onto

~ Xi ) via a Gram-Schmidt
procedure, and so on. To ensure not picking up very inac-
curate states at every step, the overlap matrix
S= (Xi

~ X„) A, ,p= 1, . . . , k (k being the kth step) is di-
agonalized. If an almost linear-dependent state

~
Xi ) has

been picked up we will eliminate that ~Xi) and try the
next

~ Xi+i). In this way a reasonable set of preorthogo-
nalized states is constructed again.

It may, however, happen that a physically important
state is rejected because other, less good, basis states have

already been picked up in the course of the repeated
Gram-Schmidt procedure. This drawback can be
remedied by a mixed selection where some

~
Xi ) are kept

at hand. However, this may be unsatisfactory from the
point of view of an automatic procedure.

The third alternative is a blockwise orthogonalization.
This method was chosen mainly to allow for a mixed
selection, and to ensure no loss of important physical
states, as less-adapted states may cause enhanced spurious
contributions. The blockwise orthogonalization causes all
symmetry orbitals to split up into M groups, consisting of
one or more symmetry orbitals. Each group is made
orthogonal on each other. If states have to be rejected
they are taken from the states of the last group. This pro-
cedure guarantees that a basis can be developed, and new
states can be added to a number of states used before,
without any changes to the old basis.

The reason to struggle very hard for a physical basis is
twofold. First, the loss of accuracy due to nonorthogonal-
ity must be kept small, because all Fock- and overlap-
matrix elements are basically calculated within the AO's.
There the errors in accuracy enter differently in the Fock
and overlap matrix, leading to inconsistent Fock-matrix
elements in the orthogonalized basis

~
ui ), i.e., they no

longer belong to the Hamiltonian h, but to a modified
(unphysical} one. If the amount of modification is too
large, the solutions are no longer quite meaningful; there-
fore, we call them spurious contributions. This could be
cured by computing the Fock-matrix elements in the
orthogonalized states by direct integration. However, we
do not yet know how to get the kinetic energy numerically
with sufficient accuracy.

The second reason is—and this is just something we
have learned by experience —that spurious contributions
of the positron continuum are not picked up significantly
in electronic states when the molecular states are suffi-
ciently close to atomic states centered around the nuclei or
the common charge center. If the orthogonalization pro-
cedure constructs completely different states, especially
for the low-lying ones, this property is crucial, and we
pick up spurious positron contributions in the electronic
states.

Several authors 5 ~ have experienced large influences
of the negative continuum in relativistic molecular calcu-
lations, using basis-set expansion techniques. The various
attempts to avoid these problems have been reviewed by
Kutzelnigg. ' It is not quite clear why the calculations
presented here do not have (at least no large) spurious
contributions from the negative continuum. A first at-
tempt to explain this can be found in Ref. 44. Interesting
in this connection is also the paper by Stanton and Havri-
liak. The basic theoretical papers, which deal with the
general formulation of a relativistic many-particle Dirac-
Fock-Hainiltonian, are those of Mittleman, ' Such-
er,"-"and Grant"

VI. RESULTS

The DFS program under discussion here uses the local
Slater approximation for the exchange term, and can,
therefore, not be used generally to predict the chemical
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FIG. 1. Relativistic and nonrelativistic potential-energy

curves for N& as function of the internuclear distance.

1.5

behavior of diatomic molecules such as accurate bond dis-

tances or binding energies, although part of the correla-
tion is included in Slater's exchange approximation. On
the other hand, however, this program has the big advan-
tage of taking relativity fully into account. Therefore, it
will be superior to accurate nonrelativistic calculations
when the influence of relativity becomes strong. This is
the case either at chemical distance, when very heavy
atoms are involved, or already for small-Z systems, when
the internuclear distances are small, and inner-shell elec-
trons influence the potential-energy curve. As an example
for small internuclear distances we chose, therefore, the
problem of elastic scattering of Ne on Ne. As an example
for chemical distances we did not choose a very heavy sys-
tem but N2. This was done because we wanted an almost
fully nonrelativistic system for comparison with an analo-
gue nonrelativistic HFS calculation. ' In addition it is in-

teresting to see how small the relativistic influences on
such a system really are.

In case of the Nz calculations we added the 2p, 3s,
and 3p wave functions from F, the 2s and 3d wave func-
tions of Na, the 3d and 4d wave functions of Ar, and the
2s and 4p wave functions of Ti to the minimum basis set
around each center, and we used the Gram-Schmidt
preorthogonalization. %'ith this basis set we calculated
the relativistic and nonrelativistic (choo) total energy in
the vicinity of the molecular bond distance as shown in
Fig. 1. The minimum values at R =2.08 a.u. are
—108.387 a.u. for the relativistic, and —108.324 a.u. for
the nonrelativistic calculation. This can be compared to a
fully numerical nonrelativistic HFS calculation of Laak-
sonen et al. '3 who obtained —108.3466 a.u. at R =2.07
a.u. Although our basis set is not optimized for
quantum-chemical calculations, our result exceeds the
more exact calculations of Laaksonen' by 0.6 eV, only.

TABLE III. Energy eigenvalues of the N2 molecule in a.u. at
the internuclear distance R =2.08 a.u. The spin-orbit splitting
between the 3(1/2)„and 1(3/2)„ levels in the relativistic calcu-
lation contains a spurious contribution. It can be corrected for
by the spurious contribution which appears in the nonrelativistic
limit of the same calculation.

State
Nonrel. Rel.

e(Nonrel. )' c,(Nonre1. )

Ref. 13 This work
c(Rel. )

This work

1{1/2)g

1(1/2)„

2(1/2)g

2(1/2) „

—13.981 07 —14.007 57

—13.979 66 —14.006 21

—1.007 21 —1.03245

—0.460 72 —0.479 02

—14.01627

—14.01493

—1.033 13

—0.479 69

3(1/2)„
1(3/2)„

—0.40423 —0,422 36
—0.417 53

—0.422 31
—0.41705

3CTg

3(1/2)g

—0.35006 —0.368 40
—0.368 27

'R, =2.07 a.u.
bR, =2.08 a.u.

The relativistic effect can be seen by comparing the two
potential-energy curves. It results in a general decrease of
1.71 eV, and as the decrease in the total energy is 1.72 eV
in the separate atom limit, the effect on the potential ener-

gy surface is very small. Considering our numerical accu-
racy, we can state that relativity influences the dissocia-
tion energy by 0+0.03, and the bond distance by 0+0.01
a.u. The energy eigenvalues resulting from our molecular
calculations are shown in Table III in comparison with
the results of Laaksonen et al. ' Although our nonrela-
tivistic values differ generally by about 0.02 a.u. from
those of Ref. 13, due to our incomplete basis set the influ-
ence of relativity can be seen by comparison with our non-
relativistic calculations. The relativistic lowering of the
1a eigenvalue is 0.0087 a.u. , which is very reasonable as
this number can be compared with analogous atomic cal-
culations.

The limits of our basis set also show up when we look
at the spin-orbit splitting of the lm„-level into the relativ-
istic 3(1/2)u and 1(3/2)u levels. Even in our nonrela-
tivistic calculations these levels are not degenerate.
Nevertheless, such a calculation is very worthwhile as it
allows a good guess as to the net effect when we correct
the relativistic results by subtracting the spurious nonrela-
tivistic results. This procedure leads to a spin-orbit split-
ting of the Nz m. level of 96 cm ', which is in the corr'ect
order of magnitude.

For the system Ne-Ne we calculated the tota! energies
and electron eigenvalues in the whole quasimolecular
range of internuclear distances, obtaining the one-electron
correlation diagram sho~n in Fig. 2. In these calculations
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FIG. 3. Difference of the 2DFS, respectively, SCF and the
averaged Lenz-Jensen (see Ref. S3) potential-energy curves.
2DFS is the statistical energy calculation using relativistic atom-
ic densities, and SCF is the result of the relativistic quasimolec-
ular calculation.
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0.'1 0 5 ~.D 't 5 oe
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FIG. 2. Relativistic DFS correlation diagram for Ne-Ne.
The minima in the lowest MO levels are assigned by l —3.

we used the following basis sets: For large internuclear
distances (R ~ 0.7 a.u. ) we added 2s, 3s, 3p wave functions
of Mg, 3s, 31 wave functions of Si, 31,4p wave functions
of Ar, and 3s,4d wave functions of Ni to the minimum
basis set; for R & 0.7 we chose the minimum basis set, and
additional wave functions (ls to 4s) from atomic calcula-
tions in the monopole potential of the two nuclei at the
center of gravity of the two nuclear charges. In Fig. 3 the
potential energy V(R) is plotted relative to the average
Lenz-Jensen potential V,Lr(R), as suggested by Loftager
et al. ,

5s to visualize the detailed structure in the range of
internuclear distances, where the atomic inner shells rear-
range to form molecular orbitals. These quasimolecular
potential structures can be interpreted in terms of level
structures of the correlation diagram in Fig. 2. At least
three internuclear distances can be found, where isolated
minima in different molecular levels appear. The 2(1/2)s
level, e.g. , has a relative minimum around E. =0.85 a.u.
with a depth of about 15 eV. The 30-eV binding-energy
contribution of this doubly occupied level leads to a rela-
tive minimum in the scaled potential at the same internu-
clear distance with a comparable depth. Similar argu-
ments apply to the minimum of the 1(1/2) u and 3(1/2)u
levels near 8 =0.3 a.u. , and the flat minima around 0.06
a.u. in the levels which originate from the 2@3&2 united
atom levels. (The minima are assigned in Fig. 2.)

The quality of our quasimolecular potential calculations
can be tested by comparison with experimental scattering
cross sections for the system Ne+-Ne, carried out by Lof-

tager and Kristensen. For this reason we have calculat-
ed the differential elastic scattering cross section for our
quasimolecular potential-energy surface V(R) at various
impact energies, and small scattering angles. The results
are plotted together with the experimental values in Fig.
4. In this plot the scattering cross sections are relative to
the Lenz-Jensen potential. The abscissa s is a similarity
quantity established by Lindhard, Nielsen, and Scharff
(LNS theory), which is correlated with the distance of
closest approach Ro, scaled at the top of Fig. 4. The
theoretical curve fits the experimental data quite well, and
even the deviations for Ro &0.6 a.u. can be understood
qualitatively. The data for 15-keV impact energy lie sys-
tematically nearer to our adiabatic curve than the 25-keV
experimental values. The observed minimum also shifts
to a larger Ro value for smaller impact energy. So in this
region the experimental cross sections are obviously influ-
enced by inelastic effects not included in our calculation.

We discussed here only the two systems N2 and Ne-Ne
to show the quality of these calculations. Of course, it
mill be very worthwhile now to proceed to really heavy
systems to study the influence of relativity in chemical
binding. Such results will be discussed in a subsequent
paper,

VII. SUMMARY AND FURTHER DEVELOPMENTS

In this paper we presented a fully self-consistent numer-
ical relativistic DFS code to calculate diatomic molecules
at all internuclear distances. The numerical accuracy has
been improved by many orders of magnitude, so that not
only energy eigenvalues but also potential-energy curves
emerge, allowing a quantitative interpretation. Thus the
influence of relativistic effects can now be studied not
only at small but also at chemical distances. This is one
of the direct applications of this code probably forthcom-
1ng.

Of course, the disadvantage still is the use of the local
Slater-exchange approximation. The development to-
wards a full DF code, with exact exchange, probably is
the main objective of the development in the long run, al-
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FIG. 4. Differential elastic scattering cross sections for Ne-Ne. Experimental values are taken from Refs. 54 and 57.

though it is known that results of calculations with a local
exchange term are often better because part of the correla-
tion is included. In addition, a full DF code would be too
time consuming for heavy systems with the computers
available at present. Therefore, in all likelihood the re-

sults of such a DFS code will be the only ones available in

the region of high-Z elements in the near future.
In addition to the above, several improvements have to

be made to this code. One is the development of more op-
timized basis functions in the relativistic case. That this
is of great importance has been known since the analogous
nonrelativistic development many years ago. Another one
is a numerical improvement to the solution of the Poisson
equation. Here we hope to use the same Gauss-l. aguerre

grid points as for the calculations of the matrix elements.
In addition, we hope to develop a new improved integra-
tion scheme where —right from the start —the already ex-
isting knowledge of the system is taken into account in
the construction of the grid points, and the weights of the
integration. All this might make the program a probably
even more usable tool for exploring and understanding
very heavy diatomic molecular systems.
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