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By using the Fourier-transform technique, the explicit expressions for the one-electron —two-

center overlap integrals of Slater-type atomic orbitals up to 3d are derived. The final expressions

are analytic, simple, and independent of local coordinates. Furthermore, they do not contain the
non-closed-form of exponential integrals which were presented in expressions given in earlier work.
It is shown that the two-electron —two-center Coulomb integrals, as well as the hybrid integrals, can

simply be expressed in terms of these integrals. The numerical instability arising from the situation
in which the exponents of the two orbitals are almost equal is discussed, and a solution for this prob-
lem based on a Taylor-series expansion of the integral is suggested.

I. INTRODUCTION

Reliable and rapid methods of evaluating molecular in-
tegrals are essential to the understanding of physical prop-
erties of molecules and solids. Many articles have ad-
dressed this subject for Slater orbitals. ' Explicit formu-
las and numerical tables have been prolific in the litera-
ture. However, it has been a common practice that the
early derivations are based on the approach that the pro-
late spheroidal coordinate is employed in which the
quantization axes have to be pointing along the bond.
This practice is favorable in the evaluation of diatomic in-
tegrals because some of them vanish due to symmetry re-
lationships. However, in the evaluation of two-center in-

tegrals in a polyatomic molecule, this advantage is com-
pletely offset by the fact that for each pair of centers, new
quantization axes have to be established. As a result, ro-
tational operations have to be carried out in order to have
a correct physical interpretation which can be very un-
desirable in practice. Another approach, which is based
on the Fourier convolution property was first suggested
by Prosser and Blanchard for the evaluation of the one-
electron —two-center integrals. Subsequently, Geller has
applied the same technique to the two-electron —two-
center integrals, Epstein' has evaluated the two-center in-
tegrals involving momentum operators, and Avery and
Cook" have tackled the one-electron —two-center integrals
associated with molecular optical properties. Those ap-
proaches essentially transform the orbitals to momentum
space, and after some manipulations, the quantity must be
recast back to the configuration space. The radial part of
the last step is not always easily carried out analytically
except for the most elementary orbitals involved. An al-
ternative approach is to integrate by numerical quadra-
ture. This approach was found to be relatively inefficient

because of the oscillation of the spherical Bessel functions
appearing in the integrand. Geller' instead evaluated
these integrals by a procedure using a recursion relation
which is straightforward, but quite tedious.

Recent work' ' has rekindled the Fourier-transform
approach and certain progress has been made. These ap-
proaches were carried out for the general Slater-type orbi-
tals (STO) and the use of the Gaunt coefficient made the
angular part of the integral tractable; however, to get the
radial part, the use of the so-called "Bessel operator" in
practice produces equally complicated expressions. In-
stead of dealing with the STO, the so-called "8 function"
was introduced, ' ' of which the STO can be expressed
as a linear combination. But the overlap integral over B
functions with different scaling parameters is of similar
complexity. '

Recently, the present author, ' using the integral-
transform method suggested by Shakeshaft, presented the
formulas for the inulticenter molecular integrals in which
the final expressions are expressed in terms of multiple
numerical integration whose integrands contain the corn-
plicated geometrical arrangement of the centers. Howev-
er, for the two-center integral, it was noticed that, by set-
ting the two vector constants a and b to zero, the final ex-
pression can be readily reduced to a closed, analytic form
in which no parameters are introduced; above all, no spe-
cial coordinate system is required, i.e., the quantization
axis chosen can be totally independent of the bond direc-
tion. An analytic expression is always preferred, not only
because it reduces the cost of obtaining the numerical
value but also because it provides an invaluable insight to
the problem studied. For example, the tasks of obtaining
the derivative of the integral with respect to its bond dis-
tance, to variation with respect to the exponents, etc., are
simp1ified with an analytic expression.

II. BASIC INTEGRALS AND PROCEDURE

Recently, Shakeshaft has shown that an exchange integral of the form

1l
l
—2 Pl2 2
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ia. r& +ib.r& —cr& —dr&I(ni, li, n2, lz)= rz re (pi rw)(pz r„) (pi, rz)(qi re)(q2 rii) (qi, re)e " . " dr
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can be reduced to a simple one-dimensional integral, where a,b are two real ve:tors, the constants c and d are real and
positive, integers n, ,nz & 1, and pi, pz, . . . ,pi, qi, qz, . . . , qi are arbitrary constant vectors. For example, it is shown

that

(2)

where

A, =y(1 —y) i
a+b

i
+yc +(1—y)d

P=ya —(1—y)b, R=r„—rs .

In principle, the general integral I(n i, 1i, ', nz, lz ) can be obtained by the following differential operation:

. l)+l2I(ni, li.,nz, lz)= ( i)— (pi V, )(pz V, ) (pi V, )(qi Vb)(qz Vs) (qi Vs)

(3)

X( —8/Bc) '
( —8/Bd) ' I(1,0;1,0) .

The differentiation is straightforward, nevertheless, the
procedure can be quite lengthy. Shakeshaft and Tai have

given the expressions up to I(2, 1;2,1). For practical pur-

poses, higher I(n i, l i,nz, lz) are still needed. Once the ex-

pression of I(n i, l i,nz, lz) in terms of one-dimensional nu-
merical integration such as Eq. (2) is obtained, we then let

p, pi, , q, qi, , in particular, be a set of orthogonal

unit vectors along the coordinate system, say, e„,e~,e„
and simultaneously set the two vectors a and b to zero.
Hereafter, the integral is denoted as I for the special case
of I in which the two constant vectors a and b are set to
zero. Then it is obvious that aside from a normalization
factor the I' s, or the linear combination of I' s, are nothing
but the two-center integrals of Slater-type atomic orbitals.
Once the a and b are set to zero, the one-dimensional in-
tegration becomes trivial and analytic expressions can be
obtained. For example, we can write

I(2, 1;2,1)=2ncd I IKzpi qi —KzR piR qiI

2( 1 )2 —ARd (5)

where K's are defined as before, '

Ko(X) =1/X

Ki(A, )=R/k +1/A,

Kz(A, ) =R 2/1, '+ 3R /A. '+ 3/A, ',
and so on. By inspection, K„satisfies the following recur-
sion relation:

MC„K„= K„' i/k .—

Furthermore, it can be shown that the K„ is related to the
modified Bessel function of the third kind, ' k„, in a
manner such as

gn+1
K„=e " „k„(A,R) .

Using Eqs. (3) and (8), Eq. (5) becomes

RI(2, 1;2,1)= J kz(i') (pi qi) —kz(AR) R piR qi (A, —d ) (c —A, ) A, dA, .
(c2 dz)5 A,

z
A.

z

Equation (9) consists of the finite sum of the following form:

c gn+16„=f k„(AR)A, dA, , m odd

which can be expressed as

cR
G„ =R " x "k„(x}dx, x =AR

dR

pg j t CR
n2N —IN ~ a —J x m —n —1 —j —xwe dx

j!(n j)! dR

(n +j)!
o 21(n —j)!j!

X m —n —1 —J+
-- cE

m —n —1 —J
(m n —1 —j) . —(m —n —1 —j—k+1)x

k=1 , dR

m & n + 1+j (10a)
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or

Gm gzn —m g (n +J).
0 2jj!(n —j)!

n+j —rn 1)k —1

—e
(n+j —m)(n+j —m —1) . (n+j+1 —m —k)x" +J+'

where the exponential integral

Ei(ax)= f e x 'dx

( 1 )n +j—It!

Ei( —x)
(n +j—m)!

dR

P7l (n + 1+J (10b)

can only be expressed in terms of a series. Although this would not present any formal difficulties, it is helpful to know

that all terms containing Ei( —RA, ) do cancel out. It can be easily verified by examining the coefficient

, ( +j)!(—1)"+'
j!(n —j)!(n +j—m)!

Indeed, S„=Ofor m odd as in our case. The proof is given in Appendix A. Therefore, using the short-hand notation

6„,Eq. (9) can be written as

I(2, 1;2,1)=4mcd/(c —dz)~I p~ q|[6&—2(cz+d )63+(c +d +4c d )Gz —2c d (c +d )63+c d 63]
—R p, R q, [Gz —2(c +d )Gz+(c +d +4c d )Gz —2c d (c +d )Gz+c d Gz]I . (12)

Aside from a normalization factor, Eq. (12) is just the
general form of the two-center overlap integral for 2p or-
bitals. For example, letting p, =e„,q, =e~, Eq. (12) is just
(2p», 2p»); letting pi ——e„qi——e„Eq. (12) is just
(2p,&,2p~). Of course, in the conventional way, i.e., the
two-handed coordinate system, in which Z axes are point-
ing toward each other, and R aligns along the Z axis, we
would have pi ——e„ql ———e, .

If the condition c =d is invoked in Eq. (5), then we ob-
tain

I (2, 1;2,1)=nc /15[ E3(c)p, qi
—Kz(c)R piR qi]e '" (l3)

as the analytic expression for two-center overlap integral
in which the two exponents are exactly equal.

III. ONE-ELECTRON —TWO-CENTER OVERLAP
INTEGRAL

If our normalized Slater atomic orbitals are chosen in
Cartesian form, then the one-electron —two-center over-

C„(c)=(2c)' "+" /&(2n)!, X, =1/(2~m),

X, =&3/~/2, X,=&5/~/2.
(14)

Then the overlap integrals, for example, can be expressed
as

lap integrals can simply be written in terms of the I s list-
ed in Appendixes 8 and C. Of course, expressions listed
in Appendixes 8 and C are not meant to be exhaustive. In
the following, we give a few examples for illustration, and
the rest can be written down without difficulties. Let us
change the notation by inserting the dependence of
pi, pz, . . . , pI, , qi, qz, . . . , qi, and the exponents c and d

in I, i.e., I„, i, ,nz, jz(pi, . . . , pi, c;q„.. . , qi, ,d). As

standard, the normalization constants for the orbitals of
interest are

[pe, (rz, c),Pz~ (rzi, d)] =C3(c)Cz(d)NpI3 i z }(e„,c;e„d),

[p3z (r~ c),$3u (rzi, d)] =Cz(c)C3(d)X&[(3~3/2)Iz z.z z(e„e„c;e„,e~,d) —(~3/2)I4 O. z z(c;e„,e,d)], (15)

where the I's are listed in Appendix B.
In this way, other types of one-electron —two-center molecular integrals, such as the kinetic energy integrals, the nu-

clear attraction integrals, etc., can also be expressed in term of I's.

IV. TWO-ELECTRON —T%'0-CENTER COULOMB AND HYBRID INTEGRALS

The two-electron —two-center Coulomb and hybrid integrals are defined, respectively, as follows:

f f 4'(rlA c) $(r28 d)drl drz
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I.=;r~z, t." r2q, k r~, r& r2.
112

(17)

There are different ways to approach these (e.g., Szondy and Harris "). A conceptually new approach is suggested here.
For Eq. (17), we proceed first with the single-charge distribution, here electron number l. Instead of expanding the term
1/r 12 as is normally done, we could simply consider the coordinate of electron number 2 as the second center for electron
number 1 and facilitate the two-center integration as described before (see Fig. 1). Of course, what would emerge is a
function of radius vector r2„. With r2s, the two-center integration can be performed again. For example

1
~1 f f Wls(rig e} 43d (r2A d)02p (r2a f)«1«2

p XP

=Ns Cl(c) f I2,0;1,0(2e 0)$3d (r2A, d)$2p (r2a, f)dr2

=N, Cl(c)n lc f [1lr2„—e '"(c+1/r2d })$3d (r2&,d)$2p (r2s, f)dr2

=N, C1(c)n/e'NdNpC3(d)C2(f)~3[I1 2.21(e„,epd;e„f) cI2 2
—21(e„,.e„,d +2e;e„f)

—I12.2 1(e„,ep, d+2c'e f)l . (18}

Likewise, the Coulomb integral can be written out in the
same fashion.

f(c,d) =g (c)+g'(c)(d c)+g—"(c)(d c) /2!—+
(19}

V. NUMERICAL INSTABILITY

It is well known that in the evaluation of the molecular
integral when the exponents of the two orbitals approach
each other, i.e., d=c, the results tend to become unstable
and unpredictable answers can occur. This becomes obvi-
ous in our expressions. If we examine Eq. (12) closely as
d=c we find a number of removable zeros appearing both
in the numerator and denominator. If the expression is
tested numerically by deliberately setting d very close to
c, e.g.,

~

d —c
~
=10, some of the single-precision re-

sults begin to become unreliable while double precision
still gives very accurate values until

~

d —c
~

=10 . By
applying L'Hospital's rule to Eq. (12), we obtain definite
and numerically stable expressions for c=d, which is
identical to what was obtained earlier [Eq. (13)]. This
really confirms that the integrals are continuous functions
of the variables c and d in the whole domain, for c,d )0.
Consequently, by considering c as a parameter, then the
integral value f(c,d) in the neighborhood of d=c can be
written by the Taylor series as

PIG. 1. Coordinate system for two-electron —two-center in-

tegra1s.

where g is the integral value for c =d. Expressions for
the g's are listed in Appendix C. Therefore, we obtain the
integral values in the neighborhood d =c as accurate as we
required, by obtaining g', g" and as many higher deriva-
tives as needed for accuracy by simply differentiating g
with respect to c.

VI. CONCLUSIONS

%e have shown how a one-electron —two-center overlap
integral can be expressed in a simple form. The orienta-
tion as well as the magnitude of the internuclear distance
are manifested properly in the final expressions. The ex-
pressions are obtained through a series of parametric dif-
ferentiations, which are quite lengthy processes. Howev-
er, with the help of the recurrence relationship, Eq. (7),
the effort of bookkeeping can be reduced to a minimum.
Explicit expressions for integrals involving s, p, and d or-
bitals of principal quantum number n =3 are given, and
with some extra effort the expressions involving f orbitals
can also be obtained, but beyond that, this procedure be-
comes very tedious and unwieldy. Simple procedures for
obtaining two-electron —two-center Coulomb and hybrid
integrals are also described. The origin of the numerical
instability of the integrals when the two exponents are
nearly equal has been pointed out and a simple solution
has been suggested. Contrary to what was believed ear-
lier, '3'4 the term containing the exponential integral has
been proven nonexistent. The present technique can be
readily extended to the evaluation of other molecular in-
tegrals, both mentioned above, and those such as the ma-
trix elements involving various momentum operators and
moment operators arising from the calculation of molecu-
lar optical properties. With a different charge distribution
of lower orbitals and geometrical configuration, conceiv-
ably, using this method, most of the physical quantities of
a diatomic molecule can be expressed analytically.
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APPENDIX A

Proof of S„=Ofor m odd

We rewrite Eq. (11) in a different form

S„=' " g ( —-'} '"+ " (Al)
.i. (n+i —m)'

g„=(x +x )", and its first few derivatives are

g„' =n (1+2x)g„

g„"=2ngn &+n (n —1)(1+2x)g„

g„"'=6n (n —1)(1+2x)g„

+n (n —1)(n —2)(1+2x)'g„

(A4)

1}n—m n

S„(x)=
j=p

n IN

XJ —N —J +Of X N+J
J dx

This suggests that S„can be expressed as a function of
variable x, S, (x). Of course, we are only interested in
S„(—1/2),

and so on. It is obvious that the odd derivatives of g„
have (1+2x) as a factor. Therefore, S„(——,

' )=0, for
m odd. Furthermore, S„(—1}=0 for m & n, and
S„m(x}=0 for any value of x if m &2n T. o prove
S„(——,

'
) for m even, let us take the pth derivative of

p
~gn:

( 1 )II —In

X
n!

( 1 }Il—In

1)n —m

~ —N

n!

dnl II
+St ~N ~J

dX j p

d Ill
+ (x+x )"

dx

NI gN (A2)

dP, p+, dPg„=g„= n ( 1 +2x )g„dxP dxP

p dk dp —k

n k k (1+2x)
p kg -I -(A5)p, dx dxP-" "

where the following relations have been used:
Recognizing that k =0, 1 are the only terms not vanish-
ing, the following recurrence relation is obtained:

d x" k!
(k —m)!

(A3)
g„+' =n (Zx + 1)g„&+2np g„ (A6)

n

(1+x)"=g . xJ
Jj=p

Since we are only interested at x = ——,, let @+1=m
even:

g„(——, ) =2 x n x (m —1)g„&'(——,
'

)

=2 Xn X(n —1)X X(n —m/2+1)x(m —1)X(m —3)x . X3X lg„m&2( —1/2)

n! m!
gn —m I'z( —1/2)

(n —m/2)! (m/2)!2 ~' " (A7)

Substituting Eq. (A7) in Eq. (A2) and evaluating at x = ——,', we have

( 1 )II —Illm /

Sn, ( ——,')= m even.
2'(m /2)!(n —m /2)!

(A8)

APPENDIX B

Analytic expressions of I in which the exponents, c&d, include the following:

G„=R"+' f k„(AR)A, "dA, , m odd
d

[see Eq. 10(a) and 10(b) for explicit expressions of Gm]

I(1,0;1,0) =[4m./(c —d }]6(')

I(2,0;1,0}=[4nc/(c d) ](.6, —6—', ),
I(2IO;2,0)=[lcd/(c —d ) ][—62+(c +d )62 —c d 62),
I(1,1;1,0)= [4m R.pi/(c —d2)~][Gp3 —d26(') ],
I(1,1;1,1)=[4~/(c —d ) ]Ip).q)[ —6)+(c +d )6( —d c GI]—R p)R q, [—Gp+(c2+d2)Gp3 —c2d26p]I,
I(1,0;2,0)= [hand /(c2 —d~)~][—6 f +c'6 I ],

(81)

(82)

(83)

(85)

(86)
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I(2,1;1,0)=[4nc/(c —d ) ]R pl[GI —2d Gl+d Gl],
l(1,0;2, 1)=—[4ndR ql/(c —d ) ][Gl —2c 6I+c Gl],
I(2, 1;2,0)=[4mcdR pl/(c —d ) ][—62+(c +2d )62 —(2d c +d )62+1 c G2],
I(2, 1;2,1)=[4m cd /(c d—) ][pl.ql[63 —2(c +d )63+(c +d +4c d )63 —2c d (c +d )G3+c d 63]

—R plR ql[62 —2(c +d )62+(c +d +4c d )62 2c—d (c +d )G2+c d G2]j,

(89)

(810)

(812)

I(2,2;2,2)= [4ncd/(c2 —d ) ]

X j (PI qlP2 '02+Pl P2'ql '92+Pl'q2P2 ql }

X[—G4 +3(c +d }64 —3(c +d +3c d )64+(c +9c d +9c d +d4)64

3c d (d—+c +3c d2}g45+3c4d4(c +d2)g4 —c4d gl]

I(2,2;2,0)=[4ncd/(c2 —d ) ][pl p2[G3 —2(c +d )G3+(c +d +4c d )63 2c—d (c +d )G3+c d G3]

+R plR p2[ —62+(c +3d )G2 —3d (c +d )G2+d (d +3c )G23 —d c 62][, (Bll)

I(2,2;2, 1)=[4ncd/(e —d ) ][ (R p,p2 ql+R p2p, q, )[6,"—(2c +3d')63+(c +6c d +3d )63
—(3d c +6C d +d }g3+(3d c4+2C d4)63 cd —6 ]

—R qlpl p2[ —G3 +{3c +2d }63 (d +6c d +3c )63

+(3c d +6d c4+c4)63 (2d—2c +3c4d4}g33+d4c g ]
—R PIR p2R ql[G2' —(2c +3d )G2+(c +6c d +3d )G2

—(3d c +6c d +d )6 +(3d c +2c d )62 —c d 62]],

—(R.p,R q, p, q, +R p,R q,R q, +R p,R q,p, q, +R p,R q,p, q, }

X[—63 +3(c +d )g —3(c4+d +3c d )g9+(c +9c d2+9c d4+d )g

3C d2(d +3—c d +d )g35+3c4d4(c +d )g3 cd g']-
+R plR p2R qlR q2[ —62'+3(e'+d )62' —3(c +3c'd +d )62+(c 9c"d +9c d"+d )G2

—3c2d (c"+3c d2+d )62+3c d (c +d )G2 —c d 6']
+R plR p2ql q2[63 —(4d'+2e )63'+(c +6d +Sc d')63 —4d (c +d +3c d )G3

+(6c d"+d'+Sc d )G3 —(4e d +2c d')6'+e d'6']
+R qlR q2pl. p2[63 —(4c +2d )63'+(d +6C +Sc d )63 —4c (c +d +3c d )63

+(6e4d4+c'+ &c4d2)63 —(4c d +2c8d')63+d c'63]},
I(3,02,0)=4n[ [c2d/(c2 —d )4][—637+(c +2d )g (d4+2c—d2)g3+d c g ]

—[d/(c —d } ][ G2+(c +d—}G2 cd G2]j, —
I(3 (}3 0}—4n. j [C2d2/(C2 d2)5][g4 2(C2+d2)g7+(C4+*2d2+d4)65 2d c (c +d }64+C4d464]

+[1/(c —d ) ][—62+(c +d )G2 cd G2]—
—[c l(c —d ) ][—6 +(2d +c )6 —(d +2c d )6 +d c 6']

[d2/(C2 d2)4][g7 (2C2+d2)g35+(C4+2C2d2)g3 d2C4g I ] j

I(4,0'3 0) =4n'[ [c d /(c —d ) ][65'—(2c +3d )6 +(c +6e d +3d )6 —(3d c +6c d +d }6
+(3C d +2c d )6 —c d 6']

[3cd l(c d—) ][G 2(c—+d )G +—(e +4c d +d )G4 2c d (c +d )G +—c d 64]
c3/(c2 —d2)5][—g9+(c2+ 3d2)g7 —3d2(c2+d2)gs +d4(d2+ 3c2)g3 —d6c26 I ]

+[3cl(c —d ) ][—63+(c +2d )63 (d +2c d )G3+—c d 63]J,

(813)

(814)

(815)

(816)
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I(4,0;4,0)=4m f [c 1 /(c —d ) ][—66 +3(c +d )66' —3(c +3c 1 +1 )66+(c +9e d +9c d +d )G6

—3c212(c +3c21 +14)66+3c41 (c +d )66 C—6166 ]

—[3cd /(c —d ) ][—65'+(3c +2d )65 —(d +6c d +3C )65+(3c d +6d c +c )Gs

(212C6+3 414)g3+14C6g1 ]

—[3c d/(c —d ) ][65' —(2c +3d )6, +(c +6c d +3d )65 —(3d c +6c d +d )6',

+(31 c +2c d )65 —e 1 GS]

+[9cd/(c —d ) )[64—2(c +d )64+(c +4c d +d )64 —2c 1 (c +d )G4+c 1 64]),

I(4,0;2,0)=4m [ [c d/(c2 —12) ][—g94+(c2+3d )g74 3d2—(c +12)g4+(d6+31 c2)g4 dc—g4]

—[3cd/(c —d ) ][—G3+(c +2d )63 —(2c d +d )63+d c 63]I,

I(3,1;2,0)=4nR plt [c d/(c d) ]—[—63+(c +3d )63 —3d (c +d )63+(d +3d c )G3 —d c 63]

—[1d/(c —1 ) ][—G2+(c +21 )62 —(2c 1 +d )62+d c 62]I,

I(3, 1;2,1)=477'[ [c 1/(c —d ) ]p, q&[64' —(2c +31 )64+(c +6c d +31 )64 —d (3c +6c d +d )64

+(3c d +2c d )64 —c d 6']
—[dc /(c —d ) ]R p,R q, [63' —(2c +3d )63+(c +6c d +3d )63

—(3c 12+6c 1 +1 )6 +(3c d +2c d )g33 cd 6 ]—

—[dp& q, /(c —d ) ][63—2(c +d )6 +(e +d +4c d )63 —2c 1 (c +d )63+c d 63]

(818)

(819)

+[1/(c —d ) ]R.p, R q, [62—2(c +d )62+(c +d +4C d )62 —2c d (c +d )62+c d G2]I,
(820)

I(3,1;3,1)=477(p& q&[[c d /(c —d ) ][—65 +3(c +d )65' —3(e +3c d +1 )65

+(c6+9c 1 +9c 1 +d )6 —3c 1 (c +3c212+14)65

+3 414(C2+12)g3 —C616g I ]
—[c /(c —d ) ][64' —(2c +3d )64+(c +6c d +3d )64 —(3c d +6c 1 +d )G4

+(3c d +2c d )G4 —c d 6']
—[1 /(c —1 ) ][—64'+(3c +21 )64 —(3c +6c d +d )G4

+(c6+6C 12+3c d4)g —(21 c +3c414)64+1 c 6 ]

+[1/(C2 12)s][g9—2(c +1 )67+(c +4c212+14)6352c 1 (c +1 )63+c 1 63] I

+R p3R q~{ [—c d /(c —d ) ][—64 +3(c +d )64' —3(c +3c d +d )64

+(c +9c d +9c d +d )G4 —3c d (c +d +3e 1 )6

+3c4d'(e'+d')6, ' —c'd'6,']
+[e /(e —1 ) ][63"—(2c +3d )G, +(c +6c d2+314)63

—(3c 1 +6C214+16)65+(314c +2C d )g —c41 g ]

+[d /(c —d ) ][—63 +(3c +2d )63 —(3c +6c 1 +d )63

+(c +6c d +3c d )G3 —(2d c +3c d )63+d c 63]
[1/(C2 12)5][g9 2( 2+12)g7+( 4+4 212+14)g5 2 212( 2+12)g3+C414g1]I )

(821)
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I(2,2;3,0)=~ p1.p1I[cd /(c —d ) ][—64'+(3c +2d }64—(3c +6c212+14)gt

+(c +6C d +3c d"}64 (—2c6d +3c 1 }G4+c d 64]

[—c/(c d—) ][G —2(c +d )6 +(c +4c 1 +d )6 2—c d (c +d )G +c 1 6']I
+R p1R p2I [cd /(c —d ) ][63'—(2C +d )63+(c +6c d +1 )63

—( 3C 1 + {3C d +16)6 + ( 3C 14+ 2C 216)g 33 C—d 66
3 ]

[C/(C2 —12)5][ g92+(C2+ 312}67—312{C2+12)g5+(16+314C )6 —d C 6 ]])

{822)

I(2,2;4,0)=4m{ p1 p2I[cd /(c —d ) ][G5' —(4e +2d )65'+(t3C +Sc d +d )65 —4c (d +3C d +c )65

+c (c4+Se2d +6d )65 —(4c d +2c d )65+c d 65]
—[3cd/(c —d ) ][—64'+(3c +2d )64 —(3c +6C212+d4)64

+(c +6c d +3c d )64 —(2c d +3c "d )64+c d 64]I
+R p1R p2I [cd'/(c' —d ) ][—64'+(3c'+21')64 —(3c +6C212+14)gt

+(c + f3c41 +3c21 }g4—(3c41 +2c d )64+c 1 g ]
—[3cd/(c' —d ) ][63' —(2c'+3d')G3+(c +t3C'd'+314)6'

+(3e d +6C d +d )6 +(3c d +2c d )G3 —c d 6']I), (823)

I(2,2;3, 1)= 4n{(R p1p2 q1+R p2p1 q1}

X I[cd /(c 1)7][——643+3(c +1 )g" 3(c —+3c 1 +14)g

+{c +9c 4f2+9c 1 +1 )6 —3c d (c4+3c d +d }64

+3c 14(c2+12)g3 c616g ]
—[c/(c —d )6][631—(2c +31 )g3+(c ++21 +31 )g3 —(3c d ++ 1 +1 )65

+(2c d +3c d }63—c d 6']I
+R q1p1 p2([ —cd /(c —d ) )[64 —2{2c +d )641+(6c +Sc'd +d )G4

4c2(c +—3c 1 +1 )g4+(c +Sc 1 +{3c 14)g5

(2 sd +4c6d )G + d 6
+[c/(c —d } ][—63'+{3c +2d )63 —(3c +6C d +d )63+(c +6c 1 +3c d )63

(2c d —+3c d )G3+c 1 6']I
+R p1R p2R q1I [—cd /(c —d ) ][—63 +3(c +d )63' —3(c +3c d +d )63

+(c +9c41 +9c d +d )67 —3c d (c +3c d +1 )g3

+3cd(c+1)g —cdg]
+ [c/(c2 12)6][g 11 (2c2+ 312)g9+(C4+gc212+ 314)g7

—(3c 12+~ 1 +16)g +(3c d +2c 16}g2 cd66 ])),—(824}

I(2,0;3,1)=—4mR q1( [cd /(c —1 ) ][—63+(d +3c )63 —3c (c +d }63+(c +3e d )63 1 c 63]
—[C/(C2 —12)4][67 (2C2+1 )62+(C4+2C 1 )62 —12C g2]I

I(3,0;3,1)=—4nR. q1I [c d /(c —d ) ][—64'+(3c +21 )64 —(3c +6C d +1 )64

+(c'+6c412+3C'd')6,' —(2d'c'+ 3c'd')6,'+c'd'6,')
[12/(c2 —12)5)[—g9+(12+3c2)g7 —3 2( 2+12)g5+( 6+3 412)g3 12c g]-

—[c /(c —d ) ][6 —2(c +d )6 +(c +4e d +d )6 —2c d (c +d )6 +c 1 6']
+[I/(C2 12)4][g7 (2 2+12)65+(C4+2 212)63 C41261]]

(825)

(826)
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I(4,0;3,1)=—4mR qlt [c'd /(c —d')'][ —G5'+3(c'+d )G5' —3(c +3c d +d )G&

+{c +9c d +9c d +d )G —3c d (c +3c d +d )G

+3c d (c +d )G —c d G']

[3 d2/( 2 d2)6][ G 11 +(3 2+2d2)G9 (3C4+6 2d2+d4)G7

+(c6+6c d2+3c d4)G4 —(2c d +3c d )G43+c d G ]

+[c /(c —d ) ][64"—(2c +3d )G4+(c +6c d +d )G4 —(c +6c d +3c d }G4

+(3c d +2c d )G —c d G4]

—[3c/(c —d ) ][G2—2(c +d )Gg+(c +4C d +d )G3s—2c d (c +d )G3+c d G3]] .
(B27)

APPENDIX C

Analytic expressions for I in which c =d where K„defined by Eq. (6) and Eq. {7)is a function of c,

I (1,0; 1,0}=2me '"/c,
I(2,0;1,0) =mcKle '"=I(1,0;2,0),
I(2,0;2,0)=mc K2e ' /3,
I(1,1;1,0) =mR pie '"/c,
I(1,1;1,1)=(m l3)(pl qlK1 —R qlR. pl)e

I(2, 1;1,0) =(2m/3)cK1R pie

I (1,0;2, 1)= —(2m/3)cK1R qle

I(2, 1;2,0)=(m/6)c K2R pie

I(2,0;2, 1)= —(m/6)c K2R qle

I(2, 1;2,1)=(mc /15)(K3p, ql —K2R plR ql)e

I(2,2;2,0)=mc'(p, p,K, /15+K, R p, R p, /10)e

I(2,2;2, 1)=(m/30)[(R p, p, q, +R p2pl q, —R q, p, p, )c'K, —R p, R p,R q,c'K, ]e

(Cl)

(C2)

(C3)

(C4)

(C5)

(C6)

(C8)

(C9)

(C10)

(Cl 1)

(C12)

I(2,2;2,2) =mc ( [(pl qlp2 q2+pl p2ql q2+pl q2p2 ql)E4 —(R plR qlp2. q2+R p2R q2pl ql+R plR q2p2 ql

(C13)

(C14)

+R p,R q, p, q, )K, +R p, R p,R q, R q,K, ]/70

+2/10 {RPlR P2'ql'q2+R qlR q2P1 P2)K3 I

I (3,0;2,0) =m [c K&/6 —cK2/3]e

I(3,0;3,0) =(m/3)[c K4/5 —c'K3+K2]e

I(4,Q;3,Q)=m[c K&/30 —3c K4/10+cK3/2]e

I (4,0;4,0)=m [c K6/70 cK5/5+9c K4—/15]e

I (4,0;2,0)=m[c K, /10 c'K3!2)e—
I(3,1;2,0)=mR pl[c K3/10 —cK2/6]e

I{3,1;2,1)=m[pl ql(c3K4/30 —cK3/15)+R.plR ql(cK2/15 —c K3/30)]e

I(3,1;3,1}=m[pl ql(c K5/70 cK4/15+K3/—15)+R plR ql(c K3/15 cK4/70 E2/15)]—e—
I(2,2;3,0)=m[pl. p2(c K4/30 —cK3/15)+R plR. p2(c K3/30 cK2/10)]e—
I(2,2;4,0}=m[pl p2(2c K5/105 —c K4/10)+R. plR. p2(c K4/70 cK3/10)]e—
I (2,2;3, 1}=m.[ (R plp2 ql+ R P2pl. ql)(c'K4/70 —CK3/30)+R qlpl. p2(cK3/30 —2c K4/105)

+R.plR p2R ql(cK2/30 —c K3/70)]e

(C15)

(C16)

(C17)

(C18)

(C19)

(C20)

(C21)

(C22)

(C23)

(C24)
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I(2,0;3,1)= —mR q, (c K&/10 —cK&/6)e

I(3,0;3,1)= t—rR qt(c Kq/30 c—Ks/6+K'!6)e

I(4,0;3,1)= —nR qt(c Ks/70 —2c K4/15+cK&/5)e

(C25)

(C26)

(C27)
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