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A trap for charged particles is an important tool in many important experiments in atomic phys-
ics. The electrodes in many such traps are truncated hyperboloids. Data given here allow evalua-
tion of the effects on trap performance of some of the details of the truncation. It is shown that if
the truncation of the ring and endcap electrodes is done in a “‘balanced” way the performance degra-
dation can be small. Some specific designs are suggested and some appropriate data reported.

I. INTRODUCTION

For a variety of technical applications it is desirable to
arrange electrostatic potentials to produce a local
minimum (in one dimension), thereby providing a (condi-
tional) trap for charged particles. Some quite remarkable
measurements have been made on ions and elementary
particles using traps of this sort. Electrons,'~ positrons,*
and positive ions®>~8 have been trapped one at a time and
some of their properties measured. Clouds of a small
number of ions have been cooled with laser radiation to
very low temperatures.’~!2 Several recent reviews are
available giving both the techniques of trapping and the
spectroscopic applications.!*~!7

For many of these applications the ideal potential dis-
tribution, expressed in cylindrical coordinates, is

Virz)=Vo+A(Q2z*—r?), (1

where ¥V, and A are constants with 4 having the same
sign as the charge on the particle being trapped. The po-
tential represented by Eq. (1) has a local minimum along
the z axis; however, that point is a local maximum in the
r direction. If charged particles are independently con-
strained to move near the z axis they will be trapped in
the neighborhood of z=0. A magnetic field can be used
to effectively restrain motion in the r direction (the Pen-
ning trap).'?~!® Also, a potential of the form of Eq. (1)
can be used without a magnetic field to dynamically trap
particles by making A4 time dependent (the Paul
trap).!3~ 131920 I either case there is a need to build elec-
trodes which cause the electrostatic potential to be a close
approximation to that of Eq. (1). This paper examines
some of the issues surrounding how to build electrodes
which produce a potential function which is a good ap-
proximation to Eq. (1).

The straightforward way to generate a potential which
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approximates a function such as Eq. (1) is to choose a set
of equipotentials which surround the volume of interest,
build electrodes which conform to the shapes of the equi-
potentials, and set the electrode potentials to the appropri-
ate values. In the particular case of Eq. (1) this prescrip-
tion leads to three electrodes, each a hyperboloid, and
each infinite in extent. Many traps of this type have been
built by following this prescription near the center of the
trap and at large distances arbitrarily truncating the hy-
perboloids and installing a suitable mounting arrange-
ment. The electrode designs considered below are all vari-
ations on this prescription. While it is clear that the con-
dition of the remote portions of the electrodes is unimpor-
tant, little information is available to allow a design de-
cision on an appropriate shape at intermediate distances.
A brief review of the solution to the ideal problem will
provide a useful frame of reference.

For this discussion assume that the trapped particles
have positive charge and that therefore 4 in Eq. (1) is
positive. The equipotential surface which goes through
the center of the trap represented by Eq. (1) is a pair of
cones defined by the equation

ri=2z2. (2)

This surface divides space into three parts with the result
that three electrodes are required. The equipotential sur-
faces are cylindrically symmetric and therefore the elec-
trodes must have this symmetry. The electrode which in-
tersects the z =0 plane is usually called the “ring.” Let
ro be the radius at which the surface of the ring intersects
the z=0 plane. The ring must have a potential Vy— Ar3,
and its surface must conform to the shape

ri—r3=2z%. (3)

The other two electrodes each intersect the z axis, have
potentials higher than V), and are called “endcaps.” Let
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2z, be the point of intersection of an endcap with the z
axis. The corresponding endcap must have a potential
Vo+2Az3, and the surface must conform to the shape

r2=2(z>-z%) . )

The other endcap is not required to have the same value
of z3; however, there is no apparent reason for making it
different and in this paper it is assumed to be the same.
In any case the shape of the surface and the potential are
given by the same formula.

A design choice made for many of the traps which have
been built as approximations to the above prescription is
to have r3=2z% This choice allows Egs. (3) and (4) to be
expressed more simply and causes the potential V) at the
center of the trap to be the average of the potential of the
ring and endcap electrodes. Because this choice has been
so widely made, it has received special attention in the
data reported below.

For any set of electrodes intended to approximate this
ideal, it is possible to find a numerical representation of
the potential function. However, it is difficult to judge
from a table of potential values how adequate the configu-
ration will be in practice. Indeed, different applications
have different sensitivities to departures from the ideal.
Nevertheless, for many experiments in atomic physics the
needs are very similar. The measure of adequacy used
here involves expansion of the potential function in spher-
ical harmonics. The strategy adopted in this investigation
was to pursue two separate objectives. A series of simple
electrode shapes were examined to determine the trends as
some of the dimensions were varied. The expectation is
that some of these trends can be generalized to more com-
plex and more practical electrode assemblies. The second
part of the investigation was to examine the properties of
some more complex designs which were chosen to be close
to practical. In the latter cases a prescription is available
for constructing relatively small electrodes which provide
a good approximation to Eq. (1).

One of the ways used to build traps with potential func-
tions approaching the ideal is to include “compensation”
electrodes which can have their potentials adjusted to
compensate for special errors. Van Dyck et al.?' reported
good success by placing extra electrodes in the gaps of a
structure which was otherwise constructed to be nearly
adequate. These extra electrodes can be arranged to com-
pensate not only for design inadequacies but some of the
errors of assembly as well. Gabrielse?”?* has reported cal-
culations giving some performance characteristics of the
electrode designs similar to those considered here but with
compensation electrodes added. In some circumstances
compensation electrodes can be added with little penalty
because there is an independent need to complete the elec-
trostatic shielding. More generally, the extra electrodes
represent a significant design complication which can be
expected to relieve some problems while compounding
others. In this paper only three electrode systems are ex-
plicitly considered. Nevertheless, by using a differencing
technique it is possible to estimate some of the effects of
adding additional electrodes. The additional information
may be used in the design of compensation electrodes.

A general conclusion is that the errors caused by trun-
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cating the hyperbolic electrodes can be made small by (1)
making the electrodes larger than necessary, (2) carefully
choosing the shape (the option examined below), and (3)
installing extra electrodes with potentials that can be ad-
justed. These solutions may be used in combination. An
expectation is that it should be possible to make the trun-
cation errors small relative to the errors associated with
problems of construction and assembly. These laboratory
errors will not all have the symmetries which go with the
ideal. None of the three options listed above will help to
correct those errors of construction and assembly which
are not appropriately symmetric.

II. DEFINITION OF THE PROBLEM

Equation (1) is considered an ideal potential for a trap
because it leads to particularly simple equations of motion
for the trapped particles. In the case of the Penning trap
with a magnetic field along the z axis, the z component of
motion is simple harmonic with the result that the fre-
quency of oscillation is independent of the amplitude.
This frequency is also independent of radial position.
Thus a collection of ions with the same charge-to-mass ra-
tio will all have (approximately) the same frequency. The
result is a narrow linewidth for the driven resonance. In
the case of the Paul trap the equations of motion have
been worked out for the ideal potential.!®?° This leads to
secure knowledge of the stability conditions. In these ap-
plications the test of adequacy of an electrode design may
be in how closely the equations of motion match those of
the ideal potential. This test is too complex to apply in a
general way; however, if errors in the potential are small
and known, a perturbation analysis can be expected to
provide a useful approximation in specific cases. Here we
look for a measure of the departure of the potential func-
tion from the ideal which is applicable in a wide variety of
situations.

The cylindrical symmetry of the ideal potential clearly
calls for making the electrodes of this symmetry. This
condition is well defined and can easily be approximately
met by using rotating machinery in the fabrication of the
electrodes. In this paper all electrodes are therefore as-
sumed to be cylindrically symmetric. It is useful to make
a power-series expansion of the potential about point
(z=0,r =0). With the restriction to cylindrical symmetry
the series can be expressed as

V(r,z)=Coy+C H(r,z2)+C,H,(z,r)+C3H;(r,z)
+C4Hy(r,z)+CsHs(r,z)+CeHg(r,z)+ - -+
(5)
where
H(r,z)=z/s ,
Hy(r,z)=(2z%—r?)/s?,
Hy(r,z)=(2z3=32zr%)/s3,
H,(r,z)=(82*—24z%r24+3z%) /5%,
Hs(r,z)=(82°—40z3r2 4+ 152r*) /s> ,
Hg(r,z)=(162°—120z2490z%r*—5r%) /s .
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The H; functions (spherical harmonics) are homogeneous
polynomials in z/s,r/s with the numerical coefficients
chosen so that each satisfies Laplace’s equation. The C;
are arbitrary constants with the units of potential and s is
a distance to be chosen to suit the circumstances of the
problem. The choice of s affects whether the series of Eq.
(5) is convergent. In the present context the series is use-
ful only in a volume about the origin in which all but the
first few terms are negligible. (The spherical harmonics
are defined only to an arbitrary factor and other authors
have chosen a different normalization.?2—24)

For the present problem further restrictions simplify
the situation. The terms involving Cy and C, correspond
to the ideal potential, Eq. (1). The odd-order terms might
have been omitted because it is well known that the way
to make them zero is to make both the electrodes and the
applied potentials have reflection symmetry in the z =0
plane. In this paper the electrode structure is assumed to
have reflection symmetry in the z=0 plane. The odd-
order terms in Eq. (5) are included here because it is some-
times desirable to consider the consequences of a general
set of applied potentials. The terms involving C, and Cg
are therefore the leading departures from the ideal. The
ideal electrodes represented by Egs. (3) and (4) have the
special quality of yielding C;=0 for all even j greater
than 2. If the odd-order terms are made small by making
the applied potentials symmetric about z=0 then a good
approximation to the ideal potential will always exist in a
small volume around the origin. The problem then is to
find ways to increase this volume without having unduly
large electrodes.

The C; of Eq. (5) are linear functions of the potentials
applied to the electrodes. It is useful to make some other
definitions to separate the effects of applied potentials
from the effects of electrode shape. It is necessary to
choose an arbitrary zero for the potential. Here the poten-
tial is taken to be zero at large distances from the elec-
trodes. To the extent that the electrodes form a nearly
closed surface constituting an electrostatic shield the po-
tential inside the trap is unaffected by the applied poten-
tials on the outside. Accordingly, in this paper the ring
electrode is used as a reference and is assumed to have
zero potential. In view of the assumed mechanical sym-
metry of the endcaps, a general potential distribution can
be expressed as a linear combination of a symmetric func-
tion V,(r,z) and an antisymmetric function V,(r,z). More
specifically, a general solution is

V(r,z)=P,V,(r,z)+P,V,(r,z) . (6

If both the shielding is incomplete and the ring is not at
zero potential, then Eq. (6) should have an additional term
which is proportional to the potential of the ring elec-
trode. Normalization of the two potential functions is ar-
bitrary and our choice is that they have the value one on
the endcap where z is positive. It is convenient to express
these functions in the form of Eq. (5), yielding

Ve(r,z)=A0+A2H2(r,Z)
+A4H4(r,z)+A6H(,(r,z)+ T, (7
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Vo(r,z)=AH(r,z)+ A3H;(r,z)
+A5H5(r,2)+"' . (8)

The coefficients A; are dimensionless and serve to
describe the potential distribution without reference to the
potentials applied to the electrodes. Some specific expres-
sions in this language may be helpful. If ¥'* is the poten-
tial (relative to the ring) of the endcap where z is positive
and ¥V~ is that of the other one, then P,=(V*4+V~)/2
and P,=(V*—V7)/2. The coefficient 4 of Eq. (1) is
P,A,/s* and the electric field at the center of the trap is
Po A 1 /s.

In some atomic physics applications it is important to
know the currents induced in the connection to one of the
electrodes by a moving charge in the trap.?* Shockley?®
has shown that the current to an electrode due to a mov-
ing charge at an arbitrary point is proportional to the elec-
tric field at the point due to having the test electrode at
unit potential and all the other electrodes at zero poten-
tial. For the + z endcap this potential distribution is
achieved by having P,=P,=0.5, and the electric field at
an arbitrary position is easily determined from Egs.
(6)—(8).

The objective of this report is to provide data and other
information to allow the design of electrode systems
which provide an adequate approximation to Eq (1). The
general strategy is to calculate A4;, j=0—6, for a great
many specific cases and to work out some general rules
for how to achieve small 44 and A¢. The shapes exam-
ined are restricted to those which are reasonably close to
the ideal given by Egs. (3) and (4) and which otherwise are
judged to be either instructive or practical.

III. METHODS

The numerical method used here involved first finding
the surface charge density on the electrode surfaces. An
approximate numerical representation was achieved by di-
viding the electrode surfaces into zones each of which had
approximately uniform surface charge density on it. Then
the effect of each zone was approximated by replacing it
with a similar zone which had a uniform charge distribu-
tion. Numerical values of the charge densities were deter-
mined by choosing those values which yielded the correct
potential at a grid of points across the electrode surfaces.
Once the surface charge density was adequately represent-
ed it was possible to calculate either the potential distribu-
tion or the coefficients of the spherical harmonic expan-
sion.

A more specific description of the procedure follows.
First divide the electrode’s surface into N (cylindrically
symmetric) zones each of which has approximately uni-
form surface charge density. Let o; be the surface charge
density of zone j. Choose a point (7;,z;) on the surface in
each zone and call its potential V;. The potential is uni-
form across each of the electrodes so the values of ¥; cor-
responding to one electrode will all be identical. Define
B;; such that the potential at the point (#;,z;) due to a sur-
face charge density o; is Bj;0;.

The potential due to different charges combine linearly
with the result
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N
Vi=2 Byoj; . 9
j

The V; are known and the B;; can be evaluated by an ap-
plication of Coulomb’s law. The set of equations (9) can
then be solved by standard numerical methods?’ to yield a
set of ;. This procedure can yield a quite accurate solu-
tion if the division of the surfaces can be carried out to
provide an adequately accurate representation of the sur-
face charge density without making N unduly large. The
details of how the zones are created is unimportant as
long as each of the zones is small enough. What one con-
siders small enough depends on the specific problem.
Here the maximum interest is the potential near the center
of the trap, and in this case large zones are acceptable on
the more remote portions of surfaces (indeed, the very re-
mote surfaces may be ignored altogether).

The elementary surfaces used here were small segments
of a cone. Such surfaces can conform exactly to those
portions of the electrode surfaces which are represented
by straight lines in Fig. 1. Those portions of the surface
which are represented by curved lines in Fig. 1 are a more
difficult problem. In this case two points were chosen on
the curved surface and the conical segment was generated
by connecting the points by a straight line in the (7,2)
plane. This system, while operationally simple, is prob-
lematic due to all of the approximating conical segments
being on one side of the surface they were to represent.
To reduce this and other problems, adjacent pairs of coni-
cal segments were assumed to have the same surface
charge densities. Thus each of the zones (of uniform
charge density) referred to above consisted of two conical
segments. This doubling of the number of conical seg-
ments did not seriously complicate the numerical pro-
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FIG. 1. Definitions of three electrode designs. Design A is
simple and compact. Design B is fully shielded in such a way
that a laser beam or other probe can be injected. Design C is
also fully shielded and relatively compact.

cedure and provided much better conformity to the hyper-
bolic surfaces. The point (r;,z;) within the zone where the
potential V; was specified was the vertex between the two
segments. This system resulted in the point (r;,z;) being
exactly on the electrode surfaces; however, in the case of
the hyperbolic surface the approximating surface charge
density was on the average slightly displaced. To antici-
pate a result discussed below, this displacement was the
dominant source of error in the calculation. Nevertheless,
by making the zones small enough it was possible to make
the error small.

Application of the above numerical procedure requires
calculation of the potential due to a uniform surface
charge on the conical ring. Let a be the angle of the coni-
cal segment with respect to the z axis and let (r,,z,) be a
reference point on the surface. Further let (r,,z;) be
another point on the surface defined by

ri=r,+xsina ,
zy=2z,+x cosa ,

where x is a measure of distance along the surface. The
potential at an arbitrary point (7,z) is given by

Vir,z)=

o % prnridxdd
I Nl (10)

21 €
where X2=(z—z,)?+r*+ri—2rricos6, and x, and x,
correspond to the edges of the conical segment. The in-
tegration over the 6 variable can be carried out analytical-
ly in terms of the complete elliptic integral of the first
kind, K (k?),
o x, ry+X sina

Vir,z)=—

k3dx , 11
e Ix R K(k*)dx (11)

where R2=(z —z,)* +(r+r;)%
4rr 1
R 2
w/2 do
K(kY)= —_—.
f 0 1—kZ%inf

The integral of Eq. (11) can be evaluated by numerical
quadrature. In one important circumstance this integra-
tion is difficult. The diagonal elements Bj; involve
evaluation of the potential due to a charged surface at a
point on the surface. At this point the variable k equals
unity and the function K is infinite. This problem is
solved by breaking the integral into two parts one of
which is a small region in the neighborhood of the singu-

larity. Near the singularity the elliptic function K can be
well approximated by?®

16
k2

k=

I

K(k?)=0.51n (12)

With this approximation the integration over the singular-
ity can be done analytically,

Equation (11) served to determine the B;; needed for
Eq. (9). Once the o; were determined it also could be used
to determine the potential at any point in the trap by sum-
ming the contributions of the elementary surfaces. The
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A; were determined by expanding Eq. (11) in a Taylor
series for the special case r=0, for which k=0 and
K(0)=m/2. In this case the integral and the necessary
derivatives can all be done analytically; however, the re-
sult is algebraically complicated. The method actually
used was to do the derivatives analytically, then do the in-
tegral numerically. Thus the 4; can be calculated directly
from the charge distribution without first determining the
potential.

A substantial effort was made to evaluate the reliability
of these procedures as they apply to the present problem.
The most important tests were specific to electrode shapes
and are discussed below with the data. It is useful to anti-
cipate one result. For several special cases a study was
conducted of the effects on the 4; of different ways of di-
viding the surfaces into zones. A prescription was adopt-
ed for distribution of the zones based on a characteristic
zone width. As this zone width was varied the number of
zones N varied in a regular way with the form of the dis-
tribution remaining substantially constant. By extrapolat-
ing to zero width it was possible to estimate the error
made by setting N to a comfortable value rather than in-
finity. For a reference case (described below) the absolute
errors in the 4;, j=0—6 were (1,28,22,22,0.6,0.9,—0.2)
X 1078, respectively. These values are representative of
the expected error for other cases. By this standard other
sources of error were made negligible. The computer used
had a precision of approximately 14 digits and truncation
error was a point of concern only in extreme cases. The
expectation is that these errors are small compared to
mechanical errors one would make in the assembly of a
trap for atomic physics work.

The errors caused by failure to make the zones small
enough were highly correlated. In comparing two similar
electrode structures one expects both the results and the
errors of computation to be similar. A result is that the
relative errors are substantially smaller than the absolute
errors. No citable measure of the relative errors is avail-
able.

A situation of particular interest involves two electrode
structures one of which is an extension of the other. The
extension can be considered to be a separate electrode at
the same potential as the adjacent electrode. The differ-
ence of the resulting potential (or the 4;) can be attributed
to the extra electrode. An extra electrode calls for an ad-
ditional term in Eq. (6) which is linear in its potential. To
determine the coefficient for this term it would be neces-
sary to solve Eq. (9) one more time for each electrode.
Even without this additional effort, the differencing tech-
nique referred to above allows an estimation of the coeffi-
cient with enough precision to be useful.

IV. RESULTS

Using the methods of the preceding section, the first
several A; were calculated for a large number of cases
based on three general designs. Figure 1 shows a cross
section in cylindrical coordinates of the three designs,
called A, B, and C. Each of the drawings shows only the
portion of the electrode assembly for positive » and z.
The full electrodes have reflection symmetry about the

z =0 plane and cylindrical symmetry about the » =0 pole.
Each of the designs includes a portion near the center of
the trap with hyperbolic surfaces which match the ideal
design. The differences in the three designs are in the way
the hyperbolic surfaces are terminated. Design A is com-
pact and simple. The principal inadequacy of this design
is that for small electrodes the region in the center of the
trap is not well shielded from disturbances outside the
electrode structure. For instance, the trap potential could
be affected significantly by the structure used to support
the electrodes. Rather than include the supports and
wires in the model, we use design A here to illustrate
some interesting trends. Designs B and C are much better
shielded and can be counted as practical designs. In both
of these cases wires and mounting brackets outside the
structure can be expected to have little effect on the po-
tential near the trap center. Design B has an opening to
admit a laser beam (or other probe) with the sides of the
channel between the electrodes being parallel to the line
r=V2z [see Eq. (2)]. Variables R, and Z, were set to
large values (R,=2.5, Z,=R,/V2) such that they did
not significantly affect the 4;. Design C is compact and
closed, with the channel defined by two conditions: (1)
The four points in Fig. 1 marking the ends of the channel
form a rectangle with length 0.25R, and width 0.05R;
(2) the sides are parallel to the line, »=V"2z. In design B
a reduction of R; simply removes some of the ring and
leaves the endcap unchanged. For design C a similar
reduction of R, leaves the size, shape, and orientation of
the channel unchanged. In this case the location of the
channel is changed requiring a change in the shape of
each of the electrodes.

The surface charge densities were calculated for
R,=1.0 and a large variety of values for the variables Z,
Z,, and R, with both even and odd potential distribu-
tions. The results are reported by giving 4;, j=0—6, us-
ing the convention that s=R,. A quality which these
designs have in common is that if the hyperbolic part of
the surface is made large the potential approaches the
ideal. This feature permits a check of the procedures in
circumstances in which some of the results are known in
advance.

Tables 1, I1, and III display some of the results for cases
A, B, and C, respectively. These data are all for the con-
dition Z,=0.707 11. Table IV provides further data for
design A with a range of values of Z, but only for values
of R, and Z, which yield 4,=0. For each of the elec-
trode structures it was necessary to choose a system for
dividing the surfaces into zones in accordance with the
general method described above. A great many systems
were tried in an effort to find one such that the results
were insensitive to the details of the zone division. The
system used did not quite achieve this objective. There-
fore, the data of Tables I—IV must be interpreted with
these issues in mind.

The procedure used for dividing the electrode surfaces
into zones involved choosing a sequence of points on the
lines of Fig. 1 which represent the surfaces. These points
were then connected by straight lines to form the small
conical segments used to approximate the surface. For
each electrode a nominal width was chosen. Then the
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TABLE 1. Computed coefficients 4; in the spherical harmonic expansion of the potential for electrode design A. The variables of

columns 1 and 2 are defined in Fig. 1. For these data Z3=0.5, Ro=1.

Z] R 1 Ao A 2 A4 A 6 A 1 A 3 A 5
1.80000 1.23709 0.51337377 0.49332729 —0.00521811 0.00182466 1.15044145 0.26024358 —0.00474744
1.80000 1.28330 0.50865632 0.49578103 —0.00343851 0.00116186 1.14539261 0.26609607 —0.00476787
1.80000 1.34132 0.50498224 0.49761065 —0.002006 50 0.00065924 1.14125734 0.27081623 —0.00472393
1.80000 1.41421 0.50244808 0.49883060 —0.000995 69 0.00032063 1.13827483 0.27418108 —0.004 66006
1.80000 1.48995 0.50114023 0.49944677 —0.00046679 0.00014871 1.13667892 0.27596849 —0.00461539
1.80000 1.56571 0.50051464 0.49973829 —0.00021209 0.00006718 1.13589521 0.27684303 —0.004 59090
1.80000 1.67066 0.50016059 0.49990244 —0.00006753 0.00002127 1.13544214 0.27734769 —0.00457602
1.80000 1.75816 0.50005667 0.49995041 —0.00002496 0.00000780 1.13530659 0.27749852 —0.00457144
1.80000 1.85246 0.50001630 0.49996896 —0.000008 36 0.00000256 1.13525321 0.27755788 —0.004 569 60
1.80000 194600 0.50000276 0.49997539 —0.00000296 0.00000085 1.13523542 0.27757773 —0.00456906
1.80000 2.05000 0.49999867 0.49997716 —0.00000119 0.00000029 1.13522976 0.27758399 —0.004568 83
1.80000 2.20291 0.49999725 0.49997790 —0.00000067 0.00000013  1.13522796 0.27758602 —0.00456879
1.80000 2.36029 0.49999734 0.49997773 —0.00000062 0.00000011 1.13522792 0.27758603 —0.004568 74
1.80000 2.50000 0.49999704 0.49997802 —0.000000 61 0.00000011 1.13522772 0.27758629 —0.00456879
1.00000 2.50000 0.49224485 0.50341122 0.00324819 —0.00096647 1.12416518 0.28972744 —0.004063 84
1.02847 2.50000 0.49474903 0.50233444 0.00218218 —0.00066255 1.12776977 0.28580745 —0.00425688
1.06459 2.50000 0.49684147 0.50141167 0.00130378 —0.00040239 1.13075952 0.28253194 —0.00439591
1.11048 2.50000 0.49837998 0.50071808 0.00066453 —0.00020753 1.13294290 0.28011995 —0.00448576
1.15853 2.50000 0.49921650 0.50033691 0.00031967 —0.00010049 1.13412634 0.27880972 —0.004 53009
1.20702 2.50000 0.49963386 0.500 14562 0.000 14830 —0.00004681 1.13471580 0.27815617 —0.00455109
1.27475 2.50000 0.49987828 0.50003272 0.00004800 —0.00001523 1.13506012 027777235 —0.00456309
1.33169 2.50000 0.49995278 0.49999842 0.00001750 —0.00000561 1.13516524 0.27765567 —0.00456664
1.39328 2.50000 0.49998250 0.49998467 0.00000532 —0.00000177 1.13520712 0.27760897 —0.00456811
1.45602 2.50000 0.49999256 0.49997999 0.00000119 —0.00000046 1.13522127 0.27759312 —0.00456856
1.50576 2.50000 0.49999551 0.49997892 0.00000007 —0.00000011 1.13522577 0.27758907 —0.004568 67
1.61016 2.50000 0.49999682 0.49997807 —0.000000 54 0.00000008 1.13522735 0.27758653 —0.00456876
1.71809 2.50000 0.49999684 0.49997782 —0.00000061 0.00000011 1.13522709 0.27758603 —0.004 568 82
1.80000 2.50000 0.49999704 0.49997802 —0.00000061 0.00000011 1.13522772 0.27758629 —0.00456879
1.00000 1.23709 0.50047586 0.49939123 —0.000000 66 0.00014013 1.13308512 0.27960884 —0.00420792
1.02847 1.28330 0.50020386 0.49972324 —0.00000077 0.00006195 1.13385718 0.27894963 —0.004394 56
1.06459 1.34132 0.50006779 0.49989123 —0.00000056 0.00002154 1.13446046 0.27838520 —0.00449802
1.11045 1.41421 0.50001450 0.49995591 —0.000000 65 0.00000554 1.13486585 0.27797335 —0.00454522
1.15853 1.48995 0.50000093 0.49997305 —0.00000057 0.00000131 1.13506760 0.27776096 —0.004 56075
1.20702 1.56571 0.49999812 0.49997703 —0.00000059 0.00000035 1.13515965 0.27766204 —0.00456588
1.27475 1.67066 0.49999704 0.49997784 —0.000000 60 0.00000013 1.13520732 0.27760856 —0.004 56807
1.33169 1.75816 0.49999716 0.49997784 —0.00000061 0.00000011 1.13522081 0.27759383 —0.00456852
1.39328 1.85246 0.49999726 0.49997767 —0.00000059 0.00000011 1.13522561 0.27758835 —0.004568 68
1.45602 1.94600 0.49999702 0.49997793 —0.000000 64 0.00000012 1.13522699 0.27758676 —0.00456877
1.50342 2.04657 0.49999685 0.49997827 —0.00000039 0.00000003 1.13522742 0.27758738 —0.004568 70
1.55663 2.12459 0.49999681 0.49997780 —0.00000055 0.00000009 1.13522693 0.27758626 —0.004 568 80
1.61016 220291 0.49999700 0.49997797 —0.00000059 0.00000010 1.13522755 0.27758630 —0.00456876
1.71809 2.36029 0.49999714 0.49997753 —0.000000 62 0.00000012 1.13522729 0.27758577 —0.00456877

TABLE II. Computed coefficients 4; in the spherical harmonic expansion of the potential for electrode design B. The variables of

columns 1 and 2 are defined in Fig. 1.

Z, R, Ao A, A, A A, A, As

1.00000 1.32010 0.50002371 0.49994329 —0.00000059 0.00000852 1.13523868 0.27754802 —0.004 55065
1.03122  1.36539 0.50000738 0.49996315 —0.00000061 0.00000342 1.13523044 027757031 —0.00456166
1.06488 1.41421 050000074 049997272 —0.00000060 0.00000127 1.13522890 0.27758103 —0.004 56621
1.11563  1.48798 0.49999702 0.49997560 —0.00000061 0.00000036 1.13522508 0.27758422  —0.004 568 34
1.18828 159392 0.49999657 0.49997686 —0.00000060 0.00000012 1.13522568 0.27758574 —0.004 56876
127475 172100 0.49999671 0.49997674 —0.00000060 0.00000010 1.13522576 0.27758567 —0.004 56879
1.34230 1.82404 049999630 0.49997677 —0.00000059 0.00000010 1.13522506 0.27758564 —0.004 56883
1.40500 1.92000 0.49999653 0.49997651 —0.00000063 0.00000012 1.13522517 0.27758531  —0.004 568 83
145602  2.03000 0.49999654 0.49997688 —0.00000061 0.00000010 1.13522565 0.27758576 —0.004 568 82
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TABLE III. Computed coefficients A4; in the spherical harmonic expansion of the potential for electrode design C. The variables
of columns 1 and 2 are defined in Fig. 1.

Zl R 1 Ao Az A4 A6 A 1 A 3 A 5
0.98023 1.33646 0.49981193 0.50020491 —0.00000068 —0.00005820 1.13513617 0.27784346 —0.004 69362
1.02691 1.40461 0.49994167 0.50004298 —0.00000050 —0.00001676 1.13519703 0.27766159  —0.004 60497
1.07554 1.47509 0.49998185 0.49999370 —0.00000057 —0.00000429 1.13521704 0.27760564 —0.00457824
1.12421 1.54543 0.49999270 0.49998085 —0.00000059 —0.00000100 1.13522303 0.27759091 —0.00457113
1.17452 1.61795 0.49999625 0.49997713 —0.00000061 —0.00000015 1.13522544 0.27758673 —0.004 56924
1.22549 1.69128 0.49999615 0.49997599  —0.00000059 0.00000006 1.13522397 0.27758530 —0.00456895
1.27714  1.76552 0.49999646 0.49997619  —0.00000060 0.00000009 1.13522478 0.27758540 —0.004 568 82
1.32937 1.84042 0.49999666 0.49997648 —0.00000062 0.00000010 1.13522549 0.27758559 —0.004 568 80
1.38219 191581 0.49999673 0.49997681 —0.00000060 0.00000009 1.13522599 0.27758594 —0.00456876
1.43504 199232 0.49999607 0.49997653  —0.00000060 0.00000010 1.13522457 0.27758543 —0.004568 83
1.48840 2.06910 0.49999621 0.49997683 —0.00000060 0.00000010 1.13522518 0.27758573  —0.004 568 82

widths of the zones were adjusted slightly to allow an in-
tegral number to be smoothly distributed over the curved
surface. On the more remote portions of the surface
larger zones were assigned, and at the sensitive places,
such as near the center and near sharp corners, zones were
divided in half enough times that the charge distribution
could be reasonably represented. The details of the algo-
rithm for division is not important; however, it is impor-
tant that a regular system was used. As the nominal
width of the segments was varied the total number of seg-
ments varied in a regular way. The 4; also varied in a
regular way and it was possible to extrapolate reasonably
to zero width. The largest number of zones which could
be easily handled was about 250; however, in this case the
time required to solve the linear equations was excessive.
Also the larger number of arithmetic operations produced
more “random” noise from numerical truncation error.
The “standard” width of a segment on the hyperbolic sur-
face of the endcaps was such that the component in the r
direction was 0.05. Similarly the width of a segment on
the ring had a z component of 0.035. These widths result-
ed in about 60—100 zones.

The extrapolation to zero-width zones was done for
many electrode structures. The most intense application
of this test was for design A with moderate-sized elec-
trodes. This yielded errors in the 4; of (1+2, 28+6,
22+4, 2245, 0.6+0.6, 0.9+0.9, —0.2+0.4)x107° for
Jj=0—6, respectively. The stated uncertainties are based
on estimates of the reliability of the extrapolation pro-
cedure. Within the tolerances cited the errors were insen-
sitive to electrode size and the data of Table I would be a
little more accurate with these corrections. The data of
Figs. 2 and 3 were adjusted to compensate for these errors.
These corrections were not applied to the data in the
tables because the improvement was small and they could
not be applied to other geometries. These extrapolations
were too difficult to carry out for every case; however, a
few checks indicated that all the data of Tables I—IV are
subject to similar errors. The expectation is that this level
of uncertainty is acceptable for most applications in atom-
ic physics.

In the limit of large R,, Z, the even A4; are known to
approach 0.5, 0.5, 0.0, 0.0 for all three designs. When the

corrections discussed above are applied to the data of
Table I these limits are approached well within the es-
timated uncertainties in the corrections. When the odd
A; are similarly corrected the values for j=1,3,5 ap-
proach 1.135253, 0.277 608, —0.004 570. Gabrielse?® has
examined this limit in another context and has reported
corresponding values (translated to the language used
here) of 1.13, 0.28, and —0.0045.

The absolute uncertainties implied by the above discus-
sion are too large to justify the number of digits given in
these tables. The extra digits are given to permit exam-
ination of the changes which result from small changes in
the sizes of the electrodes. The errors of computation are
highly correlated such that for two similar models the er-
rors are similar.

An interesting design option is to use design A but to
surround the trap by another electrode with adjustable po-
tential. Such an electrode can serve as a shield but can
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FIG. 2. Variation of the A4; with ring-electrode truncation
for design A with Z;,=0.70711. The endcap electrode was
large and constant (Z, =1.8).



3652

TABLE IV. Computed coefficients 4; in the spherical harmonic expansion of the potential for electrode design A.

EARL C. BEATY

of columns 1—3 are defined in Fig. 1. The data presented here are selected for the condition that 4,=0.

The variables

z, R, Z, Ao 4, Ag % Ay As
0.87100 1.30000 0.30000 0.84751887  0.84697667 0.00052259  2.908 53891 1.902 84395 0.946 59343
0.88691 1.30000 0.40000 0.75757353  0.75749554 0.00004272  2.16088861  0.88747459 0.19337941
092810 1.30000 0.50000 0.66668539  0.666 57577 0.000008 33 1.69994222  0.530399 84 0.04503400
097771 1.30000 0.60000 0.58146356  0.58126135 0.000016 72 1.38246268  0.37012649 0.006 824 08
1.03452 1.30000 0.70000 0.50519549  0.504 84955 0.00004312  1.14840984  0.28342078 —0.004 069 87
1.09744 1.30000 0.80000 0.43882017 0.43829012 0.00008770 0.96818191  0.22912825 —0.006 89127
1.03656 1.50000 0.40000 0.75756365  0.75752853 0.00003854  2.16097242  0.88716716 0.19347300
1.06995 1.50000 0.50000 0.66665612  0.666 63637 0.00000324  1.70016483  0.52985947 0.045 101 82
1.11255 1.50000 0.60000 0.58138975  0.58136865 0.000 000 45 1.38296068  0.369 32878 0.006 822 88
1.16112  1.50000 0.70000 0.50505109  0.50502694 0.000 000 82 1.14938392  0.28241462  —0.004 187 37
121574 1.50000 0.80000 0.43860384  0.43857181 0.00000287 0.96989170  0.228028 51 —0.007 161 34
1.23920 1.50000 0.84000 0.41474165 0.41470397 0.00000432  0.90929288  0.21142675 —0.007 486 29
1.25124 1.50000 0.86000  0.40336746  0.403 32668 0.00000519  0.88099365  0.20391813 —0.007 55055
1.26349 1.50000 0.88000 0.39235406  0.39230975 0.00000618  0.85392079  0.19686566  —0.007 56642
1.27593 1.50000 0.90000 0.38169240  0.38164447 0.00000727  0.82800126  0.19022507 —0.007 54357
1.34094  1.50000 1.00000 0.33333964  0.33326788 0.00001460 0.71354394  0.16199791 —0.007079 83
1.41000 1.50000 1.10000 0.29236359  0.29226135 0.00002473  0.61974996  0.13989099 —0.006374 41
1.48232 1.50000 1.20000 0.25758537  0.25745032 0.00003671  0.54184056  0.12200295 —0.005 64342
1.10910 1.60000 0.40000 0.75756367  0.75752756 0.00003999  2.16097365  0.88714993 0.19347678
1.136 51 1.60000 0.50000 0.666 65567  0.666636 88 0.00000332  1.70017629  0.52982843 0.451 10609
1.17929 1.60000 0.60000 0.58138946 0.58137084 0.000000 13 1.38300032  0.369269 74 0.006 825 64
1.22526 1.60000 0.70000 0.50504816  0.50503022 0.00000004  1.14947485  0.28231216  —0.00419182
1.27654  1.60000 0.80000 0.43859773  0.43857980 0.00000042  0.97008359  0.22788265 —0.007 17928
1.29859 1.60000 0.84000 0.41473374  0.41471527 0.00000073  0.90954099  0.21126664  —0.00751143
1.30994 1.60000 0.86000 0.40335902  0.403 34006 0.00000093  0.88127431 0.20375164  —0.00757972
1.32149 1.60000 0.88000 0.39234507  0.39232559 0.00000116  0.85423657 0.196693 85 —0.007 59979
1.33325 1.60000 0.90000 0.38168344  0.38166322 0.00000143  0.82835574  0.190048 57 —0.00758143
1.39493 1.60000 1.00000 0.33333705  0.33331113 0.00000348 0.71414134  0.16181744  —0.007 14208
1.46096 1.60000 1.10000 0.29239019  0.292 35462 0.00000687  0.62068764  0.13974397  —0.006462 57
1.53065 1.60000 1.20000 0.25768704  0.25763875 0.00001157  0.54324476  0.12193395 —0.005756 70
1.16622 1.70000 0.40000 0.75756332  0.757 52987 0.00003809  2.16097681  0.887 15340 0.193477 60
1.19250 1.70000 0.50000 0.66665568  0.666 637 54 0.000003 13 1.70018033  0.529 82256 0.045 107 34
1.24356  1.70000 0.60000  0.58138898  0.58137125 0.00000010  1.38301011  0.36925279 0.006 826 32
1.28951 1.70000 0.70000  0.50504820  0.50503138 —0.00000008 1.14950649  0.28227903 —0.004 192 89
1.33818 1.70000 0.80000 0.43859649  0.43858114 0.00000003  0.97015499  0.227 82658 —0.007 18504
1.35901 1.70000  0.84000 0.41473216 0.41471730 0.00000009 0.90963782  0.21120140  —0.00752005
1.36973  1.70000 0.86000  0.40335723  0.40334257 0.00000014  0.88138601  0.203 68202 —0.007 589 89
1.38066 1.70000 0.88000  0.39234322  0.392328 68 0.00000019  0.85436495  0.19661991 —0.00061173
1.39178 1.70000  0.90000 0.38168143  0.38166703 0.00000025  0.82850229  0.18997070  —0.00759522
1.45031 1.70000  1.00000 0.33333626  0.33332158 0.00000078  0.71440771  0.16172605 —0.00716710
1.51334 1.70000 1.10000  0.29239804  0.292 38127 0.00000181  0.62113013  0.13965569 —0.006 50101
1.58030 1.70000 1.20000  0.25772085  0.257700 14 0.00000348  0.54393366  0.12187213 —0.005 809 50
1.24250 2.00000 0.50000 0.66665545  0.666 63645 0.00000358 1.70017848  0.52981749 0.045107 19
1.35665 2.00000 0.60000 0.58138888  0.58137035 0.00000021 1.38301221  0.36924529 0.006 826 42
1.45700 2.00000 0.70000 0.50504799  0.50503092 —0.00000009  1.14951827  0.28226404  —0.00419329
1.52262  2.00000 0.80000 0.43859688  0.43858150 —0.00000004 0.97019311  0.22779729 —0.007 18771
1.54305 2.00000 0.84000 0.41473240 0.41471776 —0.00000002  0.90969255 0.21116440  —0.00752433
1.55300 2.00000 0.86000 0.40335741  0.40334313 —0.00000001 0.88145112  0.20364091 —0.007 59523
1.56285  2.00000 0.88000 0.39234328  0.39232937 —0.00000001  0.85444188  0.196574 65 —0.00761820
1.57272  2.00000 0.90000 0.38168113  0.38166757 0.00000000  0.82859199  0.18992091 —0.007 602 96
1.62386  2.00000 1.00000 0.33333622  0.33332427 0.00000002  0.71459529  0.16165593 —0.007 18330
1.67875 2.00000 1.10000 0.29240116  0.29239060 0.00000004  0.62147842  0.13957340  —0.00652912
1.73770  2.00000 1.20000 0.25773552  0.25772605 0.00000009  0.54452254  0.12179508 —0.00585229

also serve as a means to make small adjustments to the
C;. Traps using this effect have been built, and Ga-
brielese’?* has calculated properties of some specific
designs. The potential near the center of the trap and all

the C; are linear functions of the potential of the shielded
electrode. There are many cases in Tables I and II of
pairs of electrode structures in which one is an extension
of the other. In such cases the extension may be regarded
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FIG. 3. Logarithmic plot of the variation of the 4; with ring
truncation for design A with Z;=0.70711. The endcap elec-
trode was large and constant (Z,;=1.8). Only absolute values
are displayed and the curves are truncated on the right to avoid
changes of sign.

as an extra electrode. The data of Tables I yield the effect
of having the extra electrode at only one potential (that of
the adjacent electrode). While this does not provide a gen-
eral solution it is a useful basis for estimation. In review-
ing these data some generalizations of this type are point-
ed out.

Figure 2 shows some data based on design A which il-
lustrates some important effects. In this case the endcap
electrodes are large (Z;=1.8) and positioned with
Z,=0.707 11. The outer radius R, of the ring electrode
is varied and the response of the 4; is plotted. In the lim-
it of large R, the even A; are known to approach ideal
and the odd 4; are reported above to approach 1.35253,
0.277608, —0.004570. The displayed ordinate is the
difference between A;(R;) and these asymptotic values.
The displayed curves do not go to zero at large R, be-
cause of errors in the computation. The absolute values
of some of the same data are shown in Fig. 3 in logarith-
mic form. In this instance a broader range of data is
covered and it is apparent that the variation of each of the
A; is approximately exponential with increasing electrode
size. Other data from Table I allow a similar plot depict-
ing the results of changing the endcap size. The results
are quite similar except for a change in sign of each of the
A;. From Figs. 2 and 3 we see that if R; > 2.0 the shield-
ing is effectively complete and there is little change in any
of the 4; produced by changes in the size of the ring.
Other data in Table I show that if Z, > 1.6 the size of the
endcaps are of little practical consequence.

Truncation of the hyperbolic part of the surfaces on the
ring and endcap electrodes produce effects of different
sign with the result that it is possible to truncate both and
keep A4=0. This condition is referred to below as “bal-
anced” truncation. Tables I, II, and III include such data
for each of the three electrode designs. (In Table I these
data have 4,=0.6X 10~% in anticipation of the correction
discussed above.) Figure 4 displays the electrode sizes im-
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FIG. 4. Truncation conditions to produce 4,=0 for designs
A, B, and C, with Z,=0.707 11.

plied by these data. At the upper right of the graph the
curves are somewhat irregular because A, is insensitive to
the electrode sizes and errors in the calculation have an
enhanced effect. Figure 5 displays data from Table I for
those cases which have balanced truncation. Figure 5 is
similar enough to Fig. 2 that it may be helpful to remark
on some of the differences. In Fig. 2, Z, was held con-
stant as R; was varied, whereas in Fig. 5, Z, was varied
to keep A4 constant. Also the data of Fig. 2 were correct-
ed for an error (discussed above) but the comparable er-
rors for much of the data of Fig. 5 were not evaluated.
Without this correction the data of Fig. 5 do not approach
the known asymptotic values as closely. Note that it is
the odd-order coefficients in Fig. 5 which show the largest
departure from the asymptotic values. Also note that to
the tolerance of the calculation the asymptotic values of
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FIG. 5. Variation of A4; with R,, with Z, related to R, by
the condition that 4,=0.
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the even order A4; in Fig. 5 are achieved for all values of
R, >1.5. It is a reasonable conjecture that the next few
terms in the even series are also small for this cir-
cumstance. However, for values of R, as small as 1.5 the
gap between the electrodes is large enough that the shield-
ing is poor. Thus the potentials of other objects in the
neighborhood will be rather important. Also it may be
important to have the ring electrode at “ground” poten-
tial.

A small increase in the endcap size causes a decrease in
Ay, and a small increase in the ring causes an increase. In
either case there was a change in each of the 4; approxi-
mately proportional to the change in surface area. Figure
6 shows the partial derivative of 4, with respect to R
holding Z, constant. These data were generated as a
by-product of the trial-and-error procedures used in find-
ing the conditions of balanced truncation for design A.
These data provide a way to estimate the effect on A4, of
some flaws in construction of electrodes. If the change in
the ring is about 1.6 of the change in the endcap then 4,
is changed little. A small increase in Z; produces more
surface area than the same size increase in R.

The data presented in Tables I-III and Figs. 1—6 are
all for electrodes with Z,=0.707 11, this being the case of
maximum interest. Most of the general conclusions from
above can be expected to apply for other values of Z,.
Table IV contains data on design A with a variety of
values for Z, and with Z; and R, chosen to yield 4,=0.
A change in Z; involves more than a displacement of the
endcaps; the shape of the hyperbolic surfaces change as
well. Figure 7 is a plot showing some of the geometrical
conditions required to produce A4,=0. The curve for
R =2.0 has an irregularity on the left which is the result
of errors in the calculation. In this circumstance both the
ring and the endcaps are rather large and the electrodes
are rather close together with the result that A, is small
and nearly independent of all of the variables. The data
displayed at the left end of the curve for R;=2.0 are in-
cluded only because they help to define the range of valid-
ity of the data.
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FIG. 6. The partial derivative of A4 with respect to R; (con-
stant Z,) plotted vs R, for designs A and B with balanced trun-
cation.
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FIG. 7. Conditions for 4,=0 for design A. These data are
an extension of those displayed in Fig. 4 to include variation of
Z,.

Figure 8 shows the sensitivity of 4, to small changes in
Z, with everything else constant. These data are not de-
rived from Table IV but are a byproduct of the search
procedures used in finding the values of Z; which yield
A,=0. Figure 9 reports data on the partial derivative of
A, with respect to Z, with all other dimensions constant.
These data allow an estimate of the effect on 44 and A4,
of adding a small electrode at the endcap potential. From
Table IV it is possible to determine the change in ring-
electrode size which is required to balance a change in the
size of the endcap electrodes. From the combination of
these results it is possible to deduce the effect on 44 of a
small extra electrode at the ring potential. The small elec-
trodes referred to here must be in very special places for
the results to apply literally. Nevertheless it should be
possible to make useful estimates of the effects of a larger
electrode positioned to function as a shield. An interest-
ing observation from Fig. 9 is that if Z;=0.860 then A4,
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FIG. 8. Derivative of 4, with respect to Z, (constant R;)
for the conditions of balanced truncation using design A.
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FIG. 9. Derivative of A4, with respect to Z; (constant R;)
for the conditions of balanced truncation using design A.

is independent of Z; for all values of R;. This implies
that for these conditions A4, will also be approximately in-
dependent of the potential of the shield électrode referred
to above. This confirms a conclusion of Gabrielse?> who
explicitly examined a similar electrode structure but with
compensation electrodes included. He discovered that if
Z,/Ry=0.86 then A, is independent of the potential of
the compensation electrode.

V. CONCLUSIONS

In the design of charged-particle traps for precise atom-
ic physics work the equations of motion for the trapped
particles can be made relatively simple by using hyperbol-
ic electrode surfaces near the center of the trap. Some cal-
culated data have been presented which permit a predic-
tion of the effects of other shapes at moderate distances.
The curved surfaces may be terminated quite quickly and
still preserve the essential harmonic character of the trap.
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Some qualitative conclusions may be reached which are
beyond the direct numerical results. Design A is attrac-
tive mostly because the electrodes are small implying good
space utilization and low capacitance. If these qualities
are pressed the shielding will be poor and the potentials in
the trap will be affected by the potentials outside. This
problem can be solved by building a shield electrode
which is electrically insulated from the other electrodes.
If the shield is placed at the endcap potential it will be ef-
fectively an extension of the endcap and A4, will be driven
in a negative and A in a positive direction. Similarly if
the shield has the potential of the ring electrode 4, and
Ag will be pulled in the opposite directions. It follows
that there is an intermediate potential which makes either
A4 or Ag have the value it would have had without the
shield. Also it is a reasonable inference that under these
circumstances the other coefficient will be relatively
small. These general conclusions are independent of the
details of construction of the shield. Some of the data al-
low a reasonable estimate of the magnitude of the effect
of adding another electrode.

With any of the designs discussed it is interesting to
consider dividing one or more of the three electrodes into
two pieces. If the gap is kept small and the two pieces
have the same potential the data reported above will be
reasonably applicable. By adjusting the potential of the
outermost piece it is possible to compensate for other
problems which may have caused the trap to become
anharmonic. Another reason for making such a division
might be to reduce the capacitance of the electrode nearest
the center of the trap. If each of the electrodes is ap-
propriately divided, designs B and C become examples of
design A with shield (and compensation) electrodes added.
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