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A trap for charged particles is an important tool in many important experiments in atomic phys-

ics. The electrodes in many such traps are truncated hyperboloids. Data given here allow evalua-

tion of the effects on trap performance of some of the details of the truncation. It is shown that if
the truncation of the ring and endcap electrodes is done in a "balanced" way the performance degra-

dation can be small. Some specific designs are suggested and some appropriate data reported.

I. INTRODUCTION

For a variety of technical applications it is desirable to
arrange electrostatic potentials to produce a local
minimum (in one dimension), thereby providing a (condi-
tional) trap for charged particles. Some quite remarkable
measurements have been made on ions and elementary
particles using traps of this sort. Electrons, ' positrons,
and positive ions have been trapped one at a time and
some of their properties measured. Clouds of a small
number of ions have been cooled with laser radiation to
very low temperatures. ' Several recent reviews are
available giving both the techniques of trapping and the
spectroscopic applications. '

For many of these applications the ideal potential dis-
tribution, expressed in cylindrical coordinates, is

V(r, z) = Vo+A(2z r), —

~here Vo and A are constants with A having the same
sign as the charge on the particle being trapped. The po-
tential represented by Eq. (1) has a local minimum along
the z axis; however, that point is a local maximum in the
r direction. If charged particles are independently con-
strained to move near the z axis they will be trapped in
the neighborhood of z=0. A magnetic field can be used
to effectively restrain motion in the r direction (the Pen-
ning trap). ' ' Also, a potential of the form of Eq. (1)
can be used without a magnetic field to dynamically trap
particles by making A time dependent (the Paul
trap). ' ' ' ' In either case there is a need to build elec-
trodes which cause the electrostatic potential to be a close
approximation to that of Eq. (1). This paper examines
some of the issues surrounding how to build electrodes
which produce a potential function which is a good ap-
proximation to Eq. (1).

The straightforward way to generate a potential which

This surface divides space into three parts with the result
that three electrodes are required. The equipotential sur-
faces are cylindrically symmetric and therefore the elec-
trodes must have this symmetry. The electrode which in-
tersects the z =0 plane is usually called the "ring. " Let
ro be the radius at which the surface of the ring intersects
the z =0 plane. The ring must have a potential Vo —AI'o,
and its surface must conform to the shape

r —fo =2z (3)

The other two electrodes each intersect the z axis, have
potentials higher than Vo, and are called "endcaps. " Let

approximates a function such as Eq. (1) is to choose a set
of equipotentials which surround the volume of interest,
build electrodes which conform to the shapes of the equi-
potentials, and set the electrode potentials to the appropri-
ate values. In the particular case of Eq. (1) this prescrip-
tion leads to three electrodes, each a hyperboloid, and
each infinite in extent. Many traps of this type have been
built by following this prescription near the center of the
trap and at large distances arbitrarily truncating the hy-
perboloids and installing a suitable mounting arrange-
ment. The electrode designs considered below are all vari-
ations on this prescription. While it is clear that the con-
dition of the remote portions of the electrodes is unimpor-
tant, little information is available to allow a design de-
cision on an appropriate shape at intermediate distances.
A brief review of the solution to the ideal problem will
provide a useful frame of reference.

For this discussion assume that the trapped particles
have positive charge and that therefore A in Eq. (1) is
positive. The equipotential surface which goes through
the center of the trap represented by Eq. (1) is a pair of
cones defined by the equation

=2z
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zo be the point of intersection of an endcap with the z
axis. The corresponding endcap must have a potential

Vo+2AZO, and the surface must conform to the shape

r =2(z z—o) .

The other endcap is not required to have the same value

of zo; however, there is no apparent reason for making it
different and in this paper it is assumed to be the same.
In any case the shape of the surface and the potential are
given by the same formula.

A design choice made for many of the traps which have

been built as approximations to the above prescription is
to have ro ——2zo. This choice allows Eqs. (3) and (4) to be

expressed more simply and causes the potential Vo at the
center of the trap to be the average of the potential of the
ring and endcap electrodes. Because this choice has been
so widely made, it has received special attention in the
data reported below.

For any set of electrodes intended to approximate this
ideal, it is possible to find a numerical representation of
the potential function. However, it is difficult to judge
from a table of potential values how adequate the configu-
ration will be in practice. Indeed, different applications
have different sensitivities to departures from the ideal.
Nevertheless, for many experiments in atomic physics the
needs are very similar. The measure of adequacy used
here involves expansion of the potential function in spher-
ical harmonics. The strategy adopted in this investigation
was to pursue two separate objectives. A series of simple
electrode shapes were examined to determine the trends as
some of the dimensions were varied. The expectation is
that some of these trends can be generalized to more com-
plex and more practical electrode assemblies. The second
part of the investigation was to examine the properties of
some more complex designs which were chosen to be close
to practical. In the latter cases a prescription is available
for constructing relatively small electrodes which provide
a good approximation to Eq. (1).

One of the ways used to build traps with potential func-
tions approaching the ideal is to include "compensation"
electrodes which can have their potentials adjusted to
compensate for special errors. Van Dyck et al. ' reported
good success by placing extra electrodes in the gaps of a
structure which was otherwise constructed to be nearly
adequate. These extra electrodes can be arranged to com-
pensate not only for design inadequacies but some of the
errors of assembly as well. Gabrielse ' i has reported cal-
culations giving some performance characteristics of the
electrode designs similar to those considered here but with
compensation electrodes added. In some circumstances
compensation electrodes can be added with little penalty
because there is an independent need to complete the elec-
trostatic shielding. More generally, the extra electrodes
represent a significant design complication which can be
expected to relieve some problems while compounding
others. In this paper only three electrode systems are ex-
plicitly considered. Nevertheless, by using a differencing
technique it is possible to estimate some of the effects of
adding additional electrodes. The additional information
may be used in the design of compensation electrodes.

A general conclusion is that the errors caused by trun-

cating the hyperbolic electrodes can be made sinall by (1)
making the electrodes larger than necessary, (2) carefully
choosing the shape {the option examined below), and (3)
installing extra electrodes with potentials that can be ad-
justed. These solutions may be used in combination. An
expectation is that it should be possible to make the trun-
cation errors small relative to the errors associated with
problems of construction and assembly. These laboratory
errors will not all have the symmetries which go with the
ideal. None of the three options listed above will help to
correct those errors of construction and assembly which
are not appropriately symmetric.

II. DEFINITION OF THE PROBLEM

Equation (1) is considered an ideal potential for a trap
because it leads to particularly simple equations of motion
for the trapped particles. In the case of the Penning trap
with a magnetic field along the z axis, the z component of
motion is simple harmonic with the result that the fre-
quency of oscillation is independent of the amplitude.
This frequency is also independent of radial position.
Thus a collection of ions with the same charge-to-mass ra-
tio will all have (approximately) the same frequency. The
result is a narrow linewidth for the driven resonance. In
the case of the Paul trap the equations of motion have
been worked out for the ideal potential. ' ' This leads to
secure knowledge of the stability conditions. In these ap-
plications the test of adequacy of an electrode design may
be in how closely the equations of motion match those of
the ideal potential. This test is too complex to apply in a
general way; however, if errors in the potential are small
and known, a perturbation analysis can be expected to
provide a useful approximation in specific cases. Here we
look for a measure of the departure of the potential func-
tion from the ideal which is applicable in a wide variety of
situations.

The cylindrical symmetry of the ideal potential clearly
calls for making the electrodes of this symmetry. This
condition is well defined and can easily be approximately
met by using rotating machinery in the fabrication of the
electrodes. In this paper all electrodes are therefore as-
sumed to be cylindrically symmetric. It is useful to make
a power-series expansion of the potential about point
(z =O, r =0). With the restriction to cylindrical symmetry
the series can be expressed as

V(p, z)=CO+C&Hi(r, z)+CzHz(z, r)+C3H3(p, z)

+C4H4(r, z)+ CqH5(r, z)+ C6H6(r, z)+
(5)

where

H, (r,z) =zls,
H2(r, z) =(2z ri)/s-
Hi(r, z) =(2z 3zr )/s-
Hq(r, z)=(SZ 24z r +3z )ls-
H5(r, z)=(8z 40z r +15zr )Is-
H6(r, z)=(16z —120z r +90z r 5r )!s—
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V(r,z)=P, V, (r,z)+P, V, (r,z) . (6)

If both the shielding is incomplete and the ring is not at
zero potential, then Eq. (6) should have an additional term
which is proportional to the potential of the ring elec-
trode. Normalization of the two potential functions is ar-
bitrary and our choice is that they have the value one on
the endcap where z is positive. It is convenient to express
these functions in the form of Eq. (5), yielding

V, (r,z) =AD+ A2H2(r, z)

+A 4H4(r, z) +A6H6(r, z) +

The HJ functions (spherical harmonics) are homogeneous
polynomials in z/s, r/s with the numerical coefficients
chosen so that each satisfies Laplace's equation. The CJ
are arbitrary constants with the units of potential and s is
a distance to be chosen to suit the circumstances of the
problem. The choice of s affects whether the series of Eq.
(5) is convergent. In the present context the series is use-
ful only in a volume about the origin in which all but the
first few terms are negligible. (The spherical harmonics
are defined only to an arbitrary factor and other authors
have chosen a different normalization. zz

)

For the present problem further restrictions simplify
the situation. The terms involving Co and Cz correspond
to the ideal potential, Eq. (1). The odd-order terms might
have been omitted because it is well known that the way
to make them zero is to make both the electrodes and the
applied potentials have reflection symmetry in the z =0
plane. In this paper the electrode structure is assumed to
have reflection symmetry in the z=0 plane. The odd-
order terms in Eq. (5}are included here because it is some-
times desirable to consider the consequences of a general
set of applied potentials. The terms involving C4 and C6
are therefore the leading departures from the ideal. The
ideal electrodes represented by Eqs. (3) and (4) have the
special quality of yielding CJ ——0 for all even j greater
than 2. If the odd-order terms are made small by making
the applied potentials symmetric about z=0 then a good
approximation to the ideal potential will always exist in a
small volume around the origin. The problem then is to
find ways to increase this volume withaut having unduly
large electrodes.

The CJ of Eq. (5) are linear functions of the potentials
applied to the electrodes. It is useful to make some other
definitions to separate the effects of applied potentials
from the effects of electrode shape. It is necessary to
choose an arbitrary zero for the potential. Here the poten-
tial is taken to be zero at large distances from the elec-
trodes. To the extent that the electrodes form a nearly
closed surface constituting an electrostatic shield the po-
tential inside the trap is unaffected by the apphed poten-
tials on the outside. Accordingly, in this paper the ring
electrode is used as a reference and is assumed to have
zero potential. In view of the assumed mechanical sym-
metry of the endcaps, a general potential distribution can
be expressed as a linear combination of a symmetric func-
tion V, (r,z) and an antisymmetric function V, (r,z). More
specifically, a general solution is

V, (r z)=A iHi(r z)+ASH((r, z)

+A)Hs(r, z}+.. .

The coefficients A& are dimensionless and serve to
describe the potential distribution without reference to the
potentials applied to the electrodes. Some specific expres-
sions in this language may be helpful. If V+ is the poten-
tial (relative to the ring) of the endcap where z is positive
and V is that of the other one, then P, =(V++V )/2
and P, =(V+ —V )/2. The coefficient A of Eq. (1) is

P, Az/s and the electric field at the center of the trap is

P,A i/s.
In some atomic physics applications it is important to

know the currents induced in the connection to one of the
electrodes by a moving charge in the trap. Shockley
has shown that the current to an electrode due to a mov-

ing charge at an arbitrary point is proportional to the elec-
tric field at the paint due to having the test electrode at
unit potential and all the other electrodes at zero poten-
tial. For the + z endcap this potential distribution is
achieved by having P, =P, =0.5, and the electric field at
an arbitrary position is easily determined from Eqs.
(6)-(g).

The objective of this report is to provide data and other
information to allow the design of electrode systems
which provide an adequate approximation to Eq (1). The
general strategy is ta calculate AJ, j=0—6, for a great
many specific cases and to work out some general rules
for how to achieve small A4 and A6. The shapes exam-
ined are restricted to those which are reasonably close to
the ideal given by Eqs. (3) and (4} and which otherwise are
judged to be either instructive or practical.

III. METHODS

The numerical method used here involved first finding
the surface charge density on the electrode surfaces. An
approximate numerical representation was achieved by di-
viding the electrode surfaces into zones each of which had
approximately uniform surface charge density on it. Then
the effect of each zone was approximated by replacing it
with a similar zone which had a uniform charge distribu-
tion. Numerical values of the charge densities were deter-
mined by choosing those values which yielded the correct
potential at a grid of points across the electrode surfaces.
Once the surface charge density was adequately represent-
ed it was possible to calculate either the potential distribu-
tion or the coefficients of the spherical harmonic expan-
sion.

A more specific description of the procedure follows.
First divide the electrode's surface into N (cylindrically
syminetric) zones each of which has approximately uni-
form surface charge density. Let oz be the surface charge
density of zone j. Choose a point (rj,zj ) on the surface in
each zone and call its potential V~. The potential is uni-
form across each of the electrodes so the values of VJ cor-
responding to one electrode will all be identical. Define
B,j such that the potential at the point (r;,z; ) due to a sur-
face charge density o.j is 8;Joj.

The potential due to different charges combine linearly
with the result
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N

V;=QBJOJ .
J

The V; are known and the 8,& can be evaluated by an ap-
plication of Coulomb's law. The set of equations (9) can
then be solved by standard numerical methods to yield a
set of OJ. This procedure can yield a quite accurate solu-

tion if the division of the surfaces can be carried out to
provide an adequately accurate representation of the sur-

face charge density without making X unduly large. The
details of how the zones are created is unimportant as

long as each of the zones is small enough. What one con-
siders small enough depends on the specific problem.
Here the maximum interest is the potential near the center
of the trap, and in this case large zones are acceptable on
the more remote portions of surfaces (indeed, the very re-

mote surfaces may be ignored altogether).
The elementary surfaces used here were small segments

of a cone. Such surfaces ean conform exactly to those
portions of the electrode surfaces which are represented
by straight lines in Fig. 1. Those portions of the surface
which are represented by curved lines in Fig. 1 are a more
difficult problem. In this case two points were chosen on
the curved surface and the conical segment was generated
by connecting the points by a straight line in the (r,z)
plane. This system, while operationally simple, is prob-
lematic due to all of the approximating conical segments
being on one side of the surface they were to represent.
To reduce this and other problems, adjacent pairs of coni-
cal segments were assumed to have the same surface
charge densities. Thus each of the zones (of uniform
charge density) referred to above consisted of two conical
segments. This doubling of the number of conical seg-
ments did not seriously complicate the numerical pro-

cedure and provided much better conformity to the hyper-
bolic surfaces. The point (r;,z; ) within the zone where the
potential V, was specified was the vertex between the two
segments. This system resulted in the point (r;,z;) being
exactly on the electrode surfaces; however, in the case of
the hyperbolic surface the approximating surface charge
density was on the average slightly displaced. To antici-
pate a result discussed belo~, this displacement was the
dominant source of error in the calculation. Nevertheless,
by making the zones small enough it was possible to make
the error small.

Application of the above numerical procedure requires
calculation of the potential due to a uniform surface
charge on the conical ring. Let a be the angle of the coni-
cal segment with respect to the z axis and let (r„z, ) be a
reference point on the surface F.urther let (ri,zi) be
another point on the surface defined by

r& ——r, +x sina,

zI =zg+x cosQ,

where x is a measure of distance along the surface. The
potential at an arbitrary point (r,z) is given by

~ r, dx d8
V(r,z) = (10)

2m'ep

where X =(z —zi) +r +r, —2rricos8, and x, and x22

correspond to the edges of the conical segment. The in-
tegration over the 8 variable can be carried out analytical-
ly in terms of the complete elliptic integral of the first

lnd Q(k2) 28

V(r, z) = f E(k )dx,
mop "i R

where R =(z —zi) +(r+ri),
4rr j

R

K(k2)= f
1 —k sin8

o
hJ

Ro
Rt

The integral of Eq. (11) can be evaluated by numerical
quadrature. In one important circumstance this integra-
tion is difficult. The diagonal elements BJJ involve
evaluation of the potential due to a charged surface at a
point on the surface. At this point the variable k equals
unity and the function E is infinite. This problem is
solved by breaking the integral into two parts one of
which is a small region in the neighborhood of the singu-
larity. Near the singularity the elliptic function K can be
mell approximated by

o
hJ E(k )=0.51n

16
1 —k

(12)

Ro
Rt

FIG. 1. Definitions of three electrode designs. Design A is
simple and compact. Design 8 is fully shielded in such a way
that a laser beam or other probe can be injected. Design C is
also fully shielded and relatively compact.

With this approximation the integration over the singular-
ity can be done analytically,

Equation (11) served to determine the B;J needed for
Eq. (9). Once the oJ were determined it also could be used
to determine the potential at any point in the trap by sum-
ming the contributions of the elementary surfaces. The
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A were determined by expanding Eq. (11) in a Taylor
series for the special case r=O, for which k=O and

K(0)=n/2. In this case the integral and the necessary
derivatives can all be done analytically; however, the re-

sult is algebraically complicated. The method actually
used was to do the derivatives analytically, then do the in-

tegral numerically. Thus the AJ can be calculated directly
from the charge distribution without first determining the
potential.

A substantial effort was made to evaluate the reliability
of these procedures as they apply to the present problem.
The most important tests were specific to electrode shapes
and are discussed below with the data. It is useful to anti-
cipate one result. For several special cases a study was
conducted of the effects on the AJ of different ways of di-

viding the surfaces into zones. A prescription was adopt-
ed for distribution of the zones based on a characteristic
zone width. As this zone width was varied the number of
zones N varied in a regular way with the form of the dis-
tribution remaining substantially constant. By extrapolat-
ing to zero width it was possible to estimate the error
made by setting N to a comfortable value rather than in-

finity. For a reference case (described below) the absolute
errors in the AJ, j=O—6 were (1,28,22,22,0.6,0.9,—0.2)
)&10, respectively. These values are representative of
the expected error for other cases. By this standard other
sources of error were made negligible. The computer used
had a precision of approximately 14 digits and truncation
error was a point of concern only in extreme cases. The
expectation is that these errors are small compared to
mechanical errors one would make in the assembly of a
trap for atomic physics work.

The errors caused by failure to make the zones small
enough were highly correlated. In comparing two similar
electrode structures one expects both the results and the
errors of computation to be similar. A result is that the
relative errors are substantially smaller than the absolute
errors. No citable measure of the relative errors is avail-
able.

A situation of particular interest involves two electrode
structures one of which is an extension of the other. The
extension can be considered to be a separate electrode at
the same potential as the adjacent electrode. The differ-
ence of the resulting potential (or the AJ) can be attributed
to the extra electrode. An extra electrode calls for an ad-
ditional term in Eq. (6) which is linear in its potential. To
determine the coefficient for this term it would be neces-
sary to solve Eq. (9) one more time for each electrode.
Even without this additional effort, the differencing tech-
nique referred to above allows an estimation of the coeffi-
cient with enough precision to be useful.

IV. RESULTS

Using the methods of the preceding section, the first
several AJ were calculated for a large number of cases
based on three general designs. Figure 1 shows a cross
section in cylindrical coordinates of the three designs,
called A, B, and C. Each of the drawings shows only the
portion of the electrode assembly for positive r and z.
The full electrodes have refiection symmetry about the

z =0 plane and cylindrical symmetry about the r =0 pole.
Each of the designs includes a portion near the center of
the trap with hyperbolic surfaces which match the ideal
design. The differences in the three designs are in the way
the hyperbolic surfaces are terminated. Design A is com-
pact and simple. The principal inadequacy of this design
is that for small electrodes the region in the center of the
trap is not well shielded from disturbances outside the
electrode structure. For instance, the trap potential could
be affected significantly by the structure used to support
the electrodes. Rather than include the supports and
wires in the model, we use design A here to illustrate
some interesting trends. Designs 8 and C are much better
shielded and can be counted as practical designs. In both
of these cases wires and mounting brackets outside the
structure can be expected to have little effect on the po-
tential near the trap center. Design 8 has an opening to
admit a laser beam (or other probe) with the sides of the
channel between the electrodes being parallel to the line
r=v2z [see Eq. (2)]. Variables R2 and Zz were set to
large values (R2 ——2.5, Z2 R2/~2——) such that they did
not significantly affect the AJ. Design C is compact and
closed, with the channel defined by two conditions: (1)
The four points in Fig. 1 marking the ends of the channel
form a rectangle with length 0.25Ro and width 0.05Ro',
(2) the sides are parallel to the line, r =W2z. In design B
a reduction of R i simply removes some of the ring and
leaves the endcap unchanged. For design C a similar
reduction of R i leaves the size, shape, and orientation of
the channel unchanged. In this case the location of the
channel is changed requiring a change in the shape of
each of the electrodes.

The surface charge densities were calculated for
Ro ——1.0 and a large variety of values for the variables Zo,
Z~, and E.

&
with both even and odd potential distribu-

tions. The results are reported by giving AJ, j=0—6, us-

ing the convention that s =HO. A quality which these
designs have in common is that if the hyperbolic part of
the surface is made large the potential approaches the
ideal. This feature permits a check of the procedures in
circumstances in which some of the results are known in
advance.

Tables I, II, and III display some of the results for cases
A, B, and C, respectively. These data are all for the con-
dition Zo ——0.70711. Table IV provides further data for
design A with a range of values of Zo, but only for values
of Ri and Zi which yield A4 ——0. For each of the elec-
trode structures it was necessary to choose a system for
dividing the surfaces into zones in accordance with the
general method described above. A great many systems
were tried in an effort to find one such that the results
were insensitive to the details of the zone division. The
system used did not quite achieve this objective. There-
fore, the data of Tables I—IV must be interpreted with
these issues in mind.

The procedure used for dividing the electrode surfaces
into zones involved choosing a sequence of points on the
lines of Fig. 1 which represent the surfaces. These points
were then connected by straight lines to form the small
conical segments used to approximate the surface. For
each electrode a nominal width was chosen. Then the
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TABLE I. Computed coefficients AJ in the spherical harmonic expansion of the potential for electrode design A.
columns 1 and 2 are defined in Fig. 1. For these data Zo ——0.5, Rp = 1.

The variables of

1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
1.80000
1.00000
1.028 47
1.064 59
1.11048
1.158 53
1.20702
1.27475
1.331 69
1.393 28
1.45602
1.505 76
1.61016
1.71809
1.80000
1.00000
1.02847
1.064 59
1.11045
1.158 53
1.20702
1.27475
1.331 69
1.393 28
1.45602
1.503 42
1.S56 63
1.610 16
1.71809

1.23709
1.283 30
1.341 32
1.41421
1.489 95
1.565 71
1.67066
1.758 16
1.85246
1.94600
2.05000
2.202 91
2.36029
2.50000
2.50000
2.50000
2.50000
2.50000
2.50000
2.50000
2.50000
2.50000
2.50000
2.50000
2.50000
2.50000
2.50000
2.50000
1.237 09
1.283 30
1.341 32
1.41421
1.489 95
1.565 71
1.67066
1.758 16
1.85246
1.94600
2.046 57
2.12459
2.20291
2.36029

0.513 373 77
0.508 656 32
0.504 982 24
0.502 448 08
0.501 14023
0.500 51464
O.SOO 16059
0.500056 67
0.50001630
0.500002 76
0.499 998 67
0.499 99725
0.499 997 34
0.499 99704
0.492 244 85
0.494 749 03
0.496 841 47
0.498 37998
0.499 216 50
0.499 633 86
0.499 878 28
0.499 952 78
0.499 982 50
0.499 992 56
0.499 995 51
0.499 996 82
0.499 996 84
0.499 99704
0.500 475 86
0.500 203 86
0.500067 79
0.500014 50
0.500000 93
0.499 998 12
0.499 99704
0.499 997 16
0.499 997 26
0.499 99702
0.499 996 85
0.499 996 81
0.499 99700
0.499 997 14

0.493 327 29
0.495 781 03
0.497 61065
0.498 83060
0.499 446 77
0,499 738 29
0.499 902 44
0.499 95041
0.499 968 96
0.499 975 39
0.499 977 16
0.499 977 90
0.499 977 73
0.499 978 02
0.503 411 22
0.502 33444
0.501 411 67
0.500 71808
0.500 33691
0.500 145 62
0.500032 72
0.499 998 42
0.499 984 67
0.499 97999
0.499 978 92
0.499 978 07
0.499 977 82
0.499 978 02
0.499 391 23
0.499 723 24
0.499 891 23
0.499 955 91
0.499 973 05
0.499 97703
0.499 977 84
0.499 977 84
0.499 977 67
0.499 977 93
0.499 978 27
0.499 977 80
0.499 977 97
0.499 977 53

—0.005 218 11
—0.003 438 51
—0.002 006 50
—0.000995 69
—0.000466 79
—0.000 212 09
—0.000067 53
—0.000 024 96
—0.000 008 36
—0.000002 96
—0.000001 19
—0.000000 67
—0.000000 62
—0.000000 61

0.003 24S 19
0.002 182 18
0.001 303 78
0.000 664 53
0.000 31967
0.000 148 30
0.000048 00
0.000017 50
0.000005 32
0.000001 19
0.000000 07

—0.000000 54
—0.000 000 61
—0.000 000 61
—0.000000 66
—0.000000 77
—0.000000 56
—0.000000 65
—0.000000 57
—0.000000 59
—0.000000 60
-0.000 000 61
—0.000000 59
—0.000000 64
—0.000000 39
—0.000000 55
—0.000000 59
—0.000000 62

0.001 824 66
0.001 161 86
0.000 659 24
0.000 320 63
0.000 148 71
0.000067 18
0.000021 27
0.000007 80
0.000002 56
0.000000 85
0.000000 29
0.000000 13
0.000000 11
0.000000 11

—0.00096647
—0.000 662 55
—0.000402 39
—0.000 207 53
—0.000 10049
—0.000046 81
—0.000 01523
—0.000005 61
—0.000001 77
—0.00000046
—0.000000 11

0.000 00008
0.000000 11
0.000000 11
0.000 140 13
0.000061 95
0.000021 54
0.000005 54
0.000001 31
0.000000 35
0.000 000 13
0.000000 11
0.000000 11
0.000000 12
0.00000003
0.00000009
0.000000 10
0.000000 12

1.150441 45
1.145 392 61
1.141 2S7 34
1.138274 83
1.136678 92
1.135895 21
1.135442 14
1.135 306 59
1.135253 21
1.13S235 42
1.135229 76
1.135227 96
1.135227 92
1.135227 72
1.124 165 18
1.127 769 77
1.130759 52
1.132942 90
1.134 126 34
1.134715 80
1.135060 12
1.135 165 24
1.135207 12
1.135221 27
1.135225 77
1.135227 35
1.135227 09
1.135227 72
1.133085 12
1.133857 18
1.13446046
1.134865 85
1.135067 60
1.135 15965
1.135207 32
1.135220 81
1.135225 61
1.135226 99
1.135227 42
1.13S226 93
1.135227 55
1.13S227 29

0.260 243 58
0.266 09607
0.270 81623
0.274 18108
0.275 968 49
0.276 843 03
0.277 347 69
0.277 498 S2
0.277 557 88
0.277 577 73
0.277 583 99
0.277 58602
0.277 586 03
0.277 586 29
0.289 727 44
0.285 807 45
0.282 531 94
0.280 1199S
0.278 809 72
0.278 156 17
0,277 772 35
0.277 655 67
0.277 608 97
0.277 593 12
0.277 589 07
0.277 586 53
0.277 586 03
0.277 586 29
0.279 608 84
0.278 949 63
0.278 385 20
0.277 973 35
0.277 760 96
0.277 662 04
0.277 608 56
0.277 593 83
0.277 588 3S
0.277 586 76
0.277 587 38
0.277 586 26
0.277 586 30
0.277 585 77

—0.004 747 44
—0.004 767 87
—0.004 723 93
—0.004 66006
—0.004 615 39
—0.004 59090
—0.004 57602
—0.004 571 44
—0.004 569 60
—0.004 569 06
—0.004 568 83
—0.004 568 79
—0.004 568 74
—0.004 568 79
—0.004063 84
—0.004 256 88
—0.004 395 91
—0.004485 76
—0.004 53009
—0.004 551 09
—0.004 563 09
—0.004 566 64
—0.004 568 11
—0.004 568 56
—0.004 568 67
—0.004 568 76
—0.004 568 82
—0.004 568 79
—0.004 207 92
—0.004 394 56
—0.004498 02
—0.004 545 22
—0.004 560 75
—0.004 565 88
—0.004 568 07
—0.004 568 52
—0.004 568 68
—0.004 S68 77
—0.004 568 70
—0 004 568 80
—0.004 568 76
—0.004 568 77

TABLE II. Computed coefficients AJ in the spherical harmonic expansion of the potential for electrode design B. The variables of
columns 1 and 2 are defined in Fig. 1.

Z$

1.00000
1.031 22
1.064 88
1.11563
1.188 28
).274 75
1.342 30
1.405 00
1.45602

1.320 10
1.365 39
1.414 21
1.487 98
1.593 92
1.721 00
1.82404
1.92000
2.03000

Ap

0.500023 71
0.500007 38
0.500000 74
0.499 99702
0.499 99657
0.499 99671
0.499996 30
0.499 996 53
0.499996 54

0.499 943 29
0.499 963 15
0.499 972 72
0.499975 60
0.499976 86
0.499 976 74
0.499 976 77
0.499 976 51
OA99 976 88

—0.000 000 59
—0.000000 61
—0.000000 60
—0.000000 61
—0.000 000 60
—0.000 000 60
—0.000 000 59
—0.000000 63
—0.000000 61

0.000 008 52
0.000 003 42
0.000001 27
0.000000 36
0.000000 12
0.000 000 10
0.000 000 10
0.000 000 12
0.000 000 10

1.135238 68
1.13523044
1.135228 90
1.135225 08
1.135225 68
1.135225 76
1.135225 06
1.135 225 17
1.135225 65

0.277 548 02
0.277 570 31
0.277 581 03
0.277 584 22
0.277 585 74
0.277 585 67
0.277 585 64
0.277 585 31
0.277 585 76

—0.004 550 65
—0.004 561 66
—0.004 566 21
—0.004 568 34
—0.004 568 76
—0.004 568 79
—0.004 568 83
—0.004 568 83
—0.004 568 82
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TABLE III. Computed coefficients AJ in the spherical harmonic expansion of the potential for electrode design C. The variables

of columns 1 and 2 are defined in Fig. 1.

0.980 23
1.026 91
1.075 54
1.12421
1.174 52
1.225 49
1.277 14
1.329 37
1.382 19
1.435 04
1.488 40

1.33646
1.40461
1.475 09
1.545 43
1.61795
1.691 28
1.765 52
1.84042
1.915 81
1.992 32
2.069 10

o

0.499 811 93
0.499 941 67
0.499 981 85
0.499 992 70
0.499 996 25
0.499 996 15
0.499 99646
0.499 996 66
0.499 99673
0.499 99607
0.499 996 21

A2

0.500 204 91
0.500 042 98
0.499 993 70
0.499 980 85
0.499 977 13
0.499 975 99
0.499 976 19
0.499 976 48
0.499 976 81
0.499 976 53
0.499 976 83

—0.000 000 68
—0.000 000 50
—0.000000 57
—0.000 000 59
—0.000000 61
—0.000000 59
—0.000 000 60
—0.000 000 62
—0.000 000 60
—0.000 000 60
—0.000000 60

—0.000058 20
—0.00001676
—0.000 004 29
—0.000 001 00
—0.000 000 15

0.00000006
0.000 000 09
0.000 000 10
0.000 000 09
0.000 000 10
0.000000 10

1.135 136 17
1.135 19703
1.135 21704
1.135 223 03
1.135225 44
1.135 223 97
1.135224 78
1.135 225 49
1.135 225 99
1.135224 57
1.135 225 18

A3

0.277 843 46
0.277 661 59
0.277 605 64
0.277 590 91
0.277 586 73
0.277 585 30
0.277 585 40
0.277 585 59
0.277 585 94
0.277 585 43
0.277 585 73

A5

—0.004 693 62
—0.004 604 97
—0.004 578 24
—0.004 571 13
—0.004 569 24
—0.004 568 95
—0.004 568 82
—0.004 568 80
—0.004 568 76
—0.004 568 83
—0.004 568 82

widths of the zones were adjusted slightly to allow an in-
tegral number to be smoothly distributed over the curved
surface. On the more remote portions of the surface
larger zones were assigned, and at the sensitive places,
such as near the center and near sharp corners, zones were
divided in half enough times that the charge distribution
could be reasonably represented. The details of the algo-
rithm for division is not important; however, it is impor-
tant that a regular system was used. As the nominal
width of the segments was varied the total number of seg-
ments varied in a regular way. The Aj also varied in a
regular way and it was possible to extrapolate reasonably
to zero width. The largest number of zones which could
be easily handled was about 250; however, in this case the
time required to solve the linear equations was excessive.
Also the larger number of arithmetic operations produced
more "random" noise from numerical truncation error.
The "standard" width of a segment on the hyperbolic sur-
face of the endcaps was such that the component in the r
direction was 0.05. Similarly the width of a segment on
the ring had a z component of 0.035. These widths result-
ed in about 60—100 zones.

The extrapolation to zero-width zones was done for
many electrode structures. The most intense application
of this test was for design A with moderate-sized elec-
trodes. This yielded errors in the AJ of (1+2, 28+6,
22+4, 22+5, 0.6+0.6, 0.9+0.9, —0.2+0.4) X 10 for
j=0—6, respectively. The stated uncertainties are based
on estimates of the reliability of the extrapolation pro-
cedure. %'ithin the tolerances cited the errors were insen-
sitive to electrode size and the data of Table I would be a
little more accurate with these corrections. The data of
Figs. 2 and 3 were adjusted to compensate for these errors.
These corrections were not applied to the data in the
tables because the improvement was small and they could
not be applied to other geometries. These extrapolations
were too difficult to carry out for every case; however, a
few checks indicated that all the data of Tables I—IV are
subject to similar errors. The expectation is that this level
of uncertainty is acceptable for most applications in atom-
ic physics.

In the limit of large R ~, Z~ the even AJ are known to
approach 0.5, 0.5, 0.0, 0.0 for all three designs. When the

0.00010

0 .00005

0
1

2

0.00000

5

— 0 .00005

— 0.00010
1.8 2 ' 0 2.2 2.4 2.6

FIG. 2. Variation of the A) with ring-electrode truncation
for design A with Zo ——0.70711. The endcap electrode was
large and constant (Zl ——1.8).

corrections discussed above are applied to the data of
Table I these limits are approached well within the es-
timated uncertainties in the corrections. %'hen the odd

A~ are similarly corrected the values for j=1,3,5 ap-
proach 1.135253, 0.277 608, —0.004 570. Gabrielse has
examined this limit in another context and has reported
corresponding values (translated to the language used
here} of 1.13, 0.28, and —0.0045.

The absolute uncertainties implied by the above discus-
sion are too large to justify the number of digits given in

these tables. The extra digits are given to permit exam-
ination of the changes which result from small changes in
the sizes of the electrodes. The errors of computation are
highly correlated such that for two similar models the er-
rors are similar.

An interesting design option is to use design A but to
surround the trap by another electrode with adjustable po-
tential. Such an electrode can serve as a shield but can
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TABLE IV. Computed coefficients A& in the spherical harmonic expansion of the potential for electrode design A. The variables

of columns 1—3 are defined in Fig. 1. The data presented here are selected for the condition that A& ——0.

0.871 QQ

0.8&691
0.928 10
0.977 71
1.034 52
1.09744
1.036 56
1.06995
1.11255
1.161 12
1.215 74
1.239 20
1.251 24
1.26349
1.275 93
1.34094
1.41000
1.482 32
1.109 10
1.13651
1.17929
1.225 26
1.276 54
1.298 59
1.30994
1,32149
1.333 25
1.39493
1.46096
1.53065
1.16622
1.192 50
1.243 56
1.289 51
1.338 18
1.35901
1.369 73
1,38066
1.39178
1.450 31
1.513 34
1.580 30
1.242 50
1.35665
1.4S700
1.522 62
1.543 05
1.553 00
1.562 85
1.572 72
1.623 86
1.678 75
1.737 70

R&

1.30000
1.30000
1.30000
1.30000
1.30000
1.30000
1.50000
1.50000
1.5QOQO

1.50000
1.50000
1.50000
1.50000
1.50000
1.50000
1.50000
1.50000
1.50000
1.60000
1.60000
1.60000
1.60000
1.60000
1.60000
1.60000
1.600 QO

1.60000
1.60000
1.60000
1.60000
1.70000
1.70000
1.70000
1.70000
1.70000
1.70000
1.70000
1.70000
1.70000
1.70000
1.70000
1.70000
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000
2.00000

Zo

0.30000
0.40000
0.50000
0.60000
0.70000
0.80000
0.40000
0.50000
0.60000
0.70000
0.80000
0.84000
0.&6000
0.88000
0.90000
1.00000
1.10000
1.20000
0.40000
0.50000
0.60000
0.70000
0.80000
0.840 00
0.86000
0.88000
0.90000
1.00000
1.10000
1.20000
0.40000
0.50000
0.60000
0.70000
0.80000
0.84000
0.86000
0.88000
0.90000
1.QOOOO

1.10000
1.20000
0.50000
0.60000
0.70000
0.80000
0.84000
0.86000
0.88000
0.90000
1.00000
1.10000
1.20000

0.847 518 87
0.757 573 53
0.666 685 39
0.581 463 56
0.505 19549
0.438 820 17
0.757 563 65
0.666 656 12
0.581 389 75
0.505 051 09
0.438 603 84
0.414 741 65
0.403 367 46
0.392 35406
0.381 692 40
0.333 33964
0.292 363 59
0.257 585 37
0.757 563 67
0.666 655 67
0.581 38946
0.505 048 16
Q.438 59773
0.414 733 74
0.403 35902
0.392 345 07
0.381 683 44
0.333 33705
0.292 390 19
0.257 687 04
0.757 563 32
0.666 655 68
0.581 388 98
0.505 048 20
0.438 596 49
0.414 732 16
0.403 357 23
0.392 343 22
0.381 681 43
0.333 33626
0.292 39804
0.257 720 85
0.666 655 45
0.581 388 88
0.505 047 99
0.438 S96 88
0.414 732 40
0.403 357 41
0.392 343 28
0.381 681 13
0.333 33622
0.292 401 16
0.257 735 52

0.846 97667
0.757 495 54
0.666 575 77
0.581 261 35
0.504 849 55
0.438 290 12
0.757 528 53
0.666 636 37
0.581 368 65
0.505 026 94
0.438 571 81
0.414 703 97
0.403 326 68
0.392 309 7S
0.381 644 47
0.333 267 88
0.292 261 35
0.257 450 32
0.757 527 56
0.666 636 88
O.S81 370 84
0.505 03022
0.438 579 80
0.414 715 27
0.403 340 06
0.392 32S 59
0.381 663 22
0.333 311 13
0.292 354 62
0.257 638 75
0.757 529 87
0.666 637 54
0.581 371 25
0.505 031 38
0.438 581 14
0.414 717 30
0.403 342 57
0.392 328 68
0.381 667 03
0.333 321 58
0.292 381 27
0.257 700 14
0.666 636 45
0.581 370 35
0.505 030 92
0.438 581 50
0.414 71776
0.403 343 13
0.392 329 37
0.381 667 57
0.333 324 27
0.292 39060
0.257 726 OS

0.000 522 59
0.000042 72
0.000 008 33
O.000 01672
0.000043 12
0.000087 70
0.000038 54
0.000003 24
0.000 000 45
0.000 000 82
0.000 002 87
0.000004 32
0.00000519
0.000 006 18
0.000 007 27
0.00001460
0,000024 73
0.000036 71
0.000039 99
0.000 003 32
0.000 000 13
0.000 00004
0.000000 42
0.000000 73
0.000000 93
0.000001 16
0.000001 43
0.000 003 48
0.000006 87
0.000 011 57
0.000 038 09
Q.Q00003 13
0.000000 10

—0.000000 08
0.000 00003
0.000000 09
0.000 000 14
0.000000 19
0.000 000 25
0.000000 78
0.000001 81
0.000 003 48
0.000003 58
0.000000 21

—0.00000009
—0.00000004
—0.000000 02
—0.000 00001
—0.000 00001

0.00000000
0.000 000 02
0.000000 04
0.000 000 09

2.908 538 91
2.160888 61
1.699 942 22
1.382 462 68
1.148 409 84
0.968 18191
2.160972 42
1.700 164 83
1.382 960 68
1.149 383 92
0.969 891 70
0.909 292 88
0.880 993 65
0.853 920 79
0.828 001 26
0.713 543 94
0.619749 96
0.541840 56
2.160973 65
1.700 17629
1.383 000 32
1.149474 85
0.970083 S9
0.909 540 99
0.881 274 31
0.854 236 57
0.828 355 74
0.714 141 34
0.620 687 64
0.543 244 76
2.16097681
1.700 18033
1.383 010 11
1.149 50649
0.970 15499
0.909 637 82
0.881 38601
0.854 364 95
0.828 502 29
0.714407 71
0.621 130 13
0.543 933 66
1.700 17848
1.383 012 21
1.149 518 27
0.970 193 11
0.909 692 55
0.881 451 12
0.854441 88
0.828 591 99
0.714 59S 29
0.621 478 42
0.544 522 54

1.902 843 95
0.887 474 59
0.530 39984
0.370 12649
0.283 420 78
0.229 128 25
0.887 167 16
0.529 859 47
0.369 328 78
0.282 414 62
0.228 028 51
0.211426 75
0.203 918 13
0.196865 66
0.190225 07
0.161 99791
0.13989099
0, 122 002 95
0.887 14993
0.529 828 43
0.369 269 74
0.282 312 16
0.227 882 6S
0.211 266 64
0.203 751 64
0.196693 8S
0.190048 57
0.161 81744
0.139743 97
0.121 933 95
0.887 15340
0.529 822 56
0.369 252 79
0.282 279 03
0.227 826 58
0.211 201 40
0.203 682 02
0.19661991
0.189970 70
0.161 726 05
0.139655 69
0.121 872 13
0.529 81749
0.369 245 29
0.282 26404
0.227 797 29
0.211 16440
0.203 640 91
0.196574 65
0.189920 91
0.161655 93
0.139573 40
0.121 795 08

0.946 59343
0.19337941
0.045 03400
0.006 82408

—0.004069 87
—0.006 891 27

0.193473 00
0.045 101 82
0.006 822 88

—0.004 187 37
—0.007 161 34
—0.007 486 29
—0.007 550 55
—0.007 566 42
—0.007 543 57
—0.007 079 83
—0.006 37441
—0.005 643 42

0.193476 78
0.451 10609
0.006 825 64

—0.004 191 82
—0.007 17928
—0.007 51143
—0.007 579 72
—0.007 599 79
—0.007 S81 43
—0.007 142 08
—0.006462 57
—0.005 756 70

0.193477 60
0.045 107 34
0.006 826 32

—0.004 192 89
—0.007 185 04
—0.007 52005
—0.007 589 89
—0.000 61173
—0.007 595 22
—0.007 167 10
—0.006 501 01
—0.005 809 50

0.045 107 19
0.006 826 42

—0.004 19329
—0.007 187 71
—0.007 524 33
—0.007 595 23
—0.007 61820
—0.007 602 96
—0.007 183 30
—O.Q06 529 12
—0.005 852 29

also serve as a means to make sma11 adjustments to the
CJ. Traps using this effect have been built, and Ga-
brielese22'2i has calculated properties of some specific
designs. The potential near the center of the trap and all

the CJ are linear functions of the potential of the shielded
e1ectrode. There are many cases in Tables I and II of
pairs of electrode structures in which one is an extension
of the other. In such cases the extension may be regarded
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FIG. 3. Logarithmic plot of the variation of the A, with ring
truncation for design A with Zo ——0.70711. The endcap elec-
trode was large and constant (Z~ ——1.8). Only absolute values
are displayed and the curves are truncated on the right to avoid
changes of sign.

FIG. 4. Truncation conditions to produce Aq ——0 for designs

A, 8, and C, with Zo ——0.707 11.

as an extra electrode. The data of Tables I yield the effect
of having the extra electrode at only one potential (that of
the adjacent electrode). While this does not provide a gen-
eral solution it is a useful basis for estimation. In review-
ing these data some generalizations of this type are point-
ed out.

Figure 2 sho~s some data based on design A which il-
lustrates some important effects. In this case the endcap
electrodes are large (Z i ——1.8) and positioned with
Zo ——0.70711. The outer radius Ri of the ring electrode
is varied and the response of the AJ is plotted. In the lim-
it of large Ri the even AJ are known to approach ideal
and the odd AJ are reported above to approach 1.35253,
0.277608, —0.004570. The displayed ordinate is the
difference between A~(Ri ) and these asymptotic values.
The displayed curves do not go to zero at large R~ be-
cause of errors in the computation. The absolute values
of some of the same data are shown in Fig. 3 in logarith-
mic form. In this instance a broader range of data is
covered and it is apparent that the variation of each of the

A~ is approximately exponential with increasing electrode
size. Other data from Table I allow a similar plot depict-
ing the results of changing the endcap size. The results
are quite similar except for a change in sign of each of the
A~. From Figs. 2 and 3 we see that if 8 i ~ 2.0 the shield-

ing is effectively complete and there is little change in any
of the A& produced by changes in the size of the ring.
Other data in Table I show that if Z» 1.6 the size of the
endcaps are of little practical consequence.

Truncation of the hyperbolic part of the surfaces on the
ring and endcap electrodes produce effects of different
sign with the result that it is possible to truncate both and
keep A4 ——0. This condition is referred to below as "bal-
anced" truncation. Tables I, II, and III include such data
for each of the three electrode designs. (In Table I these
data have A4 ——0.6X 10 in anticipation of the correction
discussed above. ) Figure 4 displays the electrode sizes im-
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0.0005

Des i qr

—0 .0010
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FIG. 5. Variation of A~ with 8&, with Zl related to Rl by

the condition that A» ——0.

plied by these data. At the upper right of the graph the
curves are somewhat irregular because A4 is insensitive to
the electrode sizes and errors in the calculation have an
enhanced effect. Figure 5 displays data from Table I for
those cases which have balanced truncation. Figure 5 is
similar enough to Fig. 2 that it may be helpful to remark
on some of the differences. In Fig. 2, Zi was held con-
stant as Ri was varied, whereas in Fig. 5, Zi was varied
to keep A4 constant. Also the data of Fig. 2 were correct-
ed for an error (discussed above) but the comparable er-
rors for much of the data of Fig. 5 were not evaluated.
Without this correction the data of Fig. 5 do not approach
the known asymptotic values as closely. Note that it is
the odd-order coefficients in Fig. 5 which show the largest
departure from the asymptotic values. Also note that to
the tolerance of the calculation the asymptotic values of
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the even order A; in Fig. 5 are achieved for all values of
R» 1.5. It is a reasonable conjecture that the next few

terms in the even series are also small for this cir-
cumstance. However, for values of R i as small as 1.5 the

gap between the electrodes is large enough that the shield-

ing is poor. Thus the potentials of other objects in the
neighborhood will be rather important. Also it may be
important to have the ring electrode at "ground" poten-
tial.

A small increase in the endcap size causes a decrease in

A4, and a small increase in the ring causes an increase. In
either case there was a change in each of the A& approxi-
mately proportional to the change in surface area. Figure
6 shows the partial derivative of A4 with respect to Ri
holding Zi constant. These data were generated as a
by-product of the trial-and-error procedures used in find-

ing the conditions of balanced truncation for design A.
These data provide a way to estimate the effect on A4 of
some flaws in construction of electrodes. If the change in
the ring is about 1.6 of the change in the endcap then A4
is changed little. A small increase in Zi produces more
surface area than the same size increase in 8 i.

The data presented in Tables I—III and Figs. 1—6 are
all for electrodes with Zo ——0.707 11, this being the case of
maximum interest. Most of the general conclusions from
above can be expected to apply for other values of Zo.
Table IV contains data on design A with a variety of
values for Zo and with Zi and R i chosen to yield A4 ——0.
A change in Zo involves more than a displacement of the
endcaps; the shape of the hyperbolic surfaces change as
well. Figure 7 is a plot showing some of the geometrical
conditions required to produce A4 ——0. The curve for
R i ——2.0 has an irregularity on the left which is the result
of errors in the calculation. In this circumstance both the
ring and the endcaps are rather large and the electrodes
are rather close together with the result that A4 is small
and nearly independent of all of the variables. The data
displayed at the left end of the curve for 8 i

——2.0 are in-
cluded only because they help to define the range of valid-
ity of the data.
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FIG. 7. Conditions for A4 ——0 for design A. These data are
an extension of those displayed in Fig. 4 to include variation of
Zp»

Figure 8 shows the sensitivity of A4 to small changes in
Zi with everything else constant. These data are not de-
rived from Table IV but are a byproduct of the search
procedures used in finding the values of Z, which yield
A4 ——0. Figure 9 reports data on the partial derivative of
A2 with respect to Zi with all other dimensions constant.
These data allow an estimate of the effect on Aq and A2
of adding a small e'lectrode at the endcap potential. From
Table IV it is possible to determine the change in ring-
electrode size which is required to balance a change in the
size of the endcap electrodes. From the combination of
these results it is possible to deduce the effect on A4 of a
small extra electrode at the ring potential. The small elec-
trodes referred to here must be in very special places for
the results to apply literally. Nevertheless it should be
possible to make useful estimates of the effects of a larger
electrode positioned to function as a shield. An interest-
ing observation from Fig. 9 is that if Zo ——0.860 then A2
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FIG. 6. The partial derivative of A4 ~ith respect to R &
(con-

stant Z~) plotted vs R& for designs A and 8 with balanced trun-
cation.
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FIG. 8. Derivative of A4 with respect to Z~ (constant R~)
for the conditions of balanced truncation using design A.
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FIG. 9. Derivative of A2 with respect to Z~ (constant R~)
for the conditions of balanced truncation using design A.

V. CONCLUSIONS

In the design of charged-particle traps for precise atom-
ic physics work the equations of motion for the trapped
particles can be made relatively simple by using hyperbol-
ic electrode surfaces near the center of the trap Some .cal-
culated data have been presented which permit a predic-
tion of the effects of other shapes at moderate distances.
The curved surfaces may be terminated quite quickly and
still preserve the essential harmonic character of the trap.

is independent of Zi for all values of R&. This implies
that for these conditions A2 will also be approximately in-
dependent of the potential of the shield electrode referred
to above. This confirms a conclusion of Gabrielse who
explicitly examined a similar electrode structure but with
compensation electrodes included. He discovered that if
Zp/Rp =0.86 then A2 is independent of the potential of
the compensation electrode.

Some qualitative conclusions may be reached which are
beyond the direct numerical results. Design A is attrac-
tive mostly because the electrodes are small implying good
space utilization and low capacitance. If these qualities
are pressed the shielding will be poor and the potentials in
the trap will be affected by the potentials outside. This
problem can be solved by building a shield electrode
which is electrically insulated froin the other electrodes.
If the shield is placed at the endcap potential it will be ef-
fectively an extension of the endcap and A4 will be driven
in a negative and A6 in a positive direction. Similarly if
the shield has the potential of the ring electrode A4 and
A6 will be pulled in the opposite directions. It follows
that there is an intermediate potential which makes either
A4 or A6 have the value it would have had without the
shield. Also it is a reasonable inference that under these
circumstances the other coefficient will be relatively
small. These general conclusions are independent of the
details of construction of the shield. Some of the data al-
low a reasonable estiinate of the magnitude of the effect
of adding another electrode

With any of the designs discussed it is interesting to
consider dividing one or more of the three electrodes into
two pieces. If the gap is kept small and the two pieces
have the same potential the data reported above will be
reasonably applicable. By adjusting the potential of the
outermost piece it is possible to compensate for other
problems which may have caused the trap to become
anharmonic. Another reason for making such a division
might be to reduce the capacitance of the electrode nearest
the center of the trap. If each of the electrodes is ap-
propriately divided, designs B and C become examples of
design A with shield (and compensation) electrodes added.
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