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Influence of white noise on delayed bifurcations
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e analyze the time-dependent solution of the simplest Fokker-Planck equation which describes the ac-

tion of Gaussian ~hite noise in a single-mode laser. The pump parameter is linearly swept in time. Be-

cause of the critical slowing down, the time evolution of the probability distribution exhibits a delay with

respect to the instantaneous value of the pump parameter. The delay turns out to depend crucially on the

sweeping rate and to be essentially independent of the initial value of the s~ept parameter.

The electric field amplitude E in a tuned single-mode,
homogeneously broadened ring laser in the good-cavity limit
can be described by the semiclassical equation

AE=E —1+ 1+E

where A is the pump parameter and time is normalized to
the cavity buildup time. This equation has two steady solu-
tions (E-0, E2=A —1) and a single bifurcation point at
A =1. A linear-stability analysis shows that E=o is the
stable solution for A & 1 and E' A —1 is the stable solu-
tion for A & 1. A common way to study experimentally a
steady bifurcation point like A = 1 for Eq. (1) is to sweep A

across A =1:
A =A(t)=AO+ur, AD&1, v&0

This dynamic procedure differs significantly from the static
which assumes that A is time independent. To examine this
difference, we analyze the (dynamic) stability of the trivial
solution E=O with A given by Eq. (2). Linearizing Eq. (1)
around E =0 gives E-E(—1+A ). The solution of this
equation is

rate v but depends only on the initial value Ao. These
results are not limited to the good cavity case. Similar con-
clusions have been drawn from the laser-Lorenz equations
with arbitrary atomic and cavity decay rates. '

It has been shown' that the critical property which is

responsible for large delays in steady bifurcations is the ex-
istence of a steady solution (E =0 in this case) which is in-

dependent of the control parameter A. This naturally raises
the question as to how fluctuations may modify the results
in Eq. (4). One way to model the various causes which may
invalidate Eq. (I), especially below A = I, is to add a
phenomenological constant 5 to the right-hand side of Eq.
(1). One may then study the delay as a function of S. It
has been shown in Ref. 2 that for small sweeping rates
(0 & v (& 1) the delay is 0 (I) if 0 ( 5 « u but is vanish-

ingly small if 8=0(1). The transition between these two

domains occurs for 5=0(u). Although this approach indi-

cates clearly some of the constraints under which a deter-
ministic steady bifurcation may display a large delay, it fails
to include all relevant features of a truly stochastic source of
perturbation. Therefore we analyze in this paper the sim-
plest Fokker-Planck equation which can be associated with

Eqs. (I) and (2):

E(t) = E(0) exp[i(r)] P(E, r) =— E I —
2 +q P(E, r)I) I) A (r)

8t BE ] +E2 (5)

As in the static case the instability condition is X(r') =0,
which defines the critical time t" at which the solution of
the linearized equation begins to diverge. Let A'=A (r")
and A =A (t) =1. Hence r is the time at which the static
bifurcation point A = 1 is reached. One easily finds

t =2t
A' —A =A —30

(4a)

(4b)

These results hold if v is nonzero but otherwise arbitrary.
When v=0, then X( )=rr(AO —I) and the static result is
recovered. Equation (4a) shows that r' is exactly twice the
time required to reach the static bifurcation. A salient prop-
erty of Eq. (4b) is that A is independent of the sweeping

where q is the amplitude of a (additive) Gaussian white
noise. We integrated numerically Eq. (5) following the
Crank-Nicolson discretization method, for several values of
Ao, q, v, and with the initial condition P(E, 0) = 8(E), us-

ing a numerical code essentially identical to that utilized in

Ref. 4.
A first result is that the dependence of the evolution of

the mean electric field intensity (E'(A (r))) on the initial
value A (0) =AD, given in the deterministic case by Eq.
(4b), disappears in the presence of a white noise. In fact, if
one compares the evolution of (E'(A (t))) for the same
values of the noise amplitude q and the sweep velocity v

and for two different values Ao"' & Ao", one finds that in

both cases the evolution appears completely identical, apart
from a short transient starting from Ao". For example,
curve c in Fig. 1 was obtained both for Ao ——0 and for
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(E'(A (I ) ) )„=
t

~E E'P„(E,A (r) ),
—Ug (E)P„(E,A ) = ~Y'exp

g

U„(E)=~[E'-A in(1+E')],
Ittt + eo —U. (E)

dE exp

As expected, the presence of white noise decreases the de-
lay with respect to the deterministic value given by Eq. (4),

Ao ———0.5. This difference from the deterministic result
Eq. (4) can be easily understood on examining the facts that
give rise to the delay in tQe deterministic case. The first
fact is the critical slo~ing down at A = 1. The second fact
is that, starting from an initial value E(0) with Aa ( 1, the
value of E decreases exponentially for t ( t [see Eq. (3)].
Hence when A (t ) = A = 1, E is smaller the larger A —

A&& is,
which implies that the delay increases with A —Ao. The
dependence on Ao disappears in the case of white noise be-
cause the fluctuations continuously restore the value of E,
i.e., they destroy the exponential decrease of E for t & t.
The same argument suggests that the dependence on Ao can
be recovered in the case of colored noise, when the rate of
fluctuations becomes comparable to or smaller than the
sweeping rate.

On the other hand, the critical slowing down is still valid
in the presence of noise and gives rise to a delay in the bi-
furcation, as illustrated by Fig. 1 which shows the time evo-
lution of the mean value (E'(A (t))) of the electric inten-
sity for q =10 ' and v= 10 ', 10 ', and 10 '. It also ex-
hibits the stationary electric field intensity (E (A (t)))„
calculated from the stationary solution of the Fokker-Planck
equation obtained by replacing A (t ) by A in Eq. (5):

especially when the difference A —Ao becomes large. For
q = v = 10 ' the delay is negligible, and it becomes sizeable
when v )) q, Hence in the case of white noise the
behavior is basically complementary to the deterministic
case, in which the delay is independent of the velocity v and
depends on the initial condition Ao. Here the delay be-
comes appreciable on)y when the sweep rate becomes suit-
ably larger than the noise parameter q. We note that, if the
velocity v is large enough, the mean value (E'(A (t)))
does not reach exactly, even after very long times, the cor-
responding stationary value (E'(A (t)))„. This means that
the system is swept so fast that it cannot relax to the sta-
tionary probability distribution corresponding to A =A (t).
In Fig. 2 the sweep velocity is positive until the control
parameter attains the value A =A~ (curve a). The sign of
tt is then inverted and A is swept back to zero (curve b).
Since during the reversed evolution the mean electric field
intensity becomes larger than the corresponding stationary
value, a dynamically induced hysteresis cycle is generated.

Let us now consider the time evolution of the full proba-
bility distribution P (E, t ). For the values of v considered in

Fig. 1 the evolution is as follows. Within a short transient,
P(E, t) approaches a configuration which practically coin-
cides with P„(E,A (t)). When A approaches unity, due to
the critical s1owing down, the probability distribution no
longer follows the value of A adiabatically and becomes
quite different from P„(E,A (t)) (see Fig. 3). Only after
A (t) exceeds unity by a suitable amount dependent on v,
does P(E, t) return to a configuration close to P,&(E,A (t)).

Another aspect of interest in this problem is the bifurca-
tion time distribution. In the deterministic theory, the bi-
furcation time is defined as the time value such that the
output intensity E reaches a prefixed value E,&. The choice
of E,'~ is arbitrary provided E,'a ) E'(0); we take E,'~ =0.1.
In the presence of noise the bifurcation time becomes sto-
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FIG. 1. Evolution of the mean value of the electric field intensity
(E2(A (t))} for q =10 3 and a, v=10; b, tt =10 2; c,
v = 10 '. The full line depicts the stationary mean value
(E2(A (t)))„ofthe electric field intensity for q =10

FIG. 2. Evolution of the mean value of the electric field intensity
(E {A(t))) for q =10 and a, v=10 t; b, u= —10
30——A~ ——4.999. At A (t) =AM the sign of the sweep velocity u is
reversed, giving rise to a dynamically induced hysteresis cycle. Full
line as in Fig. 1.
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