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Incommensurate smectic-A phase in the general model of frustrated smectic phases
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An incommensurate smectic-A phase (SA,.) made of two collinear independent density modulations at

two incommensurate wave vectors is found to be stable in the phenomenological model of frustrated smec-
tic phases of Prost in mean-field theory. The N-SA &-SA&-SA2-SA, phase diagram is computed; its represen-

tation in appropriate axis (i.e., temperature, incommensurability) is fully compatible with the experimental

topology recently reported in a binary mixture of 4-n -heptyloxyphenyl-4'-cyanobenzoyloxybenzoate

(DB7OCN) and 4-octyloxy-4'-cyanobiphenyl (8OCB).

INTRODUCTION

The rich smectic polymorphism of strongly polar smecto-
genic compounds' is now fairly well understood in the
frame of the phenomenological model of frustration of
Prost." Uniaxial SA~, SAd, SA2 (Refs. 4 and 5) as well as
biaxial SA, SC (Ref. 3) phases are described in a unified
way by two coupled order parameters [usually, but not
necessarily referred to as a mass density wave p(r) and a

polarization wave Pz(r)] having a tendency to condense at
two incommensurate wave vectors q~ and q2, the ratio q2/q~
ranging experimentally from I to 2. Although incommen-
surate smectic-A phases were among the first to be predict-
ed by ihe model, ' none of them had been discovered until
very recently when Ratna, Shashidar, and Raja reported
the first experimental observation of two collinear incom-
mensurate density modulations coexisting in a smectic-A
phase in a binary mixture of 4-octyloxy-4'-cyanobiphenyl
(8OCB) and 4-n -heptyloxyphenyl-4'-cyanobenzoyloxy-ben-
zoate (DB7OCN).

The aim of this Rapid Communication is to show how the
interpretation of this experiment as the first observation of
an incommensurate smectic-A phase is compatible with the
Prost model of frustrated smectic phases in mean-field
theory. Unlike in Ref. 2, fourth-order terms are included in

I

the free energy so that the relative stabilities of the incom-
mensurate smectic A and of other uniaxial phases N, SA~,
SA~, and SA2 can be compared.

THE MODEL

As discussed in Ref. 5, uniaxial frustrated smectic phases
can be described by two one-dimensionally modulated order
parameters:

Pz(r) = Re[qrt(r)] =Re[I+~I exp(iq~z)]

p(t) = Re[ I P2I (r) ] = Re[I%'2I exp(iq~z ) ]

The z axis is chosen parallel to the nematic director a, per-
pendicular to the smectic layers. p(r) is the center-of-mass
density of the constituent molecules, while Pz(r) describes
long-range head-to-tail correlations of polar molecules along
the z axis. In the absence of coupling between p and Pz, p
would develop spatial modulations at wave vector
q2=2n/ln, where I is of the order of a molecular length,
~hereas Pz would develop modulations at wave vector

q=t2/I' nowhere I'() I) is a length associated with the
pair of antiparallel molecules. In terms of these fields, the
Landau free energy of the Prost model reduces in one
dimension to

&P[q, , q, ]= dz —"'
Iq &I'+ ' I(&+qi')q &I'+ —

'
Iq &I'+ —' I+zl'+ ' l(~+qz )q'2I'

2 2 2 2

where r~ ——a~(T —Tl) and rq=a2(T —T2) and Tl and T2
are the noninteracting mean-field transition temperatures of
the fields W~(r) and %2(r), which are expected to depend
upon concentration in a binary mixture. The third-order
coupling term —w Re(Wfqrz) is only relevant if we restrict
our attention to slightly overlapping molecules (1.5( I'/I ( 2) [a harmonic coupling term —w'Re(qr~%'z) is
required in the other limit 1 ( I'/I ( 1.5 (Ref. 2)].

In addition to the three phases discussed in Ref. 5, name-
ly, the nematic (W) with I%'~l = lqrzl =0, the monolayer
smectic A (SA~) with le)1=0, lqr2l&0, and the bilayer
smectic A (SA 2) with IO ~ I aO, le, I~0, and q~

= qo,
q, = 2qo, we now look for the simplest incommensurate

t

structure (SA, ) defined by I+~la0, I+2la0, and q~e2q~,
i.e., only two modes coexisting at incommensurate wave
vectors. It follows immediately from the incommensurabili-
ty of q~ and q~ that the coupling term —w Re(qr j'P2) oscil-
lates along the z axis, and thus averages to zero in the SA;
phase. The minimization with respect to wave vectors is
then straightforward and gives q~ = qi and q~ = q2. After an
appropriate rescaling of variables, ' we are left with a re-
duced free energy analogous to the one describing the
bicritical-tetracritical problem:7

f (SA;) =y)x( + (1+Su))x( +y2x2 + (1+gu2)xz +2x)x)
(2)
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In mean field, the stability of the incommensurate (or in-

termediate) phase (xt=0 and x2=0) in the third quadrant

y~ & 0, y2 & 0 depends on the coefficients of the fourth-
order terms. The case (I+Su~)(1+Su2) & I (i.e., u~u2( ut2 ) will only be investigated since the other condition
allo~s no incommensurate phase' to appear in mean-field
theory and obviously corresponds to Ref. 5.

The phase (x~ = 0, x2e0) is stable in the y~ & 0, yz & 0
region and clearly identifies to SAt, whereas a phase (x~&0,
xz= 0) that we call SA„appears in the y2 & 0, y& & 0 region.
We know from Ref. 5 that SA„ is always of higher energy
than SA2 because of the third-order coupling term, ' but
close to SAq (i.e. , SAq with x~ && x2). The incommensu-
rate phase is stable in the third quadrant in a region limited

by two second-order transition lines: y~=y2/ (I+Suz)
SA&-SA, line and yt=(1+Su~)y2 SA;-SA„ line. The free-
energy density of the incommensurate phase is easily
minimized to

f(SAt) = »», -»'(I+»z) -y3 (I+»t)
4[(1+gut) (I +Su2) —I]
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FIG. 1. N-SA I-SA~-SA2 phase diagram in the case of a small in-

commensurability parameter z. The incommensurate phase does
not appear. Rotated axes (t,x) are introduced to emphasize the
close topological similarity with the experimental diagram of the
DBnOCN series (Ref. 8): t corresponds to the temperature and x to
the concentration in binary mixtures of successive homologous
compounds. Pure products n =6, n =7 can be easily located on
both sides of the critical end point P, whereas calorimetric and x-ray
data of Ref. 8 allow one to estimate that the critical point C is not
far from n = 8. The pure DB7OCN axis (t, n = 7) is thus defined as
t 2(5) ' z(y2 —0.025) + (5) 'I2y

and the phase diagrams are finally obtained by comparing
f (SA; ) « f (/q ) = 0, f (SA ~ ) = —y2 / [4(1+Su 2) ], and the
computed value of f(SAz) in the same rescaled dimension-
1ess units. s

PHASE DIAGRAMS

We choose Su I = 9, Su2 = 0. The strength of the incom-
mensurability is measured as in Ref. 5 by the reduced
parameter

z = (u, 2D, /2)'I'(q, ' —q$ /4)/w

proportional to the difference of natural wave vectors over
the coupling constant w. For small incommensurability
parameter z (Fig. I), the origin y~ =0, y2=0 is deep in the
SA 2 phase, there 1s no b1cI'1t1ca1 p01n t, and SA 2 1s always
found to be of lo~er energy than SA;. The diagram is quali-
tatively similar to Fig. 3 (b) of Ref. 5. Rotated axes
(y~,y2) (t x) are introduced to show the close agreement
with the experimental diagram of the DBnOCN series (Fig.
I of Ref. 8) as it was already noticed in Refs. 3 and 4.

For higher incommensurability parameter z & zc given in
Ref. 5 [zc = I/(6)' here) (Fig. 2), the bicritical point 8 ap-
pears and SA; is found to be stable in a quasitriangular
domain which gro~s when increasing z. The SA I-SA,
second-order line is given by Eq. (2) y~ =y2/(1+ Su2),
awhile SA2-SA; and SA~-SA; are first order. Of course, SA„
and the SA„-SA; line never appear. Even with rotated axis,
the topology of the theoretical diagram in the (yt, y2) plane
at constant z (Fig. 2) is far from the experimental one in
the (DB7OCN-8OCB) plane. Moreover, the discontinuity at
the SAq-SA2 transition unambiguously grows when moving
along the line towards the SA; phase, ~hereas it decreases in
the experiment. It is in fact clear that the (y~,y2) (or rotat-
ed tx) represen, tation at constant incommensurability

parameter z is not appropriate to describe a DB7OCN-8OCB
mixture, since the ratio of the two natu ra1 lengths
I'/I = q2/q~ considerably varies from DB7OCN (I'/I close to
2) to 8OCB (I'/I close to I). It follows from its definition
that the incommensurability parameter z must increase sig-
nificantly from DB7OCN to 8OCB.

We thus suggest that a theoretical phase diagram should
be represented in a (t,z ) coordinate system to be compared
to the experimental one. 6 Such a diagram is shown in Fig.

Yl
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FIG. 2. N-SA I-SAd-SA2-SA; phase diagram in the case of higher

incommensurability parameter (z & zc). The rotated (t, n =7) axis
of Fig. 1 is mentioned again, but the topology is quite different
from that of the experimental diagam of Ref. 6. The nearly triangu-
lar SA; domain gro~s when increasing z and crosses the above de-
fined (t, n = 7) axis for z & 0.36.
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FIG. 3. N-SA&-SA2-SA; diagram in the (t,z) plane. x has the
constant value defined in Fig. 1 for n =7 so that pure DB7OCN is
characterized by the same set of parameters in Figs. 1 and 3
(z =0.15). The z axis is clearly related to the experimental concen-
tration of 8OCB in DB7OCN (Ref. 6).

CONCLUDING REMARKS

We have shown that the original observation of an incom-
mensurate smectic-A phase is fully compatible with the to-
pology computed from the Prost model of frustrated smec-
tics in a temperature-incommensurability parameter cross
section of the phase space. Other experimental features can
be interpreted the following way:

(I) The lack of a harmonic coupling term in the free en-
ergy (1) makes it possible to describe the DB7OCN-rich part

3, with t defined by the same rotation as in Fig. 1 and
x(n =7) and z(=0.15) corresponding to pure DB7OCN
(i.e., the DB7OCN axis of Figs. 1 and 3 are common, as re-
quired). The topology is now in excellent agreement with
the experiment. Moreover, values of z lower than 0.15 are
investigated to show the critical end point T where the three
phases N, SA~, SA 2 meet. This point does enter a
(r, z & 0.15) representation at constant x(n =6) (see Fig.
1), and thus should be reached in a DB6OCN-SOCB binary
diagram.

of the diagram only since it requires 1.5 ( I' ll & 2 as al-
ready mentioned. Fortunately, the experimental diagram of
Ref. 6 corresponds to this limit [X(8OCB) ( 40'/o].

(2) The choice of the (r,x) coordinate system from the
original (y~,y2) is not critical to get the topology of Fig. 3
provided that the t axis crosses the SA2-SAq line (as in Figs.
1 and 2). Depending on the exact definition of r (and of
the value of other parameters Su~, su2) the discontinuity
(i.e., the latent heat) along the first-order SA2-SA~ line can
either increase or decrease, as experimentally seen, when
moving towards SA;. Although it is not impossible a priori,
an exact cancellation of the discontinuity at the triple point
SA~-SA2-SA; is, however, unlikely in the present approach.

(3) The SAq-SA; and SA;-SA2 lines are necessarily found
to be first order because of the single-mode approximation
of the incommensurate structure. For finite values of the
coupling constant w, a modulated structure consisting of a
periodic stack of discommensurations is known to be more
stable' and allows the SA;-SA~ and SA, -SA2 transitions to be
continuous~ as probably observed. Moreover, the absence
of any modulated structure in the x-ray scattering data sug-
gests that the coupling constant ~ is weak. Thus, if one for-
gets about the discontinuity, the evolution of wave vectors
reported in Ref. 6 is in agreement with the present model
(see formula 2-11 of Ref. 5): qp(SAq) increases to q~ at the
SAq-SA; transition, 2qp(SA2) decreases to q2 at the SAq-SA;
transition.

At last, we must mention that the existence of the incom-
mensurate phase close to the bicritical or tetracritical point 8
(y~ =y2=0) in the (y~,yq) plane (Fig. 2) is not correctly
predicted by mean-field theory, but depends on the sign of
the specific-heat exponents c associated with the second-
order N-SA

~ and W-SA~ lines. '' If o. is negative as expect-
ed from theory (inverted XY universality class" ), 8 is tetra-
critical and the incommensurate phase should always be
present (i.e., the mean-field topology of Fig. 2 is valid close
to 8). If n is positive, 8 is bicritical and the incommensu-
rate phase should not reach it. In both cases, however, the
incommensurate SA, domain of Fig. 3 is far enough from
the origin 8 to believe that mean-field theory has some
relevance.
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