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Molecular dynamics simulation for polymers in the presence of a heat bath
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We describe an efficient and general algorithm for simulating polymers, which can be used for single,
large chains as well as many-chain systems. It allows us to distinguish solvent effects from interchain ef-
fects on the dynamics of the chains. The method is tested for linear and cyclic chains of 50 to 200 mono-
mers. We have confirmed two theoretical results which have not been observed numerically or experimen-
tally, namely, the anomalous behavior of S (g) for rings and the %5 power law for the motion of a mono-

mer in a self-avoiding chain undergoing Rouse relaxation.

The physics of polymeric materials is of great interest
both from a fundamental viewpoint and for their various
technical applications.! As our basic understanding of these
systems increases, the questions we try to address become
more complex. In addition to theoretical and experimental
approaches, computer simulations have played an important
role in our understanding of polymers.2 For static proper-
ties Monte Carlo methods have been widely used and give
excellent results for static critical exponents. To investigate
dynamic properties three different methods—Monte Carlo
(MC),**¢ molecular-dynamics (MD),”® and Brownian
dynamics® methods—have been used. Detailed microscopic
dynamics of a specific polymer model has also been stu-
died.!® Here we describe a continuum approach which can
be effectively used in a wide variety of systems, such as
linear, ring, or star polymers. We describe the new method
and show that for the Rouse model it gives correct results
for linear and cyclic polymers. New results include the con-
firmation of the predicted anomalous behavior in S(g) for
ring polymers and the 1*%* power law for the motion of a
single monomer of a self-avoiding chain undergoing Rouse
relaxation. N
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is the center of gravity, and for the center-of-mass motion
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(R¢E) is the mean-square radius of gyration. Qualitatively,
Egs. (2)-(4) mean that monomer motion is governed by
the fluctuation around the center of gravity until the aver-
age distance reaches approximately Rg; then the diffusion
of the chain as a single object dominates. For self-avoiding
chains' one finds (R&)« N?*, with v=0.59 (d =3) instead
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The Rouse model for the dynamics of a single polymer
describes the motion of an ideal chain immersed in a
viscous solvent.""!! This model neglects the self-repelling of
the chain monomers as well as any hydrodynamic effects.!?
Although this so-called ‘‘free-draining’’ limit is somewhat
artificial, it has been very useful for understanding polymer
dynamics. The Rouse model describes the motion of a sin-
gle monomer by a Langevin equation:"*
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r; is the position of the ith monomer, u the mobility, and
F; the force from the surroundings other than the chain it-
self. The last two terms describe the elastic force along the
chain (a« 8%r/dn%) and the inner-chain interactions ¢;. Be-
cause the inner-chain forces have to sum to zero, one finds
a diffusion coefficient! D = ukgT/N for a chain of N mono-
mers using an Einstein relation. For an ideal chain (random
walk) one finds a longest relaxation time (Rouse time)
v N2, For the motion of a single monomer this leads to
the following relations (79 is a microscopic time):
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[
of v=%. A scaling analysis leads to a relaxation time'
rve N¥*la N218 Ceperly, Kalos, and Lebowitz® confirmed
this result by simulations, while another consequence,’

g1(Dec () /U4 054 e 7, Q)
has not been seen numerically.'* D is not affected by these
arguments.

In a MC simulation the chain moves stochastically
through random moves of a small number of monomers at
a time. The number of bonds involved typically varies from
two for chains in free space to four for lattice chains (dia-
mond lattice). This technique reproduces the Rouse
behavior and is especially suitable for scalar computers.
Unfortunately, the method suffers from two disadvantages.
First, it is very difficult to write an efficient parallel MC al-
gorithm for polymers.? The second problem is that for
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dense systems, the motion is almost reduced to cooperative
fluctuations. Partially, this problem is compensated for by
using very large systems at moderate densities.>!® This
method has been the most successful and will remain very
important at low and moderate densities. In a quasi-
Brownian dynamics method® the Smoluchowski equation is
solved for the position of the monomers by a MC algo-
rithm. Due to the mainly stochastic nature of the motion,
only moderate densities (p <0.5) have been used. In both
methods the Rouse dynamics is built in due to the stochas-
tic nature of the chain motions. One cannot make a clear
distinction between the influence of the small solvent parti-
cles or other long chains on the local dynamics of a poly-
mer. This is important at the moderate densities where
these methods work. The third alternative is to use a stand-
ard MD method.”® Here Newton’s equations of motion are
solved directly for each monomer. Since both momentum
and energy are conserved, one simulates a microcanconical
ensemble. However, in order to sample the entire phase
space for a chain and to get the Rouse dynamics there must
be an exchange of energy and momentum with the sur-
roundings. This can be done by taking the solvent
molecules (monomers or very small chains) explicitly into
account. Typically, one needs as many as 20 times (or
more) solvent particles than monomers of the chain. This
makes the algorithm so inefficient that it has only been used
for small systems.”®

It would be very useful to find a simulation method,
which combines the positive aspects of these algorithms
and avoids most of their negative aspects. To be precise we
want to have a method which is (1) almost as effective as
the MC methods for a single chain and reproduces the
Rouse model and (2) should be effective at high densities
and allow us to clearly distinguish the solvent from the in-
terchain interactions. In addition, the algorithm should be
general enough that one can incorporate constant-pressure
methods'® to calculate moduli for an entangled melt or a po-
lymer glass. To achieve this aim, we propose a MD algo-
rithm where each particle is coupled weakly to a heat bath.
Schneider and Stoll'” used a similar method to simulate a
system with a distortive phase transition. They made the
coupling so weak, that they could neglect the influence of
the heat bath on the dynamics of the system. We want just
the opposite. Since the coupling of the polymer to its sur-
roundings is not weak, the influence of the heat bath on the
dynamics of the chain must be investigated. Thus, we solve
the equations of motion:

f=-VU-Ti+W() , (6)

where I' is the bead friction and W;(r) describes the ran-
dom force of the heat bath acting on each monomer. W,(¢)
is a Gaussian white noise with
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Using the Einstein relation this leads to a diffusion coeffi-
cient Do=kgT/TN. The potential*®>'® U, has two parts

U+ U, U° is a shifted, purely repulsive Lennard-Jones
potential,
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between any two monomers. The potential
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gives the additional interaction between nearest neighbors
along the chain. The parameters we used are Ro=1.50,
k =30.0¢/0?, and temperature kg7 =1.2e. These parame-
ters are different from those used previously®® in order to
prevent the chains from crossings. We used a time step'’
At=0.0047 or 0.0087. Here r=o(m/e)/?. The equations
were solved using a fifth-order predictor corrector loop.2°
Note that At cannot be mapped directly onto a microscopic
time scale, because a single monomer corresponds to a
number of real bonds, which depends on the actual chemis-
try. The relevant parameters for this are the persistence
length and the longest relaxation times. The range of I’ we
tested is 0.5=<TI =< 1.5, which confines the ballistic motion
of a monomer between one and four bond lengths. The
chain lengths studied are N =50, 100, and 200 for linear
chains and rings. We also analyze a random-walk (RW),
ideal chain of N =200, where the potentials only act
between consecutive monomers along the chain. Typically,
we run 8-15 times as long as shown in the plots. For the
dynamic quantities we then average over at least 1000 initial
configurations.

For the ratio of (RZ(N)) and the mean-square end-to-
end distance (R?) we find the expected value %—, as well as

consistency with (RZ) ring/ (RZ) tinear = 0.56.2' Because we
only studied a few chain lengths, it is very difficult to ex-
tract a convincing result for v from the N dependence of
our data. Therefore, we calculated the static structure func-
tion S(g).222 For

20/ (R V2 27 ~1/v

w/(R*) << g << — S(g)xg .
Figure 1 gives the result for S(g) with »=0.59 for N = 50.
We find excellent agreement with the expected behavior.
We also show results for a ring of N =150. The ring is not
self-entangled. The behavior of the ring is different from
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FIG. 1. S(g) vs g for linear (®) and ring (O) polymers of chain
length N=50 and random-walk chain (O) for N=200. In the
inset, the data for the linear and ring polymer are replotted as
=S (g) vs log;og with v =0.59. This plot is much more sensitive
and shows that the actual value of v differs slightly from the expect-
ed behavior.
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that for linear chains, as expected from the results for RW
rings.?*?% For self-avoiding rings S (g ) is only calculated as
a series expansion in moments of R&. For g << 27/(RZ)V?
expanding S (gq) gives

S(g)=N(1—+q*(RE + )
for both the ring and linear chain. Because

we find S(g)ung > S(g). For g >>2m/(R?"? one only
measures the local fractal structure of the ring and there-
fore,

S(q)ring=S(q)°Cq_l/v .

In order to fulfill these requirements, there must be a re-
gion where S(g ).y is steeper than for the linear chain.
This is the region where the sphere of radius ¢~ ! typically
covers more than one strand of the ring, while it would cov-
er only one strand for a linear chain. This is true up to
g =2m/(R&)"?, the mean extension of the chain. This im-
plies that the g range for the overshooting decreases with
increasing chain length, in agreement with a study of longer
rings,2® in which no overshooting was observed. Figure 1
also shows the result for a RW linear chain with N =200,
for which v=0.50 £ 0.02.

For a given I', we expect, for times ¢+ << I'~! the un-
damped motion of a monomer within the chain constraints,
while for t >>T~! we expect to find the typical Rouse
behavior, Egs. (2) and (3). Figure 2 shows the result for an
inner monomer of a random walk of N =200. Inner means
that the average is taken over the ten middle monomers.
With I' =0.5, Eq. (2) gives a diffusion constant Dy=kgT/
NI'=0.012, in good agreement with that measured from
Fig. 2. We find that the outer monomers are much more
mobile than the inner ones, but display qualitatively the
same behavior.

For a more systematic approach consider a self-avoiding
chain. The RW results show that for ' ! << 7, the stand-
ard Rouse behavior is observed. Within this limit we are
free to vary I', which means we can change the prefactor «
of v =aN>'® Figure 3(a) gives a schematic plot of what is
expected. To be precise, this algorithm gives us the oppor-
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FIG. 2. g,g; for an inner monomer and g3 for a random-walk
linear chain of N =200. Total run (7.2x10%)r.
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FIG. 3. (a) Schematic plot of g;, &,, and g; for fixed N and dif-
ferent I'. The ratios of 75(I') and Dy (') are indicated. (b) Same
as (a), but now for inner monomers of a linear chain of N =50 for
=05 and I'y=1.5. The ratios of g3(I';)/g3(I'y) =7(I'y)/7([)
=3.0 are in good agreement with (a). The inset shows g, for
I'=0.5 for N =50, 100, and 200 (inner monomers) to show that
8,7 for t << 7 is independent of the chain length.
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FIG. 4. g, and g; for a random-walk (RW) and a self-avoiding
(saw) ring for N =200 and I' =0.5. Total run (3.2x10%).
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tunity to decrease I' when we increase N, improving its ef-
fectiveness considerably. For higher densities, the dynamics
of our system will be governed by the chain-chain interac-
tion, and we simulate a constant 7, canonical ensemble. In
Fig. 3(b) the results for '=0.5 and 1.5 are shown for
N =50. It shows the expected behavior, D;/D,=3.0. The
inset shows g, for fixed I" but different N. Fort <y, g, is
independent of N. The deviations for N =50 are due to the
fact that ten inner momomers already represent 20% of the
chain. Now let us consider the somewhat delicate difference
of g,/g, between the random walk and the self-avoiding
chains due to Eq. (6). This can show how accurate our
method is, even for a relatively low friction, I'=0.5. In Fig.
4, g,(t) for an N =200 ring is shown since it displays the
cleanest power law behavior. For comparison we include
the data for the RW ring. We find a different power for
g:()a ¥, x=0.53 £0.02, instead of the ¢"/? for the RW.

To conclude, we have developed a rather general and
highly effective method for the simulation of polymers. By
changing ', local configurational fluctuations are governed
by a ballistic dynamics up to a time ¢(I'). This is faster
than purely Brownian relaxation. Within this framework it
is straightforward to generalize it to a constant-pressure al-
gorithm,!” which allows us to study dense systems under
stress. During the test of the method, we showed the
difference in S(g) for a ring compared to a linear chain,
which was expected, but not seen for self-avoiding rings. In
addition, for the first time the difference between the power
laws in the Rouse behavior of g,/g;, between the ideal
chain and the real chain, was demonstrated.

We want to thank P. Pincus, D. Pearson, and T. Witten
for discussions.

‘Permanent address: Institute fiir Physik, Johannes Gutenberg
Universitit, 6500 Mainz, West Germany.

IP. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ.
Press, Ithaca, 1979).

2A. Baumgirtner, in Application of the Monte Carlo Method in Statisti-
cal Physics, edited by K. Binder (Springer, Heidelberg, 1983).

3A. Baumgirtner, Annu. Rev. Phys. Chem. 35, 419 (1984).

4A. Baumgirtner, K. Kremer, and K. Binder, Faraday Symp. Chem.
Soc. 18, 37 (1984).

5K. Kremer and K. Binder, J. Chem. Phys. 81, 6381 (1984).

6C. C. Crabb and J. Kovac, Macromolecules 18, 1430 (1985).

7Yu.Ya. Gotlib et al., Macromolecules 13, 602 (1980).

8M. Bishop, M. H. Kalos, and H. L. Frisch, J. Chem. Phys. 70, 1299
(1979).

9D. Ceperly, M. H. Kalos, and J. L. Lebowitz, Phys. Rev. Lett. 41,
313 (1978); M. Bishop et al., J. Chem. Phys. 76, 1557 (1982).

10 Helfand, J. Chem. Phys. 69, 1016 (1978); 70, 2016 (1979).

1P, E. Rouse, J. Chem. Phys. 21, 1273 (1953).

12B E. Zimm, J. Chem. Phys. 24, 265 (1956).

13p. G. de Gennes, Macromolecules 9, 594 (1976).

14This exponent cannot be measured. It would be found in dilute
solutions where hydrodynamic effects dominate.

ISK. Kremer, Macromolecules 16, 1632 (1983).

16M. Parinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).

17T, Schneider and E. Stoll, Phys. Rev. B 17, 1302 (1978).

18R, B. Bird et al., Dynamics of Polymeric Liquids (Wiley, New York,
1977), Vol. 2.

19For Ar=0.004r, a microcanonical run (I'=0) is stable.
I'=0 the timestep can be increased.

20The actual computing time for 10% timesteps for a chain of
N =100 was 8 h on an IBM 3033 or 25 min on a Cray 1S.

213, J. Prentis, J. Chem. Phys. 76, 1574 (1982).

22K, Kremer, A. Baumgirtner, and K. Binder, J. Phys. A 15, 2879
(1982).

23B. Farnaux et al., J. Phys. (Paris) 39, 77 (1978).

24E_F. Cassassa, J. Polym. Sci., Part A 3, 605 (1965).

25M. Bishop and J. M. J. Michels, J. Chem. Phys. 84, 444 (1986):
83, 4791 (1985).

26A. Baumgirtner, J. Chem. Phys. 76, 4275 (1982).

With



