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Renormalization-group analysis of the global structure of the period-doubling attractor
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%e use a recently developed renormalization-group formalism to study the global properties of the
period-doubling attractor. The renorrnalization scheme can be written in closed form in terms of universal
functions. The results of the calculation appear as a smooth spectrum of scaling indices in full agreement
with direct numerical calculations. As a special result we obtain the fractal dimension of the attractor to be
DO=0.5380451435, accurate to one part in 10 ' . The only input for the calculation is the Taylor expan-
sion of Feigenbaum's universal function.

As found by Feigenbaum, "' the attractor obtained at the
onset of chaos via period doubling (PD) exhibits two main
scales, upt) and u)o, where upo= 2.502907876. . . is a
universal number, and the local scaling on the attractor as-
sumes a value between these two scales as determined by
the scaling function 0.."b' Recently, Halsey et al. ' observed
that the global structure of the attractor can be described by
a smooth universal spectrum of scaling indices, which range
over all values between upo and u/t). More speciTically it
was found that the density of points p on the attractor scales
locally as p(l) —l when I 0, where u is a scaling index.
This index is restricted to an interval, o. ;„&0.& o.
where u,„=ln2/Inlupol and u;„=In2/lnujo. The com-
plete set of scaling indices is obtained via the smooth spec-
trum f(u), where f(u) is the global dimension of the set
of points on the attractor where scaling indices of type 0. are
located. Obviously, f(u) ~ D().

To obtain the spectrum f(u) one calculates the partition
function

2n —1

I'„(q, r) = $
I xg

—xJ+2

~here xt is the ith iterate of x =0 calculated at the onset of
chaos. Requiring lim „ I', (q, r )- 1 determines r ( q )
which can be transformed into the spectrum f(u) by "

u= r(q), f=qu —r(q)d
dq

r (q ) is related to the generalized dimensions D» of
Hentschel and Procaccia4 via r = (1 —q)D, . The spectrum
found this way is sho~n in Fig. 1. Here we shall employ a
renormalization-group (RG) theory to determine it. The
scheme we use, which follows closely a scheme recently
developed for circle maps by Kadanoff, ' is different from
earlier RG treatments of Feigenbaum' in the sense that it
deals with the global structure of the attractor. Basically,
one can write an eigenvalue problem„which determines the
behavior of the partition function I'„(q, r) as n becomes
large. We obtain I'„(q, r) =)(."(r)2 q'" '), where X(r) is
the maximal eigenvalue. This determines q(r) =In)((r)/
ln2 and Eq. (2) then yields f(u) to very high accuracy.

%e now focus on the part of the attractor around x =0
and write a generalized partition function in the following
way:
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Our original partition function is thus I'„(q, r) = I'„() p(q, r).
In our analysis, we shall assume n && m && l, solve and
extrapolate to m =0. A central point of the calculation is to
split the sum (3) into two parts, ' one over even j, the other
over odd j.'
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This splitting is shown schematically in Fig. 2 for the case n =6, m = 2.6 To evaluate Eq. (4) we make use of the following
identities that are obtained from Feigenbaum and Cvitanovic s functional equation g(x) =upog(g(x/upo)) (in the follow-
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FIG. 1. The spectrum of scaling indices f(a) found for the criti-
cal period-doubling attractor. The maximum point is the fractal
dimension Do, and am;„D In2/Ina)n 0.377 75. . . and

am» D In2/Inapt) 0.755 51. . . (Ref. 2).

FIG. 2. The construction of a part of the attractor. The numbers
refer to iterates of x=0. The fourth level in this construction cor-
responds in our notation to n-6, m=2.

ing we set a = apt)):

x, —= gj' (0) = a gj(Q)

x = g'" (gj' (0) ) = a-"+'g(a"-m-'gj(0) ) (5)

g ' (x, +1) =a- g '(a 'gj(0))

The denominator of the second sum in Eq. (4) is expanded

to yield

g '
(xj, ~)) —g '

(xj, +,+,„1)
= (g ' (X))'ln-n (X.,m+1 —X.,m+1 „-1)+ & J2m &2m +2n

=(g )(x))'~ ) j„,(x, +) —x, p),„)) . (6)

Rewriting Eq. (4), with Eqs. (5) and (6) inserted we obtain
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'

(7b)

From Eq. (7a) we observe that the first part of the sum in
Eq. (4) (i.e. , summing over even j) is just a scaled-down
version (by a k~a~') of the original partition function on
the left-hand side. The part obtained from summing over
odd j's in Eq. (4) is nearly of the form of 7„)k except
for the dependence on g '(x). To express it in terms of

~,k, we expand the numerator

(g ')"[(g ')'] 'j

i.e. , we expand g '(x) around the point xo=g '(0). Since
the iterates gj(0) fall in the interval [I/a, 1] the expansion
is evaluated on the interval [1/a, 1/a']. This interval is in-
dicated on the graph of g '(x), Fig. 3. Clearly, the expan-
sion avoids the singularity at x = l. %e may thus expand in
a Taylor series,

(g ')"[(g ')'l ' 1,(,)
= X &k)(r)a '[gj(0)]' .

j~o

FIG. 3. The inverse g '(x) of Feigenbaum's universal function.
The regime where our expansion is evaluated is indicated by the
thick line.
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TABLE I. The first ten Taylor coefficients for the inverse of
Feigenbaurn's universal function, g '(x) xp+gt=ta, x', with

xp -0.832 367 236 909.

Q)

Q2

Q3

Q4

Q5

Q6

Q7

as
a9
Q~p

—0.445 451 223 8
—8.232482 9846x 10
—5.333 356 953 4 x 10-2
—3.045 383 4106x 10
—2.2198699393x10 '
—1.641 492052 8 x 10-2
—1.2990186484x 10
-1.053 5811616x 10-2
—8.793 459865 5 x10-3
—7.4747350276x 10

l~l (k+I~1 g &kt(r)~ 0t .
I 0

(10a)

which means that X is the largest eigenvalue of the matrix

Mkt —lnl (tr 'Skt+Akt(r)tx ') (lob)

In the following calculations the size of the matrix is trun-
cated at finite order.

The "input" for the calculation is Feigenbaum's universal
function g(x) written as a series, ' g(x) =1+X"„,g„x'".
We can of course move the expansion to xp, g(xp) =0 (see
Fig. 3), and formally write g(x)=gt tat(x —xp)'. The
coefficients a& are easily determined from higher order
derivatives,

1 d'g(x)0(=
1I ~ x=x0

Knowing this series we can analytically invert it to any or-
der (see, for instance, Ref. 7) and obtain g '(x)=xp
+ gt t a,x'. The first 10 coefficients are displayed in Table
I. The matrix (10b) can then be constructed numerically to
any order. Alternatively, one can solve all equations on a
grid; we have used both methods and the results are indis-
tinguishable.

From the largest eigenvalue A. of MId we find 1

Inserting in Eq. (7), we find the following RG equation for

y,k(r):

y„, (kr)=tx 'lrrl'y„ t k(r)+ ltrl' X w«(r)tx ty„ t-t(r)
I p

(9)

This is the main equation of the formalism. It is similar to
the RG equation obtained for circle maps by Kadanoff. '
Assuming that for large n the partition function grows as
y„„=h."g„, we find

TABLE II. Convergence as a function of the number of terms in

the expansion of g ' for three specific examples.

5
10

N 15
N-25
N 35

Dp

0.53
0.5380
0.538 045 1

0.538 045 14
0.538 045 143 5

q(~ =10)

26.47
26.472 12
26.472 124 1

26.472 124 17
26.472 124 17

q(. = —10)

—13.235 60
—13.235 608
—13.235 608
—13.235 608 18
—13.235 608 184

r Inl~l+In(I+ lail ')
ln2

(12)

As r = (q —1)Ds —~ we obtain the theoretical result
D „-ln2/lnlal. As r- ~ we should expect to find the
theoretical value D =In2/Ina2. This would be the case if
in Eq. (12), lail ' —lal. As this is true to within 10%, we
find that already the lowest approximation is fair. To first
order, as r ~, we obtain

exp—
Q~

202Xp

Inserting the numerical values of the a&'s the result is accu-
rate to 1.4'/o, indicating a very fast convergence.

This work has been supported by the Materials Research
Laboratory at the University of Chicago and by the Office of
Naval Research.

—2 ~ " '~X" 1 leading to

q(r)=in)/In2 .

our results for q(r) are excellent and with N —5 we get
convergence at 10 4, ~hereas with Ã —35 we get conver-
gence around 10 . See Table II for the convergence with
N at three different points. The f(a) spectrum calculated
this way is indistinguishable from the direct numerical calcu-
lation as sho~n in Fig. 1; though the present calculation is
several orders of magnitude more accurate than a direct nu-
merical calculation. As a particular result we obtain the
fractal dimension of the attractor: D =p0.5380451435(1).
%e believe this is the most accurate estimate to date and
agrees down to 10 with the result found by Grassberger'
and down to 10 with the result of Chang and McCown. 9

Actually, a direct numerical estimate of Dp via Eq. (1)
seems to deviate from this estimate even with very many
points (n =4096). We attribute this to a very slow conver-
gence of the direct calculation which we avoid in our RG
formulation.

It is instructive to consider the lowest two approximations
in our formulation. To zeroth order it is easy to find
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