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Collapse and revival phenomena in the Jaynes-Cummings model with cavity damping
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The density-matrix equation for a single atom interacting with a single mode of a cavity with finite Q is

solved for the time dependence of various physical quantities using the dressed-atom approximation. The
effect of the cavity damping on the collapse and revival phenomena and on the photon statistics is studied

in detail.

The Jaynes-Cummings model' ' of a two-level atom in-

teracting with the electromagnetic field in a lossless cavity is
one of the few exactly soluble models in quantum optics. It
enables one to calculate all the quantum-mechanical proper-
ties of a system. It predicts many interesting effects such as
vacuum-field Rabi oscillations, revival and collapse of Rabi
oscillations in presence of a coherent field, "etc. It is now
becoming possible to test experimentally"' many of the pre-
dictions of this model. In realistic situations, one does ex-
periments in cavities with finite 0 and hence, one should
know how the predictions of this model are affected by the
relaxation of photons in the cavity. This is currently very
extensively studied, ' and in this paper we adopt the
dressed-atom approximation to obtain analytic results for
the time depencence of various physical quantities, such as
inversion, photon number distribution, and field amplitude
and fluctuations. Numerical computation of the analytic
results for the time dependence of excitation probabilities,
photon correlation, and squeezing properties of the field for
different values of the cavity damping parameters are also
given.

The Jaynes-Cummings model considers the interaction of
a single two-level atom characterized by spin- —, angular

momentum operators S ~,S' with a single mode of the elec-

tromagnetic field characterized by annihilation and creation
operators a and a, respectively. For simplicity we will as-
sume that the field is at resonance with the atomic frequen-
cy cv. For the cavity problem we must account for the leak-
age of photons from the cavity at the rate 2~. The master
equation for the density matrix of the combined system is

p t t
Bt

= —i/t[H, pl —K(a ap —2apa + pa a)

H =tee(S*+a a ) +tg (S+a + S a ) (2)

with g denoting the coupling between the atom and field.
On introducing the eigenstates of 0,

I&1)+„)= (ln, —,') + In+1, —p) )/v2

with eigenvalues,

)+&„=o)(n +~)+ (g+n1) ')i,

(3)

(4)

and on defining

and using the dressed-atom (secular) approximation, which
as shown in Ref. 4 holds for 2nn'« gv' +n1, the equa-
tions for the diagonal elements of H'are found to be

(q'+. I w«)I++. ) =2~[r+&.+»(q+&. +&)Iw(r)l++&. +&)&+r-&.+&)(q'-&. +))Iw(r)lq &. +)))
—(1',„+1„)(q,„lw(r ) IV, „&],

&q „Iw(i)lo „&=2[r,&„,»&q &„„)Iw(r)lq&„„)&+r&„„)(q„„„)lw(r)lq„„,»&

—(r,„+r„)(q „Iw(r)lq

(q +„lw(i)lq +„&= —2K(n+z)(a+„Iw(r)lq +„)

(6)

(8)

~here I's are given by

1 +„=(v'n+1+ Jn )'/4

The solution of the above coupled differential equations
will yield the time dependence of the elements of p. To
solve Eqs. (6) and (7), we add these to get a simpler equa-
tion:

Let us consider the solution of the dynamical problem as-
suming that initially the field has photon number distribu-
tion p„ofphotons, and the atom is in the excited state. Let
us write

p(0) = W(0) = g p„ln,—,') &n, ,' I+ g p „In).~&—&n,—,
' I.

m&n =Q

F„=(q „Iw(r)lq .) +(q „Iw(r)le .)

= 2K[ —(n +~)F„+(n + ~)F„+&j (10) The limit % ~ will be taken at the end of the calcula-
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tions. 1p'(0) can be written in terms of the dressed states as

ll'(0) = —,
' g p. ( I++.& & q'+. I+ Iq'-. & & +-.I+ I++.& &+ .I+ Iq' —.& &q'+. I)

n=0

+T' g p .( Iq'+ & &q'+. I+ Iq'-. & &+-.I+ I++.& &+-.I+ Iq .) &q'+. I) .
m&n =0

(12)

The solution of Eq. (8) is straightforward and is given by

&q +„le(r)lq +„&=T'exp[ —2~(n+T)t]p„.

Now, to solve (10), we write it as
f

F„(t)=eXp[ —2a(n+T)t]F„(0)+2K(n+T)„' eXp[ —2It(n+ —, )(t —r))F„+I(T)dr

We start with n = /I/ and iterate Eq. (14) for successive smaller values of n Th. is procedure leads to

(j+-,' )![1-exp(-2xt)]'
F„(t)= exp[ —2~(n + —,

' ) t ]$, p,
t=n (j —n)!(n+ —,

' )!

(13)

(14)

(15)

Using now Eqs. (3), (5), (13), and (15), we can evaluate the time evolution of various physical quantities. For example,
the probability TI (t) of finding the atom in the excited state irrespective of the field state is found to be9

N (j +-,' )![1-exp( —2at) ]'
T, (r ) = T X exp[ —2K(n + T) t ] p„cos[2gJ(n + 1)t ]+$, p,

n=O J = lt (j-n)l(n+ )I
(16)

The probability of finding the atom in the ground state will

be 1 —TI(t). This is one of our key results and can be
used to study the phenomena of collapse and revivals in the
Jaynes-Cummings model for the finite value of cavity Q.
For this purpose we take the field to be in a coherent state
so that

p „=zz'"exp( —lzl') v/'m!Jn!

I

with p„=p„„,and let N ~. The numerical results so ob-
tained are displayed in Fig. 1 for two values of the parame-
ter ~ consistent with the secular approximation 2K
&& lzl't'(& g. For comparison, the cur~e for K=O is also
shown.

The dressed-state solution (15) also enables us to find the
photon statistics. Calculations show that the probability
p„(t) of finding n photons in the field at time t is given by

p„(r)= exp[ —2K(n+ T ) t]p„cos'[g4(n+1)t]+ exp[ —2~(n —TI ) t]p„ I sin'(gvtnr)
1

(j + T)![1—exp( —2Kt) ]'
+T exp[ —2a(n+T')t]

J a+I (J n) (n+T)! pt+ (1 —5„II)(termS with n n —1) +Kg„p&~ Fp(T)dT

(18)
lo

075" .t P, nt) II II tI RRR""
tl LI'll'

~

n A 5 t( tl tt
V

U tj 'tI! Q Q V & V V
C

Pi.&K ~ ~ M A

—O.ao
-Ij

I

[5
gt

FIG. 1. The probability of finding the atom in the excited state as
a function of time when the field is initially in a coherent state with
Izlz=5. The curve A ls TI(t) for cavity relaxation parameter
K = 0.0; the curves 8 and C represent, respectively, excitation proba-

bilities for K=O.OOS f T)(()—
2 ] and K=O.015 [T)(t)—

4 ].
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FIG. 2. The mean photon number n(r) = (a (t)a(r)). Curves
A, B, and C are for ~/g =0, 0.001, and 0.005, respectively, and for
lz I'-10.
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FIG. 4. Comparison of p„(t) with the Poisson distribution

exp[ —n(t)]n(t)"/n! (curves A), for gt =2.0, 25.0, 100.0, and
200.0, with the time increasing from left to right.

FIG. 3. The photon number distribution p„(t)for ~/g-0. 005

and iz iz= 10. Curves A-6 correspond to gt =0.0, 30.0, 38.0, 50.0,
100.0, 500.0, and 1500.0, respectively.

The first two terms in Eq. (18) are the usual contributions
to the photon statistics, but these are now damped at the
rate 2(((n + T ). The remaining terms arise from the leak-

age of photons, i.e. , from the dissipative effects in the cavi-
ty. For times such that ~t && 1, the effects of the dissipa-
tion are not important. In Fig. 2, we present the time
developement of the mean photon number (a t
& a (t )) = n (t ), assuming that the field is initially in state
(17). A comparison of Figs. I and 2 shows that the dissipa-
tion effects change the photon numbers more significantly
than the atomic inversion. Figure 3 shows the photon
number distribution p„(t)for various times.

In Fig. 4 we give a comparison of p„(t)with the Poisson
distribution (17), with I z I' (a ( t )a ( t ) ) . It is interesting
to observe that the deviations from the Poisson distribution,

though noticeable, are not very significant.
Perhaps a better appreciation of the statistics can be had

by examining.

(z) (a"(t)a'(t)) —(a'(t)a(t))'
( '(t) (t))'

f nction of time t. For a strictly coherent fie gld "'=0,
whereas negative values of g lead to the anttbunching o

~ ~

the field. Figure 5 shows the revival and oscillation in the
bunching and antibunching characteristics of the field.

Finally, we study the squeezing properties of the field
operator (a + a ) by evaluating

S(t) = (:(a +a)'. ) —(a'+a)' (20)

fwhere:: denotes the normal ordering. Negative values o
S(t) imply squeezing. To evaluate S(t) we also need to
know the off-diagonal elements of W(r) in the dressed
states. %e find that

(P g(a+~) I ~(t) I P g„)= —2 [ K+n(m + I)/2](P +(n+m) I
II (t I++„), nt = + I, + 2 (21)
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FIG. 5. The normalized intensity correlat(on function g ((z)(t) as
a function of time for the initial coherent state with iz z=10 and

~/g -0.001.

FIG. 6. The squeezing S(t) in (a +a) as a function of time
when the field is initially in coherent state with iziz=10. Curves
A-C are for ~/g 0.0, 0.001, and 0.005, respectively.
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Using Eq. (21), and for the initial state given by Eq. (17), we obtain

(a +a+ ) =z $ p„exp[—2~[n+ (m+1)/2]t } [ Jn+ Icos(gtv'n+ m+1) cos(gt4 n+ I)
n=o

+v'n+m+ I sin(gtv n+ m+1) sin(gt4n +I)]/Un+ I+c.c. (22)

5 (t) can now be easily evaluated. In Fig. 6 we have plotted
S(t) for three values of tr. For K=0 there is a noticeable
amount of squeezing. '0 The cavity damping is seen to have
an appreciable effect on the squeezing properties.

%'e conclude by mentioning that our analytical solution
for the density matrix can be used to study several funda-
mental questions in the context of quantum Brownian
motion, such as the decay of the atomic coherences due to
the atom's interaction with the cavity. Our solution can also
be used to investigate the dynamics for very general input

states of field, such as a mixture of coherent and incoherent
fields. The diagonalization, " i.e., the transformation of an
initial coherent superposition of field coherent states to a

state which is an incoherent superposition of coherent states
can also be studied using the results of this paper.
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