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We analyze instabilities in mixed absorptive and dispersive optical bistability in the rate-equation
approximation and the mean-field and good-cavity limits. Our starting point is a set of multimode
equations derived from the Maxwell-Bloch equations for ring-cavity boundary conditions. We ob-

tain analytic expressions for the instability conditions. In a plane-wave analysis, we find that a por-
tion of the lower transmission branch can be unstable in addition to the upper-branch instability
found in purely absorptive bistability. Also, a new disconnected region of instability can exist on the

upper branch. Our analysis becomes particularly simple for equal and opposite cavity detunings and
we explore this case in detail. We extend our treatment to include a Gaussian transverse intensity

profile and show that the instabilities remain in the presence of Gaussian averaging. We also show

that many of the results obtained in the rate-equation approximation hold when the atomic
linewidth and atomic decay rate are of the same order.

I. INTRODUCTION

Optical systems are very appropriate for the study of
instabilities, self-pulsing, and chaotic behavior. One par-
ticular advantage they have over hydrodynamic systems,
for example, is that cavities can be used to tailor the mode
structure of the optical fields. One can then deal with
tractable theories involving just a few modes and still ex-
pect good agreement with experiments.

The study of instabilities in optical bistability' (OB) was
initiated in work by McCall2 and Bonifacio and Lugiato. i

The analysis in Ref. 3 is based on the ring-cavity model
for absorptive OB, formulated in terms of Maxwell-Bloch
equations for a collection of homogeneously broadened
two-level atoms interacting with a plane-wave field which
satisfies ring-cavity boundary conditions. The incident
field is exactly tuned to a cavity resonance —cavity detun-
ing 8=0—and to the atomic line center —atomic detun-
ing 5=0. Instability arises in the good-cavity limit,
where the cavity linewidth tt is much less than both the
atomic linewidth yj and longitudinal relaxation rate y~~,
provided the nearest nonresonant cavity modes are de-
tuned from the incident laser by less than the Rabi fre-
quency. Along part of the upper branch of the hysteresis
cycle, a set of off-resonance cavity modes, symmetrically
placed with respect to the resonant mode, are unstable and
undamped self-pulsing arises. In the mean-field limit, the
pulsation period is of the order of the cavity round-trip
time tz, corresponding to a beat frequency determined by
the longitudinal mode spacing in the empty cavity; the
mean-field limit is defined with ctL «1, T« 1, and
aL, /T arbitrary, where a is the unsaturated absorption
coefficient, L is the length of the atomic sample, and T is

the mirror transmission coefficient. Outside the mean-
field limit, the pulsing frequency is renormalized by the
atom-field interaction, but remains of the order of t„'.

For the general case 5&0, 8&0, the ring-cavity model
of OB is analyzed in Ref. 5 after adiabatic elimination of
the polarization (rate-equation approximation). This re-
quires yi»y~~ and yi &&2m/ttt, where the second in-

equality requires the free spectral range to be much less
than the atomic linewidth. Under these conditions, the
ring-cavity model can be formulated as a set of differen-
tial difference equations. If the free spectral range is also
much smaller than the longitudinal decay rate,

y~~ &&2m/ttt, the model simplifies to a two-dimensional
discrete map. Then, when the steady state becomes unsta-
ble, all cavity modes are simultaneously unstable, and
spontaneous pulsations arise with a period equal to twice
the cavity round-trip time. The first prediction of chaotic
behavior in OB was made for this model. 5'6 By suitably
varying the incident intensity, the pulsation at twice the
round-trip time period doubles to chaos. This behavior
was first seen experimentally in a hybrid electro-optic de-
vice and more recently has been seen in all-optical sys-
tems under transient conditions. '

The relationship between the results of Refs. 3 and 4
and those of Refs. 5 and 6 has been discussed by Lugiato
et ttl. ' and Carmichael. " In the mean-field limit, pulsa-
tions of period 2' arise when the incident field is tuned
midway between adjacent cavity resonances. In Ref. 11 it
is shown that the eigenvalues of the linearized stability
analysis for a cavity tuned to resonance (Refs. 3 and 4)
and for a cavity tuned between resonances (Refs. 5 and 6)
are related by a simple symmetry. Many other papers
have studied these and related instabilities; see especially
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Refs. 12—16.
In each of the instabilities mentioned above, two or

more off-resonant modes become unstable. A second
class of instabilities in OB exists where only the mode
nearest resonance with the incident field becomes unsta-
ble. This instability requires that either 4 or 6, or both,
be nonzero T.his resonant-mode instabihty was found by
Ikeda and Akimoto' in a Kerr medium model and by Lu-
giato et a!.' for two-level atoms. In the mean-field limit,
instability arises when the atomic longitudinal relaxation
rate is of the same order as the cavity linewidth, and
therefore much less than the free spectral range,
y~~-a. &&2n/tit. The period of the resulting oscillations is
of the order of the inverse cavity linewidth. It has been
shown that oscillatory behavior is experimentally accessi-
ble provided the detunings 5 and 6 have opposite
signs, ' ' an unfavorable condition for bistability, but a
favorable one for the resonant-mode instability, and as
will be seen, also for the instability discussed in the
present work. Recently, the resonant-mode instability has
been seen in an experimental system using multiple atomic
beams. '

In this paper, we are concerned with off-resonant-mode
instabilities in OB for the general case of mixed absorptive
and dispersive bistability, and the mean-field and good-
cavity limits. We start from the Maxwell-Bloch equations
for a ring cavity and a collection of homogeneously
broadened two-level atoms. Our first aim is to extend the
plane-wave theory of Refs. 3 and 4 to include b,&0, 8&0.
Analytic formulas for the eigenvalues of the linear stabili-
ty analysis for the general values of b, and 8 have previ-
ously been obtained, ' however, they are very complicated
and give little insight into the overall picture of the insta-
bility domain. Here, we will adopt the rate-equation ap-
proximation, with the polarization adiabatically eliminat-
ed. We then obtain relatively simple conditions defining
the regions of instabihty. In particular, we find that
8= —6 provides an especially simple case for which we
obtain analytic formulas for the instability domain. For
general values of b, and 8, we find two notable new
features compared with the results for purely absorptive
OB. First, instability can extend to a portion of the lower
branch of the hysteresis loop, and, second, a new discon-
nected region of instability can appear on the upper
branch. It has already been noted in Ref. 12 that for
5&0, 8&0 instability can occur in the absence of bista-
bility. In addition to analyzing the instability domain, we
derive a set of equations suitable for the numerical calcu-
lation of the self-pulsing solutions when only the first pair
of off-resonant modes are unstable. Using a simplified
version ' of the dressed-mode formalism of OB (Refs.
24 and 25) we reduce the full Maxwell-Bloch equations,
which are partial differential equations in space and time,
to a set of six ordinary differential equations in time.

Our second aim in this paper is to analyze the effect of
the transverse intensity variation in a laser beam on these
off-resonant-mode instabilities. We consider a ring cavity
with spherical mirrors and assume that the incident beam
is matched to the TEM00 mode of the cavity. Under ap-
propriate conditions, specified below, it is reasonable to
assume thai the beam preserves its Gaussian transverse

II. DERIVATION OF MODE EQUATIONS
%PITH ADIABATIC ELIMINATION
OF THE ATOMIC POLARIZATION

We consider a ring cavity of length W containing a
two-level homogeneously broadened atomic sample of
length L. Coupled Maxwell-Bloch equations describe
propagation of the electric field through the atomic sam-
ple. In the plane-wave and slowly varying amplitude ap-
proximations, these can be cast into the following form
[for details, see Ref. 1(c)]:

aF aF+c = —acP,
Bt Bz

P
8t

=yi[FD P(1+i b, )], —

(la)

(lb)

=y~[[ p
(FP*/F*P)+D 1] (lc)

where F, P, and D are suitably defined dimensionless
variables corresponding to the field amplitude, the atomic
polarization, and the atomic population difference be-
tween the lower and the upper states, respectively; o. is the
unsaturated resonant absorption coefficient for the field
amplitude; y~~

——TI ' and y&
——T2

' are the longitudinal
and transverse atomic relaxation rates, and

&= (co, —~o) /yi, (2)

profile in the presence of the atom-field interaction. We
describe the system by a set of dynainical equations that
include all longitudinal cavity modes, but only one trans-
verse mode. The off-resonant-mode instability in absorp-
tive OB, 6=6=0 has been analyzed using this model by
Lugiato and Milani. They show that the extension of
the instability domain is governed by the ratio d/8'o,
where d is the radius of the cylindrical atomic sample and
8'0 is the beam waist. In the limit d/8 0~0, the plane-
wave theory is recovered, whereas for d/Wo »1 the off-
resonant-mode instability is completely destroyed by the
radial Gaussian averaging. ' In contrast, the resonant-
mode instability survives for d/Wo »1. Here we
analyze the effect of Gaussian averaging on the off-
resonant-mode instability for general values of b, and 8.
We find that all instabilities —instability on the lower and
upper branch of the hysteresis loop, the disconnected
range of instability on the upper branch, and instability in
the absence of bistability —persist for d /Wo » 1.

In Sec. II we derive the plane-wave mode equations
from the Maxwell-Bloch equations after adiabatic elim-
ination of the polarization. These equations are linearized
around the steady state in Sec. III and the resulting eigen-
values governing the stability of the steady state are
analyzed in Sec. IV. In Sec. V we focus on the special
case 8= —h. In Sec. VI we derive a closed set of non-
linear differential equations for the field variables by adia-
batically eliminating the atomic inversion. The stability
analysis for a Gaussian transverse intensity profile is
given in Sec. VII, and results are compared with those
from the plane-wave theory. Concluding discussion in
Sec. VIII shows that most of the results obtained in the
rate-equation limit also hold for y~~ =yi.
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where tp, is the atomic transition frequency and cpp is the

frequency of the field. In the presence of the cavity, Eqs.
(1) are to be solved subject to the boundary condition

F(O, t) =TI'+(1—T)e 'erF(L, t (W— L—)/c), (3)

where T is the transmission coefficient of the input and
output mirrors, I' is the dimensionless input field ampli-
tude, and

6=(cp, —~p)/~,

k„=, n =0, +1,+2, . . .
2''n

n (13a)

and frequencies

The transformation leading from Eqs. (1) to (7) con-
veniently recasts Eq. (3) as a standard periodic boundary
condition and isolates all terms proportional to T &&1 in
n=Ttx ' on the right-hand side (rhs) of Eq. (1 la). For
K=O, the solutions to Eqs. (1 la) and (9) are plane travel-

ing waves with wave vectors

where tp, is the frequency of the nearest cavity resonance
and

Lcz„=kn c =2m'ntg
—]

x=cT/W=Ttti ' (5)

aL ~(1, T &g1,

with

(6a)

is the cavity linewidth.
In this paper, we make two further simplifications of

Eqs. (1). First, we treat only the mean-field limit

knz —(xn t'= L 2%)ik„z a„t—= (z ct) —.

Then, for a&0, we introduce the mode expansion

corresponding to longitudinal modes with frequencies
Cpp+a„ for an empty cavity with perfect reflectors. Note
that

aL
C = and 8 arbitrary,

2T

where Eqs. (1) may be reexpressed in the form'"'

aF L, aF
, +c = —a [( I +i 8 )F +2CP —7],

P
, =yi [FD —(1+ih)P],t'

(7a)

F(z, t')
D (z, t')

i (k„z —a„t') f„(t')
n n

n
(14)

and after substituting in Eqs. (7) the mode amplitudes f„
and d„satisfy (the overdot signifies d!dt')

f„=—tr (1+i6)f„+2C(1 id, ) g—f„d„„—F5„p
n'

, = —
y~~[ —,

' (FP"+F'P)+D —1], (7c) (15a)

with Lz-
c L

where F now satisfies the standard periodic boundary con-
dition

F(0,t')=F(L, t') .

Second, for

C
yi »1'~~, yi && =ttt

we adiabatically eliminate the atomic polarization setting
BP/Bt'=0 and solve Eq. (7b) for P in terms of the more
slowly varying quantities I' and D. This corresponds to
the well-known rate-equation approximation. Equations
(7) are then replaced by

dn =&andn '')
~[

dn+ g fn'fn "dn+n' —n" ~«
II

(15b)

(16)

'~r=Xe

Also, f„' satisfies the complex conjugate of Eq. (ISa) and
since D must be real, d„'=d

The steady-state solution of Eqs. (11) obtained by set-
ting

es aa
Bt Bt

and imposing the boundary condition Eq. (9), is uniform
in space. Then only fp and dp are nonzero in the steady-
state solution of Eqs. (15). This steady state is given by

aF L. aF
, +c = —x[(1+i6)F+2C(1 ih)FD —I'], —

Bt' W Bz

(1 la)

' 1/2
{1 —i8)(1+X')+2C(1+i b, )

(1+ie)(1+X }+2C(1—i 5)
(17a)

Bt, = —1'~)[(1+ IF I'» —ll (1 lb)

where

F=F/(1+6, ')'", I'=I'/(1+6'1'", C=C/(1+6') .

(17b)

2

X=X I+ 2C 8—
1+X' .

(st)
Gp 1+X

where X =
I fp"'

I
satisfies the familiar state equation"'

2 ]/2
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III. LINEAR STABILITY ANALYSIS

To ch(x:k the stability of the steady state, we write

f.=f.'"'+5f. ,

5d. = t a.5d. —}'(([(I+I f0"'
I
')5dn

+d(s()(f (s()st 5f +f(s()5f4 )]

(20c)
(19)

and substitute in Eqs. (15) retaining only linear terms in
the perturbations 5f„and 5d„. Taking Eq. (16) into ac-
count, for each n we find the set of three equations cou-
pling 5f„,5f" „,and 5d„

5f„=—)r[(1+i8)5f„+2C(1—ih)(f()"'5d„+d()"'5f„)],

5f' „=—)([ (1—i 8)5f' „

+2C( I +i h)(f ()""5d„+d()"'5f' „)], (20b)

We are interested in off-resonant-mode instabilities which
arise in the limit' "

(21)

We, therefore, adiabatically eliminate the variables 5d„,
setting 5d„=0 in Eq. (20c}and solving for 5d„ in terms of
5f„and 5f' „. This is quite different from the adiabatic
elimination of P at the level of Eqs. (11). There we as-
sume that P can follow a self-pulsing frequenc~ -tt( '

[Eq. (10)]. Here we require only y((»)t=Ttt( &&tt( '.
After substituting for 5d„ into Eqs. (20a) and (20b) and
introducing the steady-state solution from Eqs. (17), we
obtain

, 5f„' = — (1+i8)+(1 ii)s)— 5f„'+(I—ib), , 5f"„,2C 1 —~a, . 2C X'
dt 1+X 1+X2—ia " 1+X 1+X —i a

(22a)

where

, 5f"„=— (1—i8)+(}+i~)
dt 1+X 1+X —ia~

5f' '„+(I+i b )
2

5f„',ZC X
1+X 1+X —ia„

(22b)

5f„'=e "5f„, 5f''„=e "5f'„, (23)

a„=a„ly(( 2itn (y——(~4 )

These equations have exponential solutions

5f„'(t') ~. . . 5f„'(0)

5f' '„(t') 5f' "„(0}

where the eigenvalues A,„must satisfy the equation

(24)

(25)

2C 1 —lan
A,„+2k,„1+1+X 1+X2—ia„

2C
X2

1 —X —ia„
1+

1+X 1+X —ia

2C8—
1+X

X lan8—
1+X 1+X —ia

=0. (26)

Equation (26) is a special case of the eigenvalue equa-
tion derived in Ref. 13. The solutions given in Eqs. (19)
and (20) of Ref. 13 require y) -y)(»a. rather than
y) »y~(&&)( [Eqs. (10) and (21)] and therefore depend on
both y~( and yz. If the limit yi&&a„, y) &&y~(, with
a„=a„/y(( arbitrary, is taken in these equations the solu-
tions of Eq. (26) are recovered. Equation (26) is also a
special case of the eigenvalue equation derived in Refs.
15(b) and 15(c}. Equations (2.11) in Ref. 15(b) and (2.17)
in Ref. 15(c) are derived for the limit of Eq. (10) but are
valid outside the mean-field limit. Equation (26) follows
from these equations in the limit of Eqs. (6) and (21).' "'

IV. ANALYSIS OF THE EIGENVALUE EQUATION

For each value of n, Eq. (26) determines the stability of
the cavity mode with frequency ~0+a„=~0+2m.nt~ as
a function of the four parameters C, b, 8, and (y((t)i )

and the steady-state field amplitude X. With C, 5, 8,
and X fixed, the corresponding input amplitude I' is
determined by Eq. (18). Clearly, the stabihty of all modes,
in all steady states, can be deduced from a study of the
roots A, +(C,5,8,a,X) and A, (C, iI(,8,a,X}to the quadra-
tic equation obtained by dropping the subscript n in Eq.
(26). Here a is a continuous variable which plays the fol-
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lowing dual role.
(1) For a particular mode (fixed n) the behavior of A, +

as a function of a=2irn(y~~tti)
' tells us the stability of

that mode as a function of cavity length and population
decay rate, i.e., as a function of (y ~~ttt )

(2) For a given cavity and atomic sample [fixed

(y~~tti) '], the behavior of A, + at the discrete values

a=2irn(y~~t„) ', n =0,+1,+2, . . . , tells us the stability
of all the cavity modes. If we now identify regions of
(C,b„B,a,x) space for which either Re(A. + ) & 0 or
Re(A. ) &0, then for chosen values of C, b„B, (y~~tti)
and X all cavity modes with frequencies cuo+2mnttt

' such
that (C,5,8,2nn(y~~ttt) ',X) lies inside that region will

be unstable. Considering off-resonant modes, this may be
zero, two, four, or many modes, depending on the value of
(y~~ta} '. Alternatively, given such a region, each off-
resonant mode will be unstable over some range of
(y~~ttt ) . In this section, we look for regions of instabili-

ty by identifying their boundaries defined by either
Re(A, +)=0 or Re(A, }=0.

We drop the subscript n in Eq. (26) and look for solu-
tions

(27)

After substituting this solution, we obtain two equations
from the requirement that the real and imaginary parts of
the resulting expression vanish separately. Solving one of
these to eliminate a we find

d(Y ) 2C
d (X') 1+X' 1+ 2C 1 —X

1+X 1+X

2Cb+ 8—
1+X

2Cb 1 —X
1 +X2 1 +X2

(32)

2C1+ (1+X')'

The boundaries of regions of instability are now defined
by the requirement that solutions for ui be real and posi-
tive A. convenient strategy for exploring the multidimen-
sional parameter space is to analyze Eq. (29) as a function
of X for fixed C, 6, and 8. From solutions u+(X) which
are real and positive, instability boundaries can be drawn
in the (X,a) plane using Eq. (28). In what follows, we
therefore regard a, u+, g, N, and Y as functions of X for
fixed C, 6, and 6.

The properties of Eq. (29) can be classified according to
the sign of the derivative d( Y )/d(X ) in Eq. (31). We
make the following observations.

Observation (1): If C, b„and 8 satisfy the bistability
conditions [Ref. 1(c), Sec. 2.1.5], Eq. (29) gives one solu-
tion u (Xt u)=0 at the turning points of the bistability
curve, where d(Y )/d(X )=0. Here Xt and XU denote
the lower-branch and upper-branch turning points, respec-
tively. Then, for fixed C, b, and 8, (XL,O) and (XU,O)

are points in the (X,a) plane where instability boundaries
cross the X axis. For a =0, Eq. (26) gives

a=2u 1+X + (u —Y /X )
1+X

(28) 2 1/2
2C Y d(Y )1+

1+X X d(X )
(33)

ui ——g (C,E,B,X}+[&(C,b„B,X)]'~', (29)

where

g(C, a,B,X}= 8—
1+X'

2CA

(1+X )

and, from the second, u satisfies a quadratic equation
with solutions and clearly, the range XL &X &Xu of the X axis lies in-

side the unstable region. Then along the negative-slope
branch of the bistability curve, the resonant mode [with
n =0, cz„=2mn(y~~t„) '=0] is unstable for all values of
(y~~tii '), and all off-resonant modes are unstable in the
limit (y))~ttt ) =Q~/277n ~0.

Observation (2): If C, 5, and 6 satisfy the bistability
conditions, Eq. (29) gives one real positive solution u+(X}
throughout the range Xt &X & Xu where d ( Y )/
d(X ) &0. Then for fixed C, b„and 8, Eq. (28) defines
two segments of the instability boundary a(x) in the
(X,o, ) plane, symmetrically placed about the X axis:

and

1+ 2C
1+X

2C
(1+X')' (30)

a(X)=a+(X)=+ 2
~
u+ (X)

~

1+X + 1+X

X [u+ (X)—Y(X)'/X'] (34)

u(c, ~,B,X)=g (c,~,B,X)'—"
X d(X )

From Eq. (18) we have

Since the X axis lies within the unstable region, the region
XL &X&XU,

~

a
~

&
~
a+(X)

~

of the (X,a) plane is un-
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stable. Then along the negative-slope branch of the bista-
bility curve, each off-resonant mode is unstable for values

( Y~~tR ) th ge 0 & (}~~tR )
'

&
I
~+(X)

I
/

2' fn I.
Observation (3): Equation (29) gives two real positive

solutions if

g(X))0 and N(X))0 (35a)

in addition to

g &N or2 d(Y )

dX
(35b)

If, for fixed C, b„and e, these conditions are met at any
point along the transmission curve Y(X), a range of
positive-slope instability exists which either extends
beyond X =XL or X =XU onto the negative-slope branch,
or exists entirely on a positive-slope branch. In any case,
all boundaries Xp in the positive-slope branches are solu-
tions to the equation

0
0

(bI

x', x„ XU

l

I

I

I

I

I

I

1

I

1

l

Xp

e(xp)=0.

Equation (36) states that N(X) &0 must fail beyond Xp
rather than g(X)&0. This follows from Eq. (31). If
g(Xp) =0, N(X) must be negative in a neighborhood of
Xp, since d ( Y ) /d (X ) & 0, and this contradicts the defi-
nition of Xt as lying at the boundary of an interval with
&(X)&0. Throughout such a range of positive slope, in-
stability segments of the instability boundary a(X) in the
(X,a) plane are defined both by Eq. (34) and by

'0

X„

2
Xp

I
l

I

I

28

a(X)=a (X)=+ 2
I

U (X)
I

1+X + 2C
1+X

FIG. 1. (a) Instability boundary in the (X,a) plane for C =5,
6=4, 8= —4. (b) Corresponding steady-state curve showing
the unstable (dashed) line.

X [U (X)'- Y(X)'/X'] (37)

The region
I
a (X)

I &
I

a
I & I

a+(X)
I

of the (X,a}
plane is unstable. Then for some steady-state X in the
range of the positive-slope instability, each off-resonant
mode is unstable for values of (y~~tti)

' in the range
I&(X) I/2~In

I «)'(itii) '& I&+(X) I/2~In I.
From this analysis of Eq. (29), instability boundaries in

the ( X,a ) plane can be drawn, depending, for a chosen C,
6, and 8, on the behavior of d(Y )/d(X ), g(X), and
&(X). The behavior of d(Y )/d(X ) is determined by
the existence, or otherwise, of bistability, for which condi-
tions on C, b„and e are known [Ref. 1(c), Sec. 2.1.5].
There remains the question of positive-slope
instabilities —can Eqs. (35) be satisfied? Note first that
for b.=e=0, g(X) is alii~ays negative; therefore, we find
no positive-slope instability in absorptive bistability. This
is expected, since it is known that in the limit specified by
Eq. (10) the instability of Ref. 3(b) disappears [see Refs.
10, 11, and 15(b}]. In addition, in the rate-equation ap-

proximation, a resonant pump induces population pulsa-
tions that produce spectral holes even in homogeneously
broadened media with an accompanying reduction of the
sidemode gain.

Next, consider the possibility that C, 6, and 8, satisfy-
ing the bistability conditions, and 5 and 8 nonzero, the
negative-slope instability [observation (2) above] might be
contiguous with a range of instability on either the upper
or lower branch. The existence of either positive-slope in-
stability is determined by g(XU) and g(XL ), respectively.
Since &(X)=g(X) at the turning points, if g{XU)~0, a
range of instability must exist on the upper branch, since
at XU, Eq. (29) has two real positive solutions according
to observation (3) above, and then the segments a+(X) of
the instability boundary in the {X,a) plane, which extend
through the negative-slope range XL ~X&XU, do not
close at XU, rather the unstable region of the (X,a) plane
extends over a range of X~XU on the upper branch.
Similarly, if g (XL ) & 0, the unstable region of the (X,a)
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FIG. 2. Instability boundaries in the (X,a) plane for V =4, b =5, and (a) 8=5, (b) 8= 10.5, (c) 8= 15, (d) 8=30.
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1.6

0
0 20

l

40

FIG. 3. Steady-state curve showing the unstable (dashed) re-
gion corresponding to Fig. 2(c).

plane extends over a range of X ~XL on the lower branch.
We find that both possibilities can be realized as illustrat-
ed in Fig. 1. This is quite distinct from the situation re-
ported by Bonifacio and Lugiato'"' ' ' for absorptive sys-
tems with y~~-yt, where only a portion of the upper
branch could be unstable. Armbruster predicted the
possibility for instability on the lower branch in an
analysis using imperfect bifurcation theory and suggested
that it might be realized in dispersive systems. Our expli-
cit analysis now confirms this result.

We have noted under observation (3) that every
positive-slope instability must be associated with a solu-
tion Xp to the equation &(Xz)=0, more precisely, with a
pair of solutions defining a range over which &(X) is
positive. It is useful then to ask for all solutions to Eq.
(36) since they are all potentially associated with positive-
slope instability. %hether or not a particular Xz is the
boundary to a range of instability is determined by the
sign of g (X) in the neighborhood of Xp. Now
(1+X ) N(X) is a sixth-degree polynomial in X . It can
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be shown that this polynomial has an even number m & 2
of real roots with X ~0, and an even number of real
roots with X &0. Then, for a given C, b„and 8, there
are either zero, one, or two intervals of I over which
N(X) &0. In a bistable system, one such interval must
exist since &(X) is always positive along the negative-
slope branch. Can a second interval with &(X)&0 be
realized in the positive-slope region, and, moreover, with
g(X) &0 so that an instability exists? We find the answer
to this question is affirmative. A second unstable region
can exist in the (X,a) plane as illustrated in Fig. 2. Fig-
ure 2(a) illustrates a situation which is bistable (instability
boundary intersects the X axis) with an associated insta-
bility on the lower branch [here g (XL ) & 0 and
g(XU) &0]. As 8 is increased, a second region of insta-
bility appears [Fig. 2(b)] corresponding to instability along
the upper branch (Fig. 3). As 8 is increased further, the
region of instability associated with bistability shrinks and
eventually disappears, while the second instability remains
[Figs. 2(c) and 2(d)]. This is a completely new instability,

with no counterpart in the results reported for absorptive
bistability. "'

V. THE CASE 5= —8

K= 1'/(1+6, )'~ =F/(1+5 ) (38)

the state equation Eq. (18) becomes formally identical to
the state equation for absorptive bistability:

(39)

and we have the simple bistability condition

C~4, (40a)

We give the case 5= —8 special consideration, because
with this restriction, we can obtain simple analytic insta-
bility conditions.

If we define

0
0

0
0 2.4

10—
(c)

3.2-

'0 3.6 0
0

l

1.6
I

3.2

FIG. 4. Instability boundaries in the (X,a) plane for (a) 2=3.5, 5=2, 6= —2; (b) C=4.0, 5=2, 6= —2; (c) 0=8.0, 5=2,
6= —2; (d) V=8.0, 6=0.5, 6= —0.5.
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or, equivalently,

C& 1+5

Also, the condition g (X) & 0 becomes

and the condition &(X) & 1 becomes

(1+6'), , &2lb
I

1+2CX
(1+X')' (1+X')'

(41)

(42)

C(l+b ) C(1+6, )

2lbl 2 6
41~I(1+ I~I)'

C(1+6,')'

These are two real positive roots for

4
I
~

I (1+
I
~

I

)'

( 1++2)2

(43)

(44)

Smce the requirement g(X) &0 is now independent of
X, it follows that when bistability exists if

I
b,

I
1 h

g L & and g (XU) & 1 so that there is a range of
positive-slope instability on both the d l

ranches as illustrated in Fig. 1. The extent of each un-
stable region in X is determined by root t th

p =, i.e., by solving Eq. (42) with the equals sign.
This is a quadratic equation in Xp and we find

For
I
&

I & 1 and C & 4 Eq. (44) is always satisfied, as it
must be b ouy our observation that a positive-slope instability
always accompanies bistability if

I
b, 1 Wh en

Eq. (44) is also satisfied for a range of C 4
'

which
~ ~'ch case positive-slope instability exists in the absence

1 b L
o istability. This possibility has been report d
y y ugiato. Note that Eq. (43) gives all real 't'rea posltlve

s or p and therefore there can be no second instabil-
ity as in Fig. 2 under the restriction 6= —e. Indeed it

2.4— 2.4—
(b)

1.2 1.2—

0
0

I

12
0

0
I

12

l' (d3

0
0 10 20 0

0
I

12

FKJ 5 SG. 5. Steady-state curves showing the unstable dashng e unsta le (dashed) regions corresponding to Figs. 4(a)—4(d) respectively



33 OFF-RESONANT-MODE INSTABILITIES IN MIXED. . . 369

can be shown that b, and 8 must have the same sign for
the second instability to exist.

%e summarized results for instability boundaries with
5= —8 in Figs. 4 and 5. It should be noted that the
range of positive-slope instability given by Xr' and indi-
cated in Fig. 5 corresponds to the projection of the unsta-
ble region in the (X,a) plane onto the X axis and is gen-
erally not the range of instability for any fixed a.

(1) For ~5~ &1, C&4~6~(1+~i}~) /(1+6, ), and

~

b,
~

& 1, C &4, all steady states are stable.
(2) For ~h~ &1, 4~6, ~(1+~6, ~) /(I+6, ) &C&4, a

region of the (X,a) plane is unstable, but it does not inter-
sect the X axis. A positive-slope instability exists in the
absence of bistability [Figs. 4(a) and 5(a)].

(3) For
~

b,
~

& 1, C=4, a region of the (X,a) plane is
unstable and touches the X axis tangentially. A positive-
slope instability exists at the onset of bistability [Figs. 4(b)
and 5(b)].

(4) For
~

b
~

& 1, C&4, a region of the (X,a) plane is
unstable and intersects the X axis at XL and XU with
g(XL ) &0 and g(XU) &0. Bistability exists together with
positive-slope instabilities on both the lower and upper
branches [Figs. 4(c) and 5(c)].

(5) For
~

6
~

&1, C &4, a region of the (X,a) plane is
unstable and intersects the X axis of XL and XU with

g(XL) &0 and g(XU) &0. Bistability exists without a
positive-slope instability [Figs. 4(b) and 5(d)].

. 2m, z W
F(z, t') = fo(t')+ f, (t') exp i —t'

tg c L

. 2~r, z W+f, (t')exp i t'
tg c L

(45)

can be unstable over some range of the incident field am-
plitude I" [for example, Figs. 3, 5(a), and 5(b)]. In such
situations, the long-time behavior of the system necessari-
ly evolves to undamped oscillations. Then in order to cal-
culate the self-pulsing solution, we must return to the
nonlinear mode equations [Eqs. (15)].

These equations are very complicated unless the num-
ber of modes taking part in the dynamics is small. In the
resonant case 5=6=0, it has been shown 2' ' " that
when only the first pair of off-resonant modes n =+ 1 are
unstable i —e , .w.hen

~

a
~

=2m(y~~tii)
' lies in the unsta-

ble region of the (X,a) plane, but
~

c7
~

=2m
(

n
) (y~~ttt )

~

n
~

& 1, does not—the dynamics can safely be restricted
to the three modes n =0,+1. Here we assume that this
also holds when 5 and 6 are nonzero. Then we drop all
terms involving variables f„and d„with

~

n
~

&1 from
Eqs. (15). Correspondingly, from Eqs. (13) and (14) we
write

VI. NONLINEAR MODE EQUATIONS
WITH ADIABATIC ELIMINATION

OF THE POPULATION VARIABLES

We have found that for certain values of C, 6, and 8,
and an appropriate choice for (y~ittt } ', all steady states

where, from Eq. (8)

z W z=t ——.
c L c

The dimensionless intensity is then

(46)

r

IF(»t')
I

= Ifo I
+ Ifi I

+ If i I +21ifofi —+fof i Icos t—
' —

&
+arg(fofi +fof i}—

tg c

+2 lf if i l
cos t —— +arg(f if i}-'tg c L

(47)

f = F—[1+i8+2C(1 ib,)A]f—
—2C(1 id)(Bf, +B*f,),— 4,

'48 a)

Note that since f„-a., and ii «2nttt ' in the mean-field
limit, the terms arg(fofi +fof i) and arg(fif i) con-
tribute a negligible change to the beat frequency between
empty cavity modes.

As in the linear stability analysis, we introduce the
good-cavity limit [Eq. (21)] which allows us to eliminate
adiabatically the population variables d„. Again note that
this is quite different from eliminating D adiabatically in

Eqs. (11). We simply set d„=o in Eq. (1Sb) and solve for
d„ in terms of the inore slowly varying f„and f„*. Adia-
batic elimination of D in Eqs. (11)corresponds to also set-
ting c7„=0. Then with d„=0 and truncation at

~
n

~

=1,
from Eqs. (15) we obtain the following closed set of equa-
tions for fo,f„f i and their complex conjugates:

fi
——[1+i8+2C(1 i h)A]fi—

—2C(1 i h}B'fo, —

f, = —[1+i8+2C(1—ib, )A]f

—2C(1 i b )Bfo, —

where

(48b)

(48c)

~ =M '[(I+ Ifo I'+ If I'+ lf I
}'—

+ai —Ifif i I'], (49a)

'[(fof i +fof i}-
&«I+ Ifo I'+ Ifi I'+ If i I' —i&i}

—(fof i +fof i}*fif—i] (49b-)

with
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~ = (1+ Ifo I

'+ Ifi I

'+ If-i I

')

&&I: (1+ Ifo I

'+ lf i I

'+ If-i I')'

+~ i
—

I fTf i I

' —21fof i +fof i I
'j

+2 Re[(fof i +fof i )'(f if i )'] . (50)

VII. LINEAR STABILITY ANALYSIS
FOR A GAUSSIAN MODE

All of the foregoing analysis is for plane-wave fields.
On the other hand, the incident laser beam has a trans-
verse intensity profile that is typically Gaussian. Plane-
wave conditions can only be met in experiments that use

The equations for fo, f;, and f', are given by the com-
plex conjugates of Eqs. (48). The numerical solution of
these six coupled equations will be discussed in a future
paper.

only the central portion of the beam. If this is not the ex-
perimental situation, it is important to investigate the ef-
fects of the transverse intensity profile on the instabilities
we have been considering. Such an investigation is partic-
ularly important in the light of recent work which shows
that self-pulsing in absorptive bistability can disappear
completely after averaging over a Gaussian intensity pro-
file 26, 27

As in Ref. 26, we consider a ring cavity with spherical
mirrors and an incident field matched to the TEMoo mode
in the presence of the atom-field interaction. This appears
to be a reasonable approximation in the mean-field limit
where self-focusing and self-defocusing effects are negligi-
ble, and if the Fresnel number of the cavity is low enough
to provide sufficient diffractive mixing. We assume that
the Rayleigh length is larger than the length of the atomic
sample so that the beam radius is practically constant
over the sample length. Under these conditions, the
dynamics of the system is governed by the single-
transverse-mode model'o '2'6 where Eqs. (15) are re-
placed by

(a)

0
0

I

1.2
l

2.4

I

1.2
I

2.4

0
0

I

14
I

28

FIG. 6. (a) Instability boundary in the (X,a) plane for
0= 1.2, 6=7, e= —7, from the plane-wave theory. (b) Corre-
sponding steady-state curve shoeing the unstable (dashed) re-

gion.

0
0 20 40

FIG. 7. Same as Fig. 6, but from the Gaussian mode theory.



33 OFF-RESONANT-MODE INSTABILITIES IN MIXED. . . 371

d/8'0
f„=—s. (1+i+)f„+2C(l i—6)gf„J dr 4re " d„„(r)—F5„o

n'
(51a)

~ —2r2
dn =i&ndn ')

(~
dn+e " Q fn'fn"dn+n' —n" &n, o

n', n"
(51b)

where W'o is the beam waist, r is a dimensionless radial variable with r = 1 at the beam waist, and d is the radius of the
cylindrical atomic sample. The field variables f„depend only on t' while the population variables d„depend on both t'
and r Th. e steady-state solution which replaces Eqs. (16)—(18) now has the form

r

1 i—8+(2C/X )(1+id, )in[(1+X )/(1+Xi)]o" ——Xe "=X
1+i6+(2C/X )(1—ih)in[(1+X )/(1+X )]

do '(r)=
1+Xiexp( —2r )

(52b)

40-
la)

20—

20— &0-

0
0 0

0
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l
l

l

0
0

I

40

I
l

I
I

I

t

80
FIG. 8. (a) Instability boundary in the (X„a) plane for

C=4.8, 6=7, 0=—7, from the plane-~ave theory. (b} Corre-
sponding steady-state curve showing the unstable (dashed) re-
gion. FIG. 9. Same as Fig. 8, but from the Gaussian mode theory.
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P 2

X =X exp —22= 2 6f

8O

and
~

X
~

=
~

f'0'"
~

satisfies the state equation
2

2CY=X 1+ ln
X

1+X
1+X

8— ln
2CE
X

1+X'
1+X

(54)

The linear stability analysis for the good-cavity limit
[Eq. (21)] follows from Eqs. (51) in the same fashion as
the plane-wave analysis of Eqs. (15). Here the eigenvalue
equation, corresponding to Eq. (26), reads

A.„+2k,„(1+2CW)+1+8
+4C'(1+a')(W' —a')+4C(1 —a8)W=O, (55)

where

region in the (X,a) plane given by the plane-wave and
Gaussian theories for two choices of C, 5, and 8. In both
cases, the positive-slope instability predicted by the
plane-wave theory survives for a Gaussian mode. If we
compare Figs. 8(a) and 9(a) we see that the unstable region
has roughly the saine area in both figures, but in Fig. 9
(Gaussian theory) it is more contracted in the a direction
and extended in the X direction. These features, and the
fact that the instability persists here, whereas for

8—0 Q I ( p J it disappears, can be understood on the
basis of the following argument. For d/Wo~ oo (X=O)
Eq. (55) is obtained from Eq. (26) by replacing X by
p=X exp( —2r ) and performing the average

x'
8p .

Then when the unstable region of the (X,a) plane for the

ln + /~i',
1 1+X

X' 1+X
(56) 80-

with

1 1
,4 g

—— —ln
X

1+X +cx

1+X +o.„

(57a)

40-

1+ tan '

An

(X' —X )a„
(1+X )(1+X )+a „

0
0

(57b)

1 1 (1+X') (1+X )+a
ln

X 2a„{1+X~)(1+X )+a „

—tan
—1

(X —X )a„
( I+X ){1+X )+a „

(57c)

As shown in Ref. 26, in the limit

6f 6~0, C~ oc with C=2C =const
0 8'o

{58) 0
0

I

120
I

240

the Gaussian mode theory reduces to the plane-wave
theory with C replaced by C. Here we focus on the oppo-
site limit d/8'o~ao. Our primary objective is to see
whether positive-slope off-resonance-mode instabilities
remain for this full Gaussian case.

Figures 6 and 7 and Figs. 8 and 9 compare the unstable

FIG. 10. (a) Instability boundary in the (X,a) plane for
C=S, 5=10, 8=30, from the plane-wave theory. (b) Corre-
sponding steady-state curve showing the unstable (dashed) re-
gion. Note that a small state region exists beyond the turning
point on the upper branch which is not apparent in the figure.
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24—
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tn(1+ X)

0 I

0
I

160
I

320 0
Q

FIG. 11. Same as Fig. 10, but from the Gaussian mode
theory.

FIG. 12. Instability domain in the (a,X) plane for C=4.8,
~=7 e= —7 r(i=Xj

plane-wave theory is narrow in the X direction, under this
averaging, the contribution from the range of p over
which Eq. (26) gives stable eigenvalues washes out the
contribution from the small range of p over which Eq.
(26) gives an unstable eigenvalue. This is what happens
for b, =8=0, y~~-yz, where the positive-slope instability
is associated with the narrow high-a end of the unstable
region [see Refs. 1(c) and 11]. When the unstable region
is broad in the X direction, as it is here, the instability
persists; the averaging can even extend the unstable region
to larger values of X.

Finally, we must ask whether the new instability illus-
trated in Figs. 2 and 3 remains in the Gaussian theory.
Adopting the same parameters as in Fig. 2, we find that it
is absent. However, with the choice of different parame-
ter values, Figs. 10 and 11 show that this instability is also
preserved for a Gaussian mode.

VIII. CONCLUDING REMARKS
ON THE RATE-EQUATION APPROXIMATION

Our treatment has been restricted to the rate-equation
limit [Eq. (10)]. We conclude with some results for

p J which show that we can expect similar instabili-
ties when this limit is relaxed. Figure 12 shows the unsta-
ble region of the (X,o. ) plane obtained from the results of
Ref. 13 for y~~

——yj. On comparison with Fig. 8(a), which
is for the same values of C, 6, and e, note that both the
lower-branch and upper-branch instabilities remain. A
disconnected region of instability also appears which ex-
tends with a very long tail to high values of X and a.
This is probably associated with the role of Rabi oscilla-
tions which are excluded in the rate-equation limit; in
fact, this region is essentially centered around a =X which
for y~~

—yj amounts to the statement that a is equal to the
Rabi frequency of the internal field. Hence, the operating
mechanism is different from that of the disconnected re-
gion in Figs. 2, 10, and 11 which only occurs when 5 and
e have the same sign. Because of this long tail, Fig. 12(a)
is plotted as ln(1+a) versus ln(1+X). If C is changed
from 4.8 to 1.2, with all other parameters unchanged, the
unstable region in Fig. 10 practically vanishes. Finally,
without generalizing the stability analysis of Ref. 13 to a
Gaussian mode, on the basis of the argument at the end of
the last section, we can fairly safely say that the long nar-



374 ASQUINI, LUGIATO, CARMICHAEL, AND NARDUCCI 33

row feature in Fig. 12 will be washed out by Gaussian
averaging, while the lower region, shown in greater detail
in Fig. 12(b), will remain.

We finally observe that the two disconnected domains
in Fig. 12(a) appear to emerge from different instability
mechanisms. The long-tailed part reminds us of the insta-
bility that is typical of the purely absorptive case, '"'" i.c.,
it arises from the resonance between the Rabi frequency
and the adjacent cavity modes. The other domain is simi-
lar to the instability domains found in this paper in the
rate-equation approximation. This instability arises from
the mismatch between the frequency of the input field,
the nearest cavity mode, and the center of the atomic ab-
sorption line. This argument is especially clear if one con-
siders the instability condition g (C,b„8,X) & 0. For
X=8=0, g is always negative. For b, =0 (or 8=0), it

becomes positive if
~

8
~

(or
~

b,
~

) is made large enough.
For b«0 and 8&0, g acquires its largest value when b,

and 8 have opposite signs. When eh&0, the instability
appears only if the effects of 8 prevail over those of b„as
in Figs. 2(b)—2(d).
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