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New method for determining the largest Liapunov exponent of simple nonlinear systems
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A new method is introduced which allo~s a direct measurement of the largest positive or negative

Liapunov exponent A~ of simple dynamical systems. It is sho~n that A. can be determined experimentally

by varying the coupling between two equal systems and observing the mutual correlation of their motions.

An electronically simulated driven pendulum is studied as an example, The measured values of A~ agree

well with results obtained by other methods. The method can only be applied to systems for which one
knows the variables in phase space and for which the coupling can be realized experimentally.

where X is a d-dimensional vector, the dot denotes the time
derivative, and f(X) is a nonlinear function of the com-
ponents of X. By coupling two replicas of the system linear-
ly in all components with the same coupling parameter c
(which can be positive or negative), we obtain

X= f(X)+c(Y—X)

Y= f(Y)+c(X—Y).
(2)

Linear stability analysis yields for the "phase difference"
/=X —Y,

/=X —Y= f(X) —f(Y) —2cg= [M(t) —2cl]$+O(g')
(3)

where M(t) =Bf;(X(t))/ ) tisxthe Jacobian matrix of the
system [Eq.(l)] and X(t) =X(t, X(0)) is the solution of
Eq. (1). Equation (3) can be integrated:

pt
g(t) = e '"T exp J drM(7) g(0) (4)

~here T is the time ordering operator. Since the eigen-

Chaotic dynamical systems can be characterized by the
fact that initially nearby trajectories in phase space separate
exponentially in time. The rates of separation in different
directions are measured by the Liapunov exponents. " Re-
cently, algorithms have been developed' and used to ex-
tract information about the Liapunov exponent from an ex-
perimentally measured time series. ' '

We introduce in this paper a new and independent
method by which the largest Liapunov exponent of simple
systems can be directly measured in an experiment by turn-
ing a knob.

The basic idea is to couple two identical versions of the
dynamical system. %'e show that the critical coupling at
which both systems first run out of phase, as the coupling is

decreased, is apart from a factor of —, , equal to the largest

Liapunov exponent A, . Then, we demonstrate the applica-
bility of this method by using it to measure both positive
and negative A. for a driven pendulum. s ' The results are
compared with the lower bound I/:2 for the Kolmogorov en-
tropy, which is obtained independently via the Grassberger-
Procaccia algorithm, and to numerical computations of h. .

%e describe the dynamical system by a set of auto-
nomous differential equations

X= f(X)

values e; of lim, -„[Texp(J drM(r))]'t' are related to

the Liapunov exponents k; of our system via" A. i =in~a;~,
we have for t

(~g(t) ~)
—exp[(Z —2c)t], (5)

where x = 8, y = 8, and z = ~ t. By considering two replicas
of Eq. (7) and coupling them as in Eq. (2) we can interpret
the different components of X= —c(X—Y). . . as "elas-
tic" coupling c(8~ —82) and "frictional" coupling
c(8~ —82). Transforming back, the equations for the cou-
pled pendulums become

8~ + —8~ + sinH~ + 2c (Ht —82)

+ (c/Q + 2c') (Hi —Hp) = 3 cos(cut )

18, +—82+ sin82+ 2e (82 —8~ )
(8)

+ (e/Q + 2e') (82 —
Ht ) = A cos(rut )

In our case, the third variable z is nonchaotic, as it is pro-
portional to the time, so that the components zl, z2 need
not be coupled.

It turns out experimentally that the influence of the cou-

where the average () is taken over all initial conditions
X(0) and all directions of $(0), and X is the largest
Liapunov exponent which automatically dominates all aver-
ages. Equation (5) shows that for 2c & X both systems
stay in phase and therefore have the ~ of the uncoupled
system described by Eq. (1). They become out of phase at
a critical value of the coupling parameter c"=X /2 from
which we obtain the largest Liapunov exponent X .

In the experiment we simulate electronically two driven
pendulums and measure the largest Liapunov exponent via
the critical coupling. The circuit simulating the driven pen-
dulum is a sample-and-hold circuit introduced and discussed
by Henry and Prober. " The normalized pendulum equa-
tion"

8+—8+ sinH = 3 cos(a&t) (6)

where 8 is the pendulum angle, Q is the quality factor, A

and cu are the amplitude and frequency of the driving
torque, is equivalent to the autonomous system

x =p, p'= ——p —sinx+A cosz, z =co (7)
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pling 2c(H~ —82) on the phase correlation is more pro-
nounced than that of the coupling (c/g+2c')(8~ —82).
Therefore, we choose to vary only the 8 coupling. ' %'e

measure the value of the critical coupling c' by observing
the change of the mutual correlation of the oscillators on an
oscilloscope as the coupling is decreased.

In Fig. 1 the measured averaged phase fluctuations

P T4'.J, «(tl, (r)-tl, (r))', T'=100

are plotted as a function of ihe coupling parameter c. The
positive Liapunov exponent is measured [Fig. 1(a)] by de-
creasing c and observing a substantial increase of the phase
fluctuations at c'= X /2) 0. The negative Liapunov ex-
ponent is measured [Fig. 1(b)] by increasing the absolute
magnitude of c (here c & 0) and observing the increase of
the phase fluctuations at c'= X /2 & 0.

In Fig. 2 we compare the largest positive Liapunov ex-
ponent A, , measured via the critical coupling, with the en-
tropy parameter K2 and with numerically obtained values of

K2 is independently determined from a measured time
series' of 8~(r ). It yields a lower bound to the Kolmogorov
entropy K.' The numerical results for X in Fig. 2(c) are
obtained by integrating the equation of a forced pendulum,
using the method of Shimada and Nagashima. '

Figure 2 sho~s that the normalized values of A. obtained
by the three different methods agree reasonably well with

each other. %e observe three chaotic bands with A. & 0
whose positions, widths, and heights are up to a variation of
the order of 10/o-20% the same for all methods. It is re-
markable that even K2 which yields only a lo~er bound to

displays a similar structure to the calculated values of
X, although the absolute magnitude of K2 is smaller by a
factor of 2. The remaining differences between Figs. 2(a)
and 2(c) are due to the fact that our two oscillators are not
completely identical. It can be sho~n that in this case one
measures the averaged Liapunov exponent of the coupled
system.

For externally driven systems we can even measure the
largest negative Liapunov exponent in the nonchaotic
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FIG. 1. The time-averaged phase fluctuations (1j' T )J

x dt (8& (t ) —82(t ) ) [(normalized to their individual maximum2
0

values) are plotted as a function of the coupling parameter. The in-

sets show digitized oscilloscope traces of 8&(t) vs 82(t }]. (a) Mea-

surement of positive X~: The phase fluctuations are large for weak

coupling, as both oscillators are out of phase (left section of inset).
For strong coupling the phase fluctuations decrease, as boih oscilla-
tors are forced to move in phase with each other (right section of
inset). (b) Measurement of negative X~: The phase fluctuations
are small for weak coupling, as both oscillators are in phase with

each other (left section of inset). At a strong (negative) coupling
the phase fluctuations increase sharply, as both oscillators move out
of phase.
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FIG. 2. Comparison of (a) the measured positive Liapunov ex-
ponent A. with (b) the entropy parameter K2, and with (c) the nu-

merically calculated values of A, ~ as a function of the driving voltage
amplitude. The lines are drawn by linear interpolation between sub-
sequent points, which are determined with a resolution of 0.1 V
along the voltage axis. In aH three sections of the figure the vari-
able on the ordinate is normalized to its largest value in the voltage
range of 0-4 V. The absolute magnitudes of A.~ in (a) and (c) are
0.15 and 0.17, respectively, and that of K2 in (b} is 0.073.
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Vo[toge amplitude (V) state. " In Fig. 3 the negative Liapunov exponent X~, mea-
sured via the critical coupling, is sho~n as a function of the
driving voltage amplitude. At about 2.6 V X shows a sig-
nificant increase which is associated with a period-doubling
bifurcation of the oscillators at this voltage (see inset Fig.
3).

In conclusion, we have shown that it is possible to mea-
sure directly the largest positive or negative Liapunov ex-
ponent of a driven pendulum. This is performed by observ-
ing the mutual correlation of two equivalent coupled sys-
terns. The method can only be used for those systems for
which one knows the variables in the phase space (this
determines the nature of the coupling) and for which the
coupling can be realized experimentally. Systems to which
the method can be applied are, for instance, magnetoelastic
beams, '

p -n junctions, '9 and Josephson junctions. ""
FIG. 3. The measured negative Liapunov exponent X~ is shown

as a function of the driving voltage amplitude. An increase of the
Liapunov exponent at about 2.6 V is seen, ~here the oscillators ex-
hibit a period doubling bifurcation. The inset shows phase portraits
(8 vs sin8) of one of the oscillators before and after the bifurcation.
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