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Fractal geometry of vapor-phase aggregates
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Static and dynamic light scattering and small-angle x-ray scattering measurements are reported
for vapor-phase aggregates of silica. From the static scattering data the fractal dimension is found

to be —1.84+0.08, in agreement with the prediction of the cluster-cluster aggregation model. The
Rayleigh linewidth is found to vary as the 2.7 power of the momentum transfer for large momen-

tum transfer.

In recent years it has become apparent that many ran-
dom structures have power-law correlations in density.
These long-range correlations are a manifestation of the
dilation symmetry that many random structures possess,
and imply a simple relation, R -M, between the particle
radius R and the mass M. The exponent D is generally
fractional and so is called the fractal dimension. ' The en-
ticing simplicity of this fractal geometry has spurred
theoretical and experimental interest in random struc-
tures, and scientists are looking for systems which might
express this peculiar dilation symmetry. For example, at
this time it is known that spin lattices, percolation clus-
ters, lattice animals, branched and linear polymers, and
various models of kinetic aggregation possess dilation
symmetry. Still, it is sufficiently clear that experimental
efforts lag behind theoretical results, so that much of the
current understanding of fractal systems stems from
simulations and analysis, rather than from a definitive
body of experimental findings.

The concept of a fractal dimension has been particular-
ly useful in the physics of aggregation, where it has been
demonstrated that the com~plex morphology of solution
grown colloidal aggregates '' can be described in terms of
fractal geometry. But solution-grown aggregates differ in

two essential respects from Urrpor-phase aggregates. First,
solution-grown aggregates are formed in a hydrodyrramjc
regime where the friction factor of a cluster is proportion-
al to its radius, or equivalently, the diffusion coefficien is
proportional to 1/R. Vapor-phase aggregates, which are
produced in a flame (carbon black is a familiar example),
are generally formed in a nonhydrodynamic regime, where
the friction factor is proportional to the square of the
cluster radius, so the cluster diffusion coefficient scales
like 1/R . In vapor-phase aggregation, then, the cluster
diffusion coefficient is very sensitive to size, and only
small clusters are effective diffusors. Second, solution-
grown aggregates typically have a large, repulsive
screened Coulomb interaction which tends to make the
probability of sticking small. In the vapor-phase, howev-
er, thermal energies overwhelm repulsive barriers and the
sticking probability is expected to be very high. As we
shall see, these effects have important consequences on the
fractal dimension of these aggregates.

In brief, vapor-phase aggregation is believed to occur in
three stages; coalescence of particles, aggregation of parti-

cles, and agglomeration of aggregates. In the first stage,
small spherical Brownian particles (which we will hereaf-
ter refer to as "monomers") produced by combustion col-
lide and coalesce into larger spherical particles. The
characteristic time for this process is riR /o, where ri and
a are the particle viscosity and surface tension, respective-
ly. Thus as the particles grow and enter cooler portions
of the fiame, this characteristic time becomes very large
and the coalescence remains largely incomplete. In this
stage ramified aggregates are formed by the incomplete
fusion of spherical particles. Finally, as the aggregates
reach very cool portions of the flame collisions between
aggregates lead to agglomerates=lusters of aggregates
held together by relatively weak van der Waals forces.

In this paper we report x-ray and light scattering mea-
surements of vapor-phase aggregates. In spite of electron
microscopy studies which show ramified structures for
gas-phase aggregates, we believe our study is the first to
characterize the structure and dynamics of these aggre-
gates. In their pioneering work, Forrest and Kitten
found fractal clusters in electron micrographs of smoke
particles, but the relationship between the observed two-
dirnensional data and the precursor three-dimensional
clusters is uncertain. As a prototypical system, we chose
fumed silica (Cab-O-Sil, Cabot Corporation, Tuscola, IL)
which is formed by burning silicon tetrachloride in a hy-
drogen flame. An important characteristic of this system
is the extremely high in situ viscosity of silicon dioxide.
Because of this high viscosity the characteristic coales-
cence time is very large even for small particles, leading to
the formation of aggregates of very small monomers. The
characteristic size of the monomers makes these aggre-
gates ideal for light and x-ray scattering studies.

To prepare the scattering samples, Cab-0-Sil (we used
M-5, HS-5, and EH-5) was freshly dispersed into either a
water-surfactant or decanol-surfactant solution using an
ultrasonic cell disruptor. Final concentrations were typi-
cally -0.5 mg/ml. Although the exposure times were
varied from ten minutes to three hours, it was found that
the scattering data were insensitive to the dispersion time.
These preparations were then filtered through Millipore
filters with pore sizes ranging from 1 to 8 pm, and
scattering measurements were made. The scattering data
were found to be independent of the filter size. Static and
dynamic light scattering measurements were made with

1986 The American Physical Society



33 BRIEF REPORTS 3541

both a He-Ne laser (A.=632.8 nm) and an argon-ion laser

operating at 457.9 nm. Small-angle x-ray scattering

(SAXS) data were obtained at the National Center for
Small Angle Research, Oak Ridge, TN, using a pinhole

collimation camera coupled to a rotating anode, Cu-K
source. The reported light scattering exponent is an aver-

age over 15 total samples, and the reported error is just
the standard deviation of these measurements.

Before giving the experimental data it is useful to
develop an intuitive understanding of the scattering pro-

cess and to develop a general form of the intensity I (q) as

a function of the momentum transfer q. The relevant

length scales are the reciprocal momentum transfer 1/q,
the radius of an aggregate R, and the size of a silica
monomer a. Using these three lengths, a form of the

scattering function can be obtained from scaling argu-

ments. For simplicity we start with the large length scale
cutoff and ignore the finite monomer size. In this case
the scattered intensity from single fractal is of the form
M2f(qR) where f(x)=1 for x «&1 and f(x)-xr for
x »1. Noting that the intensity scales like the mass for
large x gives y = Dand I—-M /(qR) for qR »1.

To account for the small length scale cutoff (qa »1}
we write I-M f(qR)h(qa), where h(x)=1 for x «1
and h(x)-xs+ for x»1. Using R+-a N, where His
the number of monomers in the fractal, gives

I- h(qa)-ilia 'qNm Ds S

(qa)D

where m is the mass of the monomers, which are

presumed to be surface fractals of surface fractal dimen-

sion D, . ' Here the scaling assumption is that the intensi-

ty for qa »1 will simply be proportional to the number
D

of monomers times the generalized surface area a ' per
monomer. The exponent 5 is thus seen to be D, —2d,

which gives I-Nm /(qa) ' for the large-q behavior
2d —D,

of the scattering function. The behavior of these scaling
functions can thus be summarized as

1, x«1
(x)- ' x, x))1

1, x«1
h (x)-

x

d —1, so I-q for qa »1. To apply this relation to a
weakly polydisperse solution of fractals (specifically, we

exclude gelation} it is necessary to express our result for
the intensity in terms of average quantities. In terms of
the concentration in mass per unit volume p, the weight
averaged mass M, and the z-averaged radius R„ the in-

tensity is I-pM~f(qR, )h(qa) with f(x) and h(x) still
defined as above.

The combined small-angle x-ray and light scattering
data for fumed silica (Cab-0-Sil M-5) are shown in Fig. 1.
The fit to the data was obtained by using a product of
modified Orstein-Zernike functions (1+x /yd) r, where

2y was just D for the function f (x) and 21-D, -D for the
function h (x). The entire scattering function was fit with
D=1.88, R, =1250 nm, and a =13.5 nm, so the fractal
regime spans a reasonably broad two-decade length scale
regime. The straight line in Fig. 1 has a slope of —1.88
to highlight the fractal regime of the scattering data. An
average over all 15 scattering curves gave a fractal dimen-
sion of 1.84+0.08. As previously mentioned, scattering
data were collected using both decanol and water as
dispersing fiuids. This allowed for a direct test of possible
multiple scattering with a single cluster, since the optical
contrast in the water —Cab-0-Sil dispersions was about 5.5
times the contrast in the decanol —Cab-0-Sil dispersions. '

Since no experimentally significant difference was found
in these systems, we believe that multiple scattering was

not a problem.
The light and x-ray scattering data are in qualitatiue

agreement with the neutron scattering data reported by
Sinha et al. ' for silica aggregates; in each of these experi-
ments fractal scattering behavior was observed. A differ-
ence in the observed exponents (1.84 versus -2.5) may be
due to the different preparation schemes used in these ex-
periments, or may be due to a difference in the silica ag-
gregates themselves, pointing to a possible nonuniversality
in the aggregation process.

On the other hand, the light scattering measurement of
the fractal dimension agrees reasonably well with image
analysis work of Forest and Witten. In their experi-
ments, transmission electron micrographs of smoke parti-
cles deposited on surfaces were analyzed by two methods:

)08

It is important to note that this product representation is
not the usual factorization of the scattering function, and
that h (qa) does not have the interpretation of the mono-
mer structure factor, but implicitly includes the large-q
cutoff of the intermediate scattering regime. In order for
h (qa) to have the interpretation of a inonomer structure
factor we must add the term I/X to the function f(qR)
(Refs 11 and .12) to obtain I-M [f(qR)+ I/N]h (qa),
and the exponent for the function h (qa) must be modified
to D, —2d. This product form of the scattering function
has the advantage of including the small length scale cut-
off in a natural way, but it raises the practical problem of
introducing another fitting parameter.

In the special case of fumed silica, where the monomers
are hard spheres, the surface fractal dimension is just
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FIG. 1. Light and x-ray scattering data for Cab-0-Sil M-5

are combined to show the scattering function over six decades of
intensity. The large-q (x-ray) data clearly demonstrate the
crossover from fractal to nonfractal behavior.
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"sandbox" scaling and the pair correlation function. The
sandbox scaling method gave values in the range
1.85—1.90 for D when a correction-to-scaling term was
included in their analysis. %hen the correction-to-scaling
term was omitted, however, they obtained values of D
which were smaller by -0.3. The pair correlation func-
tion values tended to lie between these extremes
(1.55—1.90). However, although this agreement is en-

couraging it should be pointed out that the image analysis
assumes that the clusters are simply projected onto the
surface, without any additional distortion. Although this
assumption is reasonable, these image analysis results
should be accepted with this reservation.

The dynamic light scattering measurements made on
the fumed-silica dispersions have a more complex inter-
pretation than the static scattering data. These time-
domain measurements probe the frequency broadening of
the scattered light, and the result is expressed in terms of
I, the Rayleigh linewidth. In thermal systems there are
three diffusional line broadening mechanisms: transla-
tions, rotations, and configuration changes. In general,
these contributions will give a very complex dependence
of the line broadening on q, but in the special case of
power-law polydispersity these complex details can be
simply treated. The polydispersity function for a power-
law distribution of sizes can be written as
N(m)-m 'f(m/S), where S is a cutoff mass. For a
system where v is greater than 2 (percolation is prototypi-
cal) Martin and Ackerson" find a very simple, universal
I -q result, provided that a certain dynamical scaling
criterion is obeyed. The case ~ & 2 has been recently treat-
ed by Martin and Leyvraz' under the same dynamical
scaling assumption; the full results are summarized in
Fig. 2.

The exponent co in Fig. 2 gives the dependence of the
linewidth on momentum transfer in the regime qR »1
for a monodisperse solution, I -qz+, and the exponent
a gives the dependence in the regime qR, »1 for a
power-law polydisperse solution, I'-qa. The exponent to

can be thought of as a measure of the contribution of
internal modes to the dynamics. The case co=0 corre-
sponds to a system composed of rigid, roughly spherical
particles whose dynamics are determined only by transla-
tional diffusion. On the other hand, completely flexible

systems, such as polymers, are characterized by co=d —2.
At the present time there are no calculations which inter-
polate between these rigid and flexible limits of co.

As a matter of interest the exponent a has been calcu-
lated for two cases, strong hydrodynamic interactions,
where the characteristic frequency, D, /R2, scales like
1/R, and weak hydrodynamic interactions, where the
characteristic frequency scales like 1/R + . Of course in
the real system hydrodynamic interactions are present and
we need only concern ourselves with the lower curve in
Fig. 2. It is observed that for v&2 —(d 2 —co)—/D the
system acts as though it is monodisperse insofar as the
dynamics are concerned. For r & 2 we obtain the univer-
sal j. -q gelation result, and in the region between these
cutoffs the exponent a is given by d —D(2 —r), a result
which is independent of the monodisperse exponent ai.
Likewise, it can be shown that the static scattering ex-
ponent (-1.84) is given by D(3—r) for 3 & ~& 2, but is
given by the monodisperse result D for r & 2.

The line broadening data for fumed silica are shown in
Fig. 3, where excellent power-law behavior is found in the
experimental range of 30 nm&1/q &300 nm. These
linewidth data were obtained by the method of cumulants,
as detailed previously. ' From the slope of these data we
find I -q for qR »1, which is in agreement with pre-
vious measurements for solution-grown aggregates of col-
loidal silica. ' Since the linewidth exponent is less than 3
we are able to conclude that the polydispersity exponent is
less than 2. And since v. is less than 2 we can conclude
that the scattering exponent is the fractal dimension. The
relation a=d —D(2 —r)=2.7 can be used to obtain
x=1.86. Now the critical reader will realize that this
value of r is really only an upper limit to the true value of
r, i.e., it is possible that internal modes in the mono-
disperse system scale like q

' (co=0.7). But even if we
admit this possibility our interpretation of the scattering
exponent as the fractal dimension remains intact.

The light scattering data lend support to the multiparti-
cle diffusive aggregation model of Meakin's and Kolb
et a/. ' In this model, aggregates diffuse according to
D, -M, and steadily grow via collisions with other ag-
gregates. According to the scaling theory of Jullien
et al. , there are just two regimes in this aggregation
model: cluster-cluster aggregation and particle cluster-
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FIG. 2. The dependence of the linewidth exponent on the

polydispersity exponent for the weak and strong hydrodynamic

interaction limits (I -q ).
FIG. 3. The Rayleigh linewidth is plotted against the

momentum transfer. Empirically, the linewidth scales like q
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(Mitten-Sanders) aggregation. In three dimensions the
cluster-cluster regime is defined by a &(D —1)/D, where
D is known from simulations' ' to be —1.78. Particle-
cluster aggregation occurs when a ~ (D —1)/D and gives
a fractal dimension of -2.5. As noted previously,
solution-grown aggregates are characterized by a= —D
and so are well within the cluster-cluster regime. Howev-
er, the observed fractal dimensions vary from —1.8 to
-2.1, the experimental variations possibly being due to a
variation in cluster sticking probability. The primary ef-
fect of a low sticking probability is to increase the ap-
parent fractal dimension to -2 on small length scales.
Thus, scattering experiments on finite-size samples would
tend to overestimate the fractal dimension. Although
vapor-phase aggregation corresponds to a smaller value of
the diffusion exponent (a= —2D), scaling would predict
that vapor-phase aggregation is in the same universality
class as colloidal aggregation, and a fractal dimension of

—1.8 is indeed what we find. This supports the univer-
sality thesis of Jullien et al.

In summary, the combined light and small-angle I-ray
scattering measurements from fumed silica indicate a
fractal dimension of 1.84+0.08, in accord with the 1.78
prediction of the cluster-cluster aggregation model.
Dynamic light scattering measurements from this system
indicate an apparent power-law dependence of the Ray-
leigh linewidth on the momentum transfer, giving an ex-
ponent of -2.7, in good agreement with previous obser-
vations for solution-grown aggregates of colloidal silica.
From this linewidth exponent we are able to obtain an
upper limit of 1.86 for the polydispersity exponent.

This work was performed at Sandia National I.abora-
tories supported by the U.S. Department of Energy under
Contract No. DE-AC04-76-DP00789.
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