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Variational and diagrammatic evaluations of the ground-state energy of quantum liquids
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The Feynman-Hellmann theorem sho~s that the exact ground-state energy of a quantum system may be

obtained by integrating the potential energy with respect to a coupling constant. For approximation

schemes in which the energy is actually calculated from an energy functional, we show that direct and

coupling-constant integration evaluations of the energy functional are identical, provided that the energy

functional is optimized.

In a previous discussion of summing parquet diagrams to
construct the iiquid structure function S(k) for Bose sys-
tems, we constructed a local approximation to the four-point
function 1 (k). With this appmximation, the self-con-
sistent sum of ladder and ring diagrams (which represents
the hallmark of the parquet class) generated a simple
Schrodingerlike equation in which the square root of the
two-particle distribution function, v'g(r), plays the role of
the wave function. This equation was seen to be identical
to the Euler equation which emerges from Bose
hypernetted-chain calculations using the Jackson-Feenberg
form of the kinetic energy. 2~ This established an exact
equivalence between the liquid structure function emerging
from hypernetted-chain (HNC) variational calculations and
that coming from a well-defined approximation to the par-
quet diagrams; the first such equivalence to be demonstrat-
ed. In the present note we demonstrate that the energies
calculated by these two techniques are also identical. While
the proof is simple, the observation is important in that it
completes the demonstration of the equivalence of these ap-
proaches to the many-body problem. The proof of
equivalence also applies to a larger class of problems.

Using a trial wave function of the Jastrow form, the
ground-state energy of a boson system can be written as

—= ~p d r [g(r) V(r) —~g(r)'lnvtf (r)]

Here, f is the usual two-body correlation function and g is
the radial distribution function. The exact functional depen-
dence of g on f is extremely complicated; approximation
schemes like HNC may produce simpler functional relation-
ships. For the present derivation, we need only assume that
the functional relationship between the two does not involve
the potential V(r) explicitly.

The Euler equation which minimizes the energy is ob-
tained from a functional variation of E/A with respect to g;

Again, the specific form of the Euler equation is not
relevant to the present arguments.

Let us now look at the variation of the energy with

respect to potential strength using Eq. (&). Attaching a sub-
script a to the f and g to denote their dependence on the
strength a, we have

=~p dsr [g (r)o. V(r) —~g (r)r7 lnf2(r)] (3)

(4)

The last term in Eq. (5) vanishes from the stationarity con-
dition of Eq. (4); integration with respect to the coupling
constant gives the result

pI—= ~p da dsr g (r) V(r)
4 {)

(6)

This result has the structure of the Feynman-Hellmann
theorem and indicates that for the Jastrow problem,
coupling-constant integration and direct evaluation of the
energy functional are equivalent. For this result to be
meaningful, it is necessary that the (approximate) variation-
al wave function and the energy functional adopted actually
permit solutions to Eq. (4). The exact relation between g
and f from the Jastrow ansatz and the relationship offered
by the hypernetted-chain approximation both satisfy this re-
quirement. The generalization of this proof to fermion sys-
tems or to situations in which the independent function is
defined by a set of parameters is straightforward. The
essential features are that the potential should appear once
linearly as in Eq. (3) and that the independent function
must be optimized.

In the parquet problem, ' we did not start with an energy
functional but relied on coupling-constant integration to
evaluate the energy. However, since the parquet and Jas-
trow HNC results have the same distribution function, it
follows directly that the parquet energy can be computed

Since the o, appears as an explicit factor only once, the vari-
ation of the energy with n becomes

d 5E dg (r)= ~p „dsr g (r) V(r) + — dsr
de A
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directly from the Jastrow energy functional.
This result has a number of consequences. It completes

the demonstration of the equivalence of hypernetted-chain
variational calculations and approximate parquet diagram
description of the ground-state properties of boson systems.
It makes the useful technical point that, ho~ever one
chooses to solve the approximate parquet equations in prac-

tice, the solution does correspond to an extremum of the
parquet energy. Calculations of E/A are thus only quadrati-

cally sensitive to errors in g and the four-poin'. function. It
also makes it unnecessary to solve the equation for a
number of coupling constants.

The above arguments followed extremely general lines.
We required merely that the explicit dependence of E/A on
the bare interaction, V, was purely linear as it is in Eq. (1).
This is of significance when generalizing parquet techniques
to systems with spin and spin-dependent interactions. ' In

this case, it is possible to guess the energy functional analo-
gous to Eq. (1) and to verify that it has the structure re-
quired by the present proof. The equivalence between the
boson parquet and optimized HNC results is unlikely to be
repeated in comparing parquet spin-dependent equations
with existing variational calculations which do not treat the
ring and ladder summations in a self-consistent manner.
Indeed, we believe that the diagrammatic arguments which
characterize the parquet theory may lead to a less ambigu-
ous but no more complicated approach to the microscopic
description of such interesting quantum fluids.
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