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A new procedure for the construction of effective dipole-oscillator-strength distributions is pro-
posed. The effective distributions satisfy not only the usual sum rules, but also have the correct
asymptotic behavior and satisfy a "modified" oscillator-strength sum rule. The distributions may be
used to evaluate logarithmic mean excitation energies. The application of the effective distributions
toward the calculation of the high-energy photoionization cross section is also discussed. Calcula-
tions on atomic hydrogen have been performed which indicate the technique is an efficient method
for the computation of the excitation energies. Finally, the technique is applied to atomic helium

and the negative hydrogen ion.

I. INTRODUCTION

Various attempts have been made in the past to utilize
information from sum rules and knowledge of the asymp-
totic form of the oscillator-strength density for calcula-
tions of atomic and molecular properties. Dalgarno and
Lynn' modified available theoretical values of oscillator
strengths of atomic helium to satisfy sum rules, while as-
suming a functional form for the oscillator-strength densi-
ty with a reasonable asymptotic behavior. They then em-
ployed the new values to evaluate various properties of
helium arising from second-order perturbation theory.
Dalgarno and Stewart followed a similar procedure to
calculate the Lamb shift of helium, with improved values
of oscillator strengths and the correct coefficient of the
first asymptotic term of the oscillator-strength density.
Garcia has suggested an approximate analytic representa-
tion of the oscillator-strength moment, S(k), which can
be fitted to a set of values (at k =2, 1, 0, —1, —2, —4,
—6) known from sum rules and experiment. Garcia's
representation of S(k) is consistent with the asymptotic
form of the oscillator-strength density and can be used to
obtain estimates of the Bethe logarithm required for the
evaluation of the Lamb shift.

The present work describes the construction of an effec-
tive oscillator-strength distribution which satisfies not
only the usual sum rules, but also has the correct asymp-
totic behavior and satisfies the "modified" oscillator-
strength sum rule described in previous work. The func-
tional form for the effective distribution consists of
discrete states plus a continuous density extending from
infinity down to some cutoff value of the energy. The
constants required to specify the effective distribution are
obtained by solving a system of nonlinear algebraic equa-
tions. In previous work, which described the solution of
a similar system of equations, a rather remarkable simpli-
fication reduced the problem to one of finding the roots of
a polynomial. No such simplifications occur here, and
the approach used to solve the equations is the multidi-
mensional generalization of the Newton-Raphson method.
Once the effective distribution has been obtained, it is a
simple matter to obtain estimates for the logarithmic

mean excitation energies and the photoionization cross
section.

Calculations using the effective distributions are then
performed on atomic hydrogen, atomic helium, and the
negative hydrogen ion. For atomic hydrogen, the results
obtained from the effective distribution are found to be in

very good agreement with exact results. For atomic heli-
um and the negative hydrogen ion, the moments S(k) of
the oscillator-strength distribution, needed for implement-
ing the method, have been taken from the literature.
However, accurate values of Sf(3) (the "finite" part of the
third moment of the oscillator-strength distribution), also
needed, have not previously been available. In order to
obtain Sf(3) to the required accuracy, calculations have
been performed using a 162-term He ground state and a
162-term H ground state, both containing Fock terms in
the wave function. The resulting calculations of the loga-
rithmic mean excitation energies L(k) appear to be the
most accurate to date of L (1), L (0), and L ( —1) for
atomic helium and of L(2), L(1), L(0), and L( —1) for
the negative hydrogen ion.

II. THE EFFECTIVE DISTRIBUTION
AND ITS MOMENTS

The effective oscillator-strength distribution is assumed
to consist of a set of M discrete states and a continuous
density. The mth discrete state is completely determined
by specifying the oscillator strength f' and the associated
energy difference (with the ground state) co' . The effec-
tive oscillator-strength density is of the form

df'
=ct(e—ep) +P( eep) +p(E —Ep)

—7/2 —4 —9/2
dE'

(where ep is the ground-state energy), and extends over the
energy from infinity down to some cutoff energy e=b
Some explanation is necessary for the particular form for
the expansion taken in Eq. (1). The above expansion for
df'/de is certainly not unique and any expansion which
leads to the correct asymptotic behavior is allowable. For
instance, the replacement of the variable e —eq by e—C,
where C is any real constant, is also a possible expansion.
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The two obvious choices for C would seem to be 0 or eo.
C was not chosen to be zero because that would indicate
an inherent divergence at @=0 which is physically unac-
ceptable. Furthermore, from a practical point of view, the
choice C=eo leads to the simplest possible integrals for
the technique described in this paper. From a more so-
phisticated point of view, the work of Dillon and Inokuti
shows that the expansion of the "reduced" oscillator-
strength density may be written as a power series in the
variable g=ej(e eo). —They also find that polynomial

approximants in the variable g provide good representa-

tions of not only the reduced density, but also of the origi-

nal density. Noting that g= 1 +@0(e—eo) ' shows that if
a function can be written as a power series in g, then it
can also be written as a power series in (e—eo) '. This
would seem to indicate some additional justification for
the use of (e—eo)

' as an expansion variable; however,

the presence of the half-powers of (e eo) —' in Eq. (I)
makes this argument far from being rigorous.

Clearly the kth moment of the above distribution (with

respect to the energy difference with the ground-state en-

ergy} is given by

S'(k)= y f„'( „')"+,a (b — )k I

+ 13
(b & )k —3+ Y (b & )k —7/2

3-k " -'-k

For atoms, the a and p are chosen to be

a =— Xp(0)
3

and

(3)

P= ——,Z Np(0) .,

where Z is the nuclear charge, N is the number of elec-
trons, and p(0) is the one-electron density at the nucleus.
For molecules, the corresponding expressions listed in
Ref. 4 must be used. With this choice of a and P, the ef-
fective osciBator-strength density correctly assumes the
first two asymptotic terms of the actual oscillator-
strength density, as shown in Ref. 4.

For the continuum oscillator-strength density df Id',
which lies above the first ionization energy ei, it shall
prove necessary to introduce a modified oscillator-
strength density of the form

e(E b—)[a(f —eo) —+p(e EQ) —],df —7/2 4

de' dE'
where 8 is the unit step function and b is some cutoff en-

ergy lying between el and infinity. Then S(k,b), the kth
moment of the modified oscillator-strength distribution
consisting of the (unmodified) discrete states plus the
modified density above el, is given by

&S»~= ufo, ooo, + J, &~o IoKoo~o oo—~ +—P~o oo—~ 'j ~o —oo~ «—,

where fo„and coo„are the oscillator strength and energy
difference between the ground state

~
0) and bound state

~

n). It is easily verified that S(k,b) is related to S(k),
the kth moment of the oscillator-strength distribution,
through the equation

S(k,b) =S(k)—, (b eo)" — (b ——eo)

Sf(3)= —,Z Ep(0)( —,
' ln2 ——,

' —CEM)

N

+ ', Z' g (4o o
',-AoI

l,J —1

—N lnr r
dr

The basic approach to be followed here is to fit the S'(k)
[defined in Eq. (2)] to a set of known S(k). However, it is
known from the derivation given in Ref. 4 that the third
moment of the "modified" distribution is also known.
The procedure described here allows the effective distribu-
tion to satisfy the usual moments known from sum rules
and, in addition, allows the "modified" effective distribu-
tion to satisfy the value of the third moment of the actual
"modified" oscillator-strength distribution. Note that
$(k) is infinite for k =3; however, S(3,b) is well defined,
and from the results presented in Ref. 4 it is known that

S(3,b) =Sf(3)+2a(b eo)'i +Pin(b ——eo),

where Sf(3), the "finite" part of $(3), is given for atoms
by

with CEM ——0.5772. . ., the Euler-Mascheroni constant.
For molecules Sf(3} is given by the generalization easily
obtained from the results presented in Ref. 4.

The effective oscillator-strength distribution described
above contains the unknown parameters y, b, and f„' and
co„' for n=1,2, . . . , M. These 2M+2 unknown constants
shall be determined by requiring that 2M+2 of the mo-
ments of the effective distribution are equal to those of
the actual oscillator-strength distribution (known from
sum rules, experiment, variational calculations, etc.). Of
the resulting 2M+2 equations, one of these equates the
third moment of the modified oscillator-strength distribu-
tion to the third moment of the corresponding modified
effective distribution. More precisely, it shall be required
that the effective distribution satisfy
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S(k,b)= g f„'(~„')»+,y (b —&p)» (10)

for k=3,2, 1, . . . , —2M+2.

III. THE DETERMINATION OF THE SOLUTION
OF THE SYSTEM OF EQUATIONS

The system of nonlinear algebraic equations described
in the preceding section is considerably more difficult to
solve than that encountered in Ref. 5. The questions con-
cerning the existence and uniqueness of the solution are
not easily answered and the application of algebra is not
capable of significantly reducing the system (for the case
of M an arbitrary integer) into a tractable form. An
operational procedure, proven successful for solving the
system for all cases encountered in this paper, shall be
described, which is based on the fixed-point iteration tech-
nique. Fixed-point methods typically require a reasonably
accurate initial guess to the solution, in order to achieve
convergence. The approach taken here to obtain the ini-
tial guess relies on the solution to the equations described
in Ref. 5 and also requires the solution to the system
described in the preceding section for the special case of
M =1.

For the case of M =1, the system for which a solution
is desired is given by

S(3,b) =f i (co'i ) +2y(b —6p)

S(2,b) =f i (r0'i ) + —', y(b —&p)

S( l, b) =f i co'i+ '5 y(b —&p}

S(O,b) =fi + '
, y(b —ep)—

The system is first simplified by replacing the b appearing
on the left-hand side [in the S(k,b} termsj by an initial
guess, b' The soluti. on of this system can be achieved by
algebraic manipulation of the equations into a single poly-
nomial equation in the variable b. Choosing the highest
real root of this polynomial has been found to lead to
physically reasonable effective oscillator-strength distribu-
tions. Then, an iteration procedure (bisection) is used to
determine the initial guess b' which coincides with this
highest root for b f'i, co'i, and. y are easily determined
once b is known. More details and justification are con-
tained in Ref. 7.

Having described the procedure for solving the M =1
case of the system of equations developed in the preceding
section, it is now possible to obtain a fairly accurate initial
estimate of the solution for the general case of M equal to
some arbitrary integer. The first step is to set up the sys-
tem of equations given by

m=1, 2, 3, . . . ,M+1. For the following, it is assumed
that the states have been labeled such that the effective
energy difference co' monotonically increases as a func-
tion of the index m. Then the two highest-energy effec-
tive states (fl, coM and fM+i,co~+i) are to be replaced by
an effective state and an effective density using the pro-
cedure described previously to solve the system given by
Eq. (11). This replacement is accomplished by using the
two highest-energy effective states to determine values for
the moments S(3,b'), S(2,b'), S( l, b'), and S(O,b') appear-
ing in Eq. (11),according to

$(»b') =fw(~is )'+fl+ i(rp~+ i)'

$(»b') =f~(~M)'+fM+ i(~'I+i }',

S(l,b') =f&coil+ fM+irpiw+

S(0»') =fM+fM+i

(13)

(t;(xi,x2, . . . ,x~) =0 (14)

Equation (11) is then solved in the usual manner to obtain
the new effective state and effective density which re-
places the effective states f&,rpsr and fr+i, co~+i. As
before, the iteration procedure is used to force b' to coin-
cide with b.

The claim that the above procedure provides a good es-
timate for the actual desired solution is easily justified.
The effective distribution which has been constructed is of
the form specified in the preceding section, i.e., with M
discrete states plus the continuous density. This distribu-
tion satisfies Eq. (10) exactly for k=0, 1,2, and 3. The
remaining equations for k= —1,—2, . . . , —2M+2 are
more sensitive to the behavior of the low-lying discrete
states, so the conversion of the two highest discrete states
into a discrete state plus a continuous density should not
cause these equations to be violated too badly. Hence the
above procedure should provide an adequate initial guess
for the fixed-point iteration technique described below. In
practice this method has proved successful for calcula-
tions on various test cases.

After dealing with the subtle problem of obtaining the
initial guess, the task of implementing a fixed-point itera-
tion procedure on the system given in Eq. (10) is quite
straightforward The spe.cific technique to be used is the
well-known multidimensional generalization of the
Newton-Raphson method. This method finds the values
of x &,xz, . . . ,x& which satisfy the system of equations

M+1
$(k, b') = g f„' (cg„' )"

n=1
(12)

for i =1,2, . . . , N. The solution is obtained by iterating
the transformation

for k=3,2,1, . . . , —2M+2, where some reasonable value
b' has been assumed for b. The system given by Eq. (12)
can be solved by the techniques of Ref. 5, leading to a col-
lection of effective states consisting of f' and co~ for

x'= x—J '(x)P(x) (15)

until convergence is achieved, where J(x) is the Jacobian
matrix,
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J(x)=

ay,

Bxi

Bx)

Bxi

ay,
Bx«v

(16)

and x, x', and P are column vectors. Technical details are
contained in Ref. 7.

completeness. The moments used are

Sf(3)=81n2——', , S(2)= —, , S(1)=—, ,

S(0)=1, S( —1)=2, S(—2) = —,', S(—3)= —,

S(—4}= 'i'2 «S( —5}= i~ «S( —6}= i7it

Note that atomic units are used throughout this work un-
less specified otherwise. The coefficients of the first two
asymptotic terms of the oscillator-strength density are
a =8v 2/(3m ) and P= ——,.

The logarithmic mean excitation energies L (k) are de-
fined' by

IV. RESULTS FROM THE EFFECTIVE
DISTRIBUTIONS FOR ATOMIC HYDROGEN L (k) = g fo„(coo„)"lncop„, (17)

Effective oscillator-strength distributions have been
constructed for atomic hydrogen using the procedure
described in the preceding section for the M= 1, 2, 3, and
4 cases. In addition, effective oscillator-strength distribu-
tions can be constructed which include some of the lowest
excited p states explicitly, 7 but these results are not
presented here because they do not lead to particularly
dramatic improvement in the quantities calculated.

The moments and asymptotic coefficients are easily ob-
tained for atomic hydrogen, but will be listed here for

where n ranges over all dipole allowed states
~

n ), both
discrete and continuous. For k = —1,0, 1 these L (k) are
required for the evaluation of properties which character-
ize the inelastic scattering of fast charged particles with
atoms and molecules. L(2} is needed to evaluate the
Lamb shift. The effective distributions have been used to
obtain estimates of the logarithmic mean excitation ener-
gies by evaluating the L (k) associated with the effective
distributions, i.e.,

M
L (k) = g f„'(r0„')"1 con„'+, (b —Ep) 111(b —Eo)+, (b —eo)"

(
—', —k)

(b —eo) ln(b eo) +— (b eo)" +,— (b —eo)" ln(b —eo)+, (b eo)"—
3—k (

—', —k)'

Values for L(2), L(1), L(0), and L( —1) are listed in
Table I and compared with exact results. For purposes of
comparison, in Table II are presentixl the logarithmic
mean excitation energies obtained using the standard
moment-theory technique, described in Ref. 5. In the
standard moment-theory approach, effective distributions
are constructed from either (i) an even number of
moments [e.g., S(2)—S(1), S(2)—S ( —1), S(2)
—S( —3), S(2)—S( —5)], or (ii) an odd number of mo-
ments [e.g., S(2)—S(0), S(2)—S( —2), S(2)—S(—4),
S(2) —S(—6)] along with the lowest dipole transition
energy. Examining the M=4 effective distribution re-
sults listed in Table I, which are the most accurate calcu-
lations performed here, it seems most reasonable to com-
pare these with the S(2)—S(—6) standard moment-
theory results listed in Table II. Note that the M=4
distribution in Table I is constructed from
Sf(3),S(2),S(l), . . . , S(—6) [along with the asymptotic
coefficients a and P, which are known once S(2) is
known, for atoms], while the S(2)—S(—6) distribution is
constructed from S(2),S(1), . . . , S(—6) and the lowest
dipole transition energy, which for atomic hydrogen is
0.375 a.u. Comparing the M =4 results of Table I with
the S(2)—S(—6) results of Table II, it is seen that re-
quiring the effective distribution to satisfy Sf(3) and the

TABLE I. Values of logarithmic mean excitation energies (in
rydbergs) obtained from effective distributions for atomic hy-
drogen.

1

2
3

Exact'

0.153 83
—0.07493
—0.073 34
—0.073 26
—0.073 25

0.151 91
0.09907
0.097 24
0.09704
0.09698

0.7128
0.7545
0.7595
0.7606
0.7612

16.109
15.978
15.942
15.929
15.915

'Reference 18.

(18)

I

correct asymptotic behavior has led to significantly better
results than those obtained froin the standard moment-
theory technique. The M=4 results obtained for L(0}
and L (2} are also significantly better than those obtained
using Garcias interpolation scheme [note Garcia con-
sidered only L (0) and L (2)]. The effective distributions
constructed here may also be of some interest. These are
listed in Table III.

V. THE HIGH-ENERGY PHOTOIONIZATION
CROSS SECTION

The expansion given in Eq. (1) may be useful for es-
timating the photoionization cross section at high ener-
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Moments
included L( —1) L (0) L(1) L(2)

S(2)—S(1)
S(2)—S(0)
S(2)—S(—1)
S(2)—S(—2)
S(2)—S(—3)
S(2)—S{—4)
S(2)—S( —5)
S(2)—S( —6)

0.11552
—0.32649
—0.025 75
—0.068 12
—0.071 58
—0.072 85
—0.073 05
—0.073 18

0.462 10
—0.087 40

0.054 86
0.085 74
0.091 34
0.09478
0.095 57
0.096 31

1.848
1 ~ 104
0.933
0.846
0.820
0.796
0.788
0.779

7.39
9.52

10.61
11.59
12.03
12.60
12.85
13.23

TABLE II. Values of logarithmic mean excitation energies

{in rydbergs) obtained from standard moment theory for atomic

hydrogen.
Number of

terms included

89
101
117
137
162

Best
estimate

'Reference 19.

Energy

—2.903 724 376 161
—2.903 724 376 985
—2.903 724 377018
—2.903 724 377023
—2.903 724 377 025
—2.903 724 377 034'

—1.36700
—1.36695
—1.366 94
—1.366 93
—1.36693
—1.366 93

—180.941
—180.935
—180.940
—180.936
—180.937
—180.937

TABLE IV. He ground-state expectation values as a function
of basis size.

gies. The total photoionization cross section cr, in the di-
pole approximation, is related to the oscillator-strength
density df Ide (when e is given in atomic units) by

tT =277 aap (e' —ep)
' —

3 (e—ep)'
8@2 i 5 8 4

3'

+3.46(e —ep) (21)

o =2/aap (19)

where a=e /i)lc= », is the fine-structure constant and

ap ——R /me is the Bohr radius.
Using the best value of y obtained from Table III leads

to the approximate expansion +3.46(e —ep) (22)

and the corresponding dipole approximation to the dif-
ferential cross section is given by

do' 3n, . , 8v2 p5 8 4

dQ 4
aapsin 8 (e—ep) ——,(e' —ep)3'

df' 8 2 i5 8 4(e ep) —' ——,(e—ep) + 3.46(e—ep)
—4, 5

de37T'
(20)

Comparing this with the exact expression for df /de, one
finds that Eq. (20) leads to a result approximately 9% too
high at e—ep ——10 a.u. and to a result approximately 2%
too high at 20 a.u. (and, of course, even better at higher
energies). The approximate total photoionization cross
section associated with Eq. (20) is given by

do'
=2~2aap(e —ep) sin 8 1+4—cos82 —3.5 2 U

dQ C
(23)

where the differential cross section has been averaged over
both helicity states of the incoming photons and 8 is mea-
sured from the direction of the propagation of the light. '

The dipole approximation is certain to hold only for
energies such that e ep«e—p/a=68. 5 a.u. Beyond 20
a.u. it might be argued that the dipole approximation is
being violated. However, for the case of atomic hydrogen
it can be shown' that, asymptotically, the differential
cross section (including all multipoles) is given by

TABLE III. Effective distributions for atomic hydrogen. =2v 2aap(e —ep)

f ) ——0.956 57

y =3.07 17

fI
——0.711 86

f2 ——0.271 25

y =3.25 15

fI ——0.53047

fi ——0.362 28

f3 ——0.099038

y =3.3748

f )
——0.455 42

f2
——0305 93

f3 ——0.19051

f4
——0.043 580

y =3.4647

o) l
——0.539 56

b —eo ——2.1186

a) i
——0.408 78

cop
——1.0653

b —eo ——3.0560

a) l
——0.383 45

up ——0.649 55

cg) 3 ——1.7247

b —eo ——4.0812

ml ——0.377 11

n)2 ——0.531 29

a)3 ——0.96002
co4

——2.4963
b —eo ——5.1958

' 1/2
6—6p

csin 8 1+4a
Ep

cos8 (24)

Number of
terms included

89
101
117
137
162

Best estimate

'Reference 20.

Energy

—0.527 750 699
—0.527 750 929
—0.527 750 967
—0.527 750 989
—0.527 751 000
—0.527 751 016'

—0.055 84
—0.05606
—0.056 10
—0.056 10
—0.05609
—0.05609

—5.355
—5.363
—5.354
—5.347
—5.350
—5.349

TABLE V. H ground-state expectation values as a function
of basis size.
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TABLE VI. Asymptotic coefficients and moments from sum

rules for He and H

TABLE VIII. Case M =4 effective distributions for He and
H

Sf(3)
S(2)
S(1)
S(0)
S( —1)

He

54.6204
—242.672

606.76
30.3340
4.083 73
2.00000
1.505 00

H

1.241 12
—2.757 08

3.066
1.378 54
0.747 508
2.00000

14.9685

f )
——0.4874

f2 =0.7506

f3 =0.6132

f4 ——0.1386

y =640.9

He

col ——0.8060

co2 ——1.194

cop ——-2.434

C04 =7.213
b —eo ——17.45

where U is the velocity of the ejected electron. This form
for writing the asymptotic expansion is reasonable if
U/c «1, which is simply the assumption that only the
nonrelativistic case is being considered (already required
by the fact that the Schrodinger equation rather than the
Dirac equation is being used). The expansion in Eq. (23)
contains only two leading terms of an expansion which
should be in powers of both (e—eo) '~ and U/c, i.e.,
terms of the type appearing in Eq. (22) should also be in
the expansion. Equation (23), however, indicates the im-
portance of the higher multipoles to the actual expansion.
For U/c sufficiently small, Eq. (22) should be a better ex-
pansion than Eq. (24). Note that the second term in Eq.
(24) is small when e —Eo«eo/16a =586.5 a.u. There-
fore, although the dipole requirement that e—eo«68. 5
a.u. is sufficient for Eq. (22) to be useful, it is more
stringent than necessary. Also note that when Eq. (24) is
integrated over all solid angle to obtain the total cross sec-
tion, the contribution from the second term in the expan-
sion vanishes by virtue of the angular dependence. The
next term in U/c will be of order (U/c) and presumably
will be less important than the first-order term which ap-
peared in the differential cross section. Therefore Eq. (21)
should serve as a better approximation to the total cross
section than Eq. (22) serves for the differential cross sec-
tion. Finally, note that the (U/c) term can be shown9 to
be of the same order as relativistic effects, so to proceed
beyond this point the Dirac equation must be used. In
conclusion, Eqs. (21) and (22) should serve fairly well in
the high-energy region and it appears that this behavior
should also hold true for other atoms.

f i
——0.074 82

fi ——0.4227

f3 =0.8195

f4 ——0.6528

y =3.346

u't ——0.035 43

A@2 ——0.060 50

co3 ——0.1662

mq
——0.7027

b —eo ——2.498

L( —1)

0.6456+0.0015
0.6382%0.0020
0.6438
0.6440+0.0004

L (0)

2.256+0.015
2.254
2.260
2.240
2.11
2.263
2.361
2.223
2.267
2.265 +0.003

L(1)

14.72+0.50
13.76
14.6
14.57
14.58%0.03

Source

Moment theory'
Consistent distribution
Present work (M=4)
Present work (extrapolated)

Source

Moment theory'
Variational calculation'
Variational calculation"
S(k) fit'
S(k) fitf
S(k) fitl'

Experimental"
Experimental'
Present work (M=4)
Present work (extrapolated)

Source

Moment theory'
Variational calculation~
S(k) fitf
Present work (M=4)
Present work (extrapolated)

TABLE IX. Comparison of values of L (k) for atomic helium.

TABLE VII. Variational moments used for He and H

He

S(—2)
S( —3)
S(—4)
5( —5)
S(—6)

1.383 12
1.414 96
1.542 10
1.749 87
2.04044

206.0959
3 771.499

80 102.66
1 867 814

46472 740

VI. THE CALCULATION OF Sf(3) FOR He AND H

In order to construct the effective oscillator-strength
distributions for atomic helium and the negative hydrogen
ion it is necessary to have accurate values of the usual mo-
ments S(k) for k =2, 1,0, —1, . . . as well as Sf(3), the
"finite" part of the third moment. Note that in Ref. 4 it

L(2)

521.7
530.2
530.2+0.5

530.8
530.1 +0.7

'Reference 21.
Reference 22.

'Reference 23.
Reference 24.

'Reference 25.
Reference 26.

~Reference 3.
"Reference 27.
'Reference 28.
'Reference 2.
"Reference 11.

Source

S(k) fit~

Consistent distributionj
Variational calculation"
Present work (M=4)
Present work (extrapolated)
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is shown that the coefficients a and P of the first two

asymptotic terms of the oscillator-strength density may be
obtained from S(2). Sufficiently accurate values of the
S(k) have been found in the literature; however, it has
been necessary to perform calculations utilizing highly ac-
curate He and H wave functions to obtain S~(3) to the
required accuracy.

A calculation from which SI(3) may be obtained has
been performed previously for He by Schwartz, " but this
has been found to be inadequate for the present needs.
Note that S&(3} may be written in terms of what
Schwartz calls "C"through the relation

SI(3)=—,Z Np(0)C . (25)

Schwartz performed a calculation using an 18-term Ki-
noshita wave function and obtained C=5.18 for atomic
hehum. Using Pekeris's result, ' Np(0) =45.501, leads to
SI(3)=629 for He, in substantial disagreement with the
value obtained in the present work.

The wave function used for the present calculation is a
modified version of a Fock-type wave function due to C.
W. Scherr and E. J. Shipsey (unpublished). The wave
function is of the form

—A,(r ) +r~ )I2P=e P(ri, r2, riz ),
where

(26)

I'= g A(p, q, l i j)rir)rI2(ri+rz)' [1n(ri+rz)] (27)
p, g, l,

l,J

as specified by Fock, ' where r„rz, and r, 2 are the Hyl-
leraas variables. The permutational symmetry of the
ground state has been insured by requiring
A (p, q, l,i,j)=3 (q,p, l,ij ) The sta. ndard Rayleigh-Ritz
procedure' has been employed to determine the values of
A(p, q, l,i,j) and A, for which the expectation value of the
energy is minimized. The inclusion of the nonconvention-
al half-power and logarithmic terms is necessary in order
for the wave function to assume the correct analytic form
when both electrons are near the nucleus. This type of
wave function appears to be especially well suited for the
present calculation since the expectation values necessary
for the evaluation of SI(3) are clearly very sensitive to the
behavior of the wave function near the nucleus. From Eq.
(9), S&(3) may be written as

Sf(3)=Ii+ 23 Z2I2 —32 ZZNI3 (28)

TABLE X. Comparison of values of L(k) for the negative
hydrogen ion.

Source

—13.3
—12.70
—12.72
—12.70+0.03

One-electron model'
Consistent distribution'
Present work (M=4}
Present work (extrapolated)

Source

the present work. Table IV lists the ground-state energy,
I2, and Ii as a function of basis size for He. Table V lists
the same results for H . I2 and I& have apparently con-
verged to six digits for atomic helium and to almost four
digits for the negative hydrogen ion. The accuracy
achieved appears to be adequate for the present needs.

Using the "best-estimate" results of the expectation
values listed in Tables IV and V, Sy(3) may readily be cal-
culated for He and H once the value of Np(0) has been
supplied. From the work of Pekeris the value of Np(0} is
known to be 45.501 for atomic helium' and 4.136 for the
negative hydrogep ion. ' Hence the value of SI(3) is
found to be 606.76 for He and 3.066 for H

VII. THE CALCULATION OF THE EFFECTIVE
DISTRIBUTIONS FOR He AND H

Efflux:tive distributions have been constructed according
to the prescription given in Sec. III. The coefficients a
and P of the first two terms in the asymptotic expansion
and the moments of the oscillator-strength distribution
which can be obtained from sum rules are listed in Table
VI for He and H . The values of SI(3}listed are those
which have been calculated in the present work. The
values of S(2), S(1),and S(—1) are expressible as expec-
tation values of the wave function and have been taken
from the work of Pekeris on atomic helium' and the neg-
ative hydrogen ion. ' S(0) is, of course, equal to the
number of electrons in the system, which is two for He
and H

Ab initio values of S(—2), S(—3), S(—4), S(—5),
and S( —6) have also been taken from the literature; how-
ever, these quantities cannot be expressed as expectation
values of the wave function. These moments must be cal-
culated variationally, hence the precision attained for
S(—2}—S(—6) is not likely to be as accurate as that of
the S~(3), S(2), S(1), and S(—1) calculations. The

where

I, = —', Z Np(0)[ —,
'

ln2 ——,
' —CEM], (29)

—1.742
—1.711
—1.718+0.008

Consistent distribution'
Present work (M=4)
Present work (extrapolated}

and

~a= x (4o, , 40)
i j =1 Ti I'J

I,= I lnr, dr.
00 d p

dr

(30)

0.6045
0.4575
0.4725+0.0075

L(2)

Source

Consistent distribution'
Present work (M=4)
Present work (extrapolated)

Source

The term I& can easily be determined from the high-
accuracy values of p(0) for He and H calculated by Pek-
eris. ' ' Accurate values of I2 and I3 are not available in
the literature for He and H and have been calculated in

14.69
16.62
16.58+0.04

'Reference 29.

Consistent distribution'
Present work (M=4)
Present work (extrapolated}
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values for S(—2)—S(—6) have been obtained from the
work of Langhoff et al. ' and Thakkar. ' Langhoff et al.
performed calculations using two different basis sets for
both He and H and generated "spectrum-a" and
"spectrum-b" variational approximations to S ( —2}
—S(—6). Thakkar has performed a calculation to obtain
variational approximations to S(—2)—S(—6) for He.
Calculations of the effective distributions have been per-
formed here using all of the above five sets of values. For
atomic helium, I.anghoff's spectrum-a values and
Thakkar's values lead to effective distributions which are
quite similar in appearance for the M=1, 2, 3, and 4
cases. The effective distributions using the Langhoff
spectrum-b values for the M=3 and 4 cases are consider-
ably different from the corresponding effective distribu-
tions constructed from Thakkar's values and the
spectrum-a values. In fact, for the spectrum-1 effective
distribution, the value of y undergoes an unreasonably
large jump between the M =3 and 4 cases. For this
reason the results from the spectrum-1 values for He have
been disregarded. Moreover, the Thakkar values lead to a
slightly better value of L(2} (known from the accurate
calculation of Schwartz") for the M=4 case than do the
spectrum-a values. For this reason, for He, only the re-
sults obtained using the Thakkar values are presented
here. For H, the effective distributions constructed
from the spectrum-a and spectrum-b values for
S(—2)—S( —6) are extremely similar in appearance and
the results obtained using the spectrum-a values have be
rather arbitrarily chosen for presentation here. Table VII
contains values of S(—2) —S(—6) used for the construc-
tion of the effective distributions for both He and H
Table VIII contains the effective distributions for M =4
for both He and H

In order to obtain the logarithmic mean excitation ener-

gies for atomic helium and the negative hydrogen ion it is
necessary to insert the effective distribution into Eq. (18),
as was done before atomic hydrogen. Tables IX and X
contain the present results for He and H, respectively,
along with various previous results. For each L (k) is list-
ed both the result from the M =4 distribution and an "ex-
trapolated" value. The extrapolated value is an estimate
obtained by examining the convergence of L(k) for the
M= 1, 2, 3, and 4 effective distributions and using the
convergence behavior exhibited by the L(k) for atomic
hydrogen in Table I as a guide. Hence, the "extrapolated"
value is somewhat subjective, but it is felt that such an es-
timate is useful and accurate to the error margin claimed
in the tables.

Finally, the values of y obtained from the calculations
allow the high-energy oscillator-strength density to be
written as a three-term asymptotic expansion. Of the
three terms, the first two terms are correct, while the third
term is somewhat of a "compromise"; i.e., to some extent
the coefficient of the third term is such that the third
term i.s attempting to reproduce all the remaining terms
over the region where the effective density is nonzero.
For He the recommended expansion is

d =54.62(e' —eo) ~ —242. 7(e —eo)dE'

+640.9(e—eo) (32)

where eo ———2.904. For H the recommended expansion
1s

d = 1 24.1(e e—o)
i2 2—75.7(e e—o)

4

d6

+3.346(e—eo) (33)

where eo ———0.5278, with all quantities in Eqs. (32) and
(33) in atomic units.

VIII. DISCUSSION
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The calculations indicate that the effective oscillator-
strength distributions suggested here provide an efficient
means of evaluating various second-order properties for
the systems considered here, and may possibly be useful
for more complicated atoms and molecules. Although
this technique does not allow the determination of bounds
on the properties, as do certain other methods, this ap-
proach utilizes additional information about the high-
energy behavior of the oscillator-strength distribution.
For the evaluation of second-order properties which
weight the high-energy oscillator strength heavily, such as
L (2},this additional information is important. It also ap-
pears that the effective distribution is capable of yielding
a useful three-term expansion of the high-energy pho-
toionization cross section in the dipole approxi-
mation, with the first two terms exact and the third term
approximate. The interpretation taken here of the insta-
bility of the effective distribution obtained using the
spectrum-1 values for He is that these values were not
adequately accurate enough to apply the proposed tech-
nique to such a high order, but this interpretation is open
to question. It appears that caution must be exercised
when constructing a distribution from many moments
when the moments are not exact; more moments do not
necessarily imply greater accuracy.
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